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Abstract—Traditionally most of people treat a hardware 
solution as an inherently trusted box. “it is hardware not 
software; so it is secure and trustworthy”, they say. Recent 
research shows the need to re-asses this trust in hardware and 
even in its supply chain. For example, attacks are performed on 
ICs to retrieve secret information such as cryptographic keys. 
Moreover, backdoors can be inserted into electronic designs and 
allow for silent intruders into the system. And, even protecting 
intellectual-property is becoming a serious concern in the 
modern globalized, horizontal semiconductor business model.  
This paper discusses hardware security, both from hacking and 
protecting aspects. A classification of all possible hardware 
attacks is provided and most popular attacks are discussed 
including the countermeasures.     

Keywords— Site-channel attacks, Hardware Trojans, fault 
injection, counterfeiting. 

I. INTRODUCTION 

Since the invention of the first integrated circuit (IC) in 1958 
and introduction of first standalone Central Processing Unit 
(CPU) in 1971, we witnessed and continue to observe the 
breathtaking advances in IC manufacturing, transistor density 
and architectural solutions. These advances fueled the 
imagination of developers so that we now have diverse 
application fields for integrated circuits; from RF ID chips and 
microcontrollers to CPUs for desktop PCs with billion 
transistors integrated. ICs and systems have become a 
multibillion-dollar business and represent the physical 
backbone of our digitalized world. Interesting enough, they 
are being increasingly deployed even in many security-critical 
infrastructures such as sensitive governmental organizations, 
military, and financial/banking systems, where the impact and 
consequences of attacks could be catastrophic. Till recently, 
we have intuitively trusted the chips to control our lives and 
processes, so we have huge amount of sensitive information 
processed in chips. However, nowadays, attacks are being 
launched increasingly for economic reasons by well-funded 
criminal organizations or for intelligence purposes to get 
access to secret and sensitive information. Moreover, the 
emergence of globalized and horizontal IC and semiconductor 
business model, mainly driven by cost savings, is requiring 
both designs and users re-asses their trust in hardware and 
even in the supply chain. In recent years many reports have 
appointed to these attacks on the electronic components and 
their supply chain [1]. The semiconductor industry is today 
loosing over $4 billion a year due to these kind of attacks; not 

to mention the catastrophic results these attacks could have for 
critical applications [2,3,4,5]. 
 
Depending on their targets, hardware attacks can be classified 
into three classes: 
 IC data (assets) attacks: These are attacks that aim at 

retrieving the secret data of the IC; e.g., hacking a smart 
cart to get the secret key; 

 IC design (IP) attacks:  These are attacks that aim at 
getting more information on the IC design in order to 
counterfeit it; e.g., perform reverse engineering on an IC 
or IP, steal and/or even claim the ownership; 

 IC functionality (tampering) attacks: these are attacks 
that target the alternation of the original function of the 
chip/system. For example, a chip ceases functioning or 
continues to operate but then in an impaired manner, a 
chip introducing corruption in the data, etc.   

 
In this paper we will focus on the first two classes. Most 

known attacks within each class will be described and the 
means of avoiding them will be discussed. In addition future 
challenges in hardware security will be highlighted.  
 

II. HACKING ICS FOR DATA   

This section provides first a taxonomy and a classification of 
the different types of hacking ICs for data. Thereafter the most 
important three types will be discussed in details. 

A. Classification  

Depending on either they cause the chip and/or the packing to 
be damaged or not, attacks can be further divided into three 
categories [6,7] as shown in Figure 1: 
 Invasive attacks: These are attacks requiring direct access 

to the internal of the device and therefore that do harm the 
chip and destroy its packaging; they typically require high 
skills and specialize laboratory. They are typically very 
time consuming, ranging from hours to weeks. Therefore, 
they are expensive.   

 Non-invasive attacks: These do not physically damage the 
chip.  They require moderately sophisticated equipment 
and are typically low cost as compared with invasive 
attacks. Obviously they are more dangerous than invasive 
ones as the owner of the device will never notice that his 
device is hacked.  
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globalized economy and advances in chip complexity make 
Hardware Trojans an increasingly possible scenario. 
 
 Hardware Trojans can be classified into functional and 
parametric [9]; the functional class is realized by adding or 
deleting transistors or gates and the parametric class is 
realized by modifying existing wires, transistors and logic. For 
example, in [10], the functional class of hardware Trojans is 
demonstrated. The attacker is able to control the system and 
get unlimited access to memory by inserting the Hardware 
Trojan into the CPU. In [11], the parametric class of Hardware 
Trojans is demonstrated on Intel’s Random Number Generator 
used in Ivy Bridge processors. This example of Trojans does 
not need extra logic resources but requires only a change in 
dopant polarity of a few transistors.  
 
Hardware Trojans can be further classified according to their 
activation or action characteristics. Hardware Trojans can be 
activated internally or externally and as a consequence of 
activation can transmit stolen information, modify 
specification or chip function [12]. 

D. Fault injection attacks  

Another powerful hardware attack is the “Fault Injection 
Attack” (FIA).  Faults can be natural and induced by the 
environment in which the chip operates; examples are 
radiation, electrical noise and overheating, which may result in 
chip malfunction.  However, faults can be deliberately injected 
into the chip by an external attacker interested in learning 
about the chip and extracting sensitive and secret information 
and Differential Fault Analysis (DFA) has been proven to be a 
powerful tool, since only a handful of faulty ciphertexts are 
needed to extract the secret key (cf. [13] and [14]). For 
instance, the fault can flip a control bit value to disable a 
protection or algorithms and take advantage of comparisons 
between correct and faulty results. 
 
The FIA attack is typically invasive as the fault has to be 
injected; e.g., by using laser equipment, hence needing devices 
to be unpackaged. Recent fault attacks take advantage of EM 
injections, which make them less invasive but also provides 
less accuracy about the targeted computation block where the 
secret is involved [15].  

E. Combinations of attacks    

The methods of attacking the chips evolve and will evolve in 
the future, and so will the countermeasures.  As the 
complexity of chips will continue to grow, so will the 
complexity of attacks, where two or more standard attacks can 
be combined. For example, the basic idea, presented in [16], is 
to combine both the side channel attack (observation) with the 
fault injection attack (perturbation) as shown in Figure 3 [17]. 
When combining different attacks, the probability of hacking 
the chip increases as it needs at least one of the two methods 
to succeed. Note that in [16,17], the concept combined attacks 
relies on the fact that fault injection countermeasures often 
react at the end of execution, making the opening for side-
channel attack (power analysis).  

III. PREVENTING IC DATA ATTACKS  

This section reviews some of the countermeasures against the 
discussed IC data attacks in the previous section. Of course it 
will be ideal to have countermeasures that make it impossible 
to hack an IC using any other attack, while having minimum 
or no impact on area overhead and performance. However, 
apparently there are no ideal models to prevent the success of 
an attack. The quality of a countermeasure is typically 
measured in the effort required for a successful attack given a 
certain platform.   

A. Countermeasures against side-channel attacks 

The goal of countermeasures against side-channel attacks is to 
implement the chip (e.g., crypto hardware) in such way that 
the attacker’s effort in retrieving the sensitive information is 
too high to be continued and successfully completed. 
Countermeasures can be implemented at different levels of 
design and implementation, including circuit/gate [18,19,20] 
and micro-architectural levels [21,22]. 
 
For instance, the following ways can be used to implement 
micro-architectural countermeasures  against side-channel 
attack based on power analysis [21].  
 Adding Noise:  By adding a Pseudo Random Number 

Generator (PRNG), extra noise is added to the power 
measurements; see Figure 4. The higher the noise, the 
higher the number of measurements required for a 
successful attack, hence the higher the resistance to the 
attack. 

 Dummy Operations: In a DPA (Differential Power 
Analysis) attack, the attacker observes power 
consumption of the same operations in large number of 
measurements. If the continuity of the observed operation 

Figure 3: Combining two attacks 

Figure 4: : Increasing resistance to attacks by adding high noise 
level 



 
 

can be interrupted, than the attacker would be forced to 
collect much more data. The interruption is done by 
adding dummy operations. 

 Alternative Logic Styles: a DPA attack can be effectively 
countered if the power consumption is made independent 
for the data processing. Alternative logic styles are 
proposed, like asynchronous logic or dual-rail pre-charge 
logic style. 

 Masking: To counter a DPA attack, there are attempts to 
solve this at algorithmic level. This countermeasure 
prohibits direct operations between key and data by 
adding random mask to data prior to cryptographic 
operations. If for each run of a DPA a different mask for 
data is used, then the DPA attack will be effectively 
prevented. 

 Design Methodology:  a Globally Asynchronous Locally 
Synchronous (GALS) System with different 
asynchronous clocks. The design is partitioned into 
islands of logic with different clocks. Clocks are present 
in the power measurements, but the attacker cannot easily 
attribute a given clock signal to the correct island.  

B. Countermeasures against hardawre trojans 

In their presence in an IC, and irrespectively where they were 
injected (pre-manufacturing and the post-manufacturing 
phase), Hardware Trojans have to be detected either at pre-
manufacturing and/or the post-manufacturing phase to prevent 
the effected hardware from being integrated in the 
system/application.  
 
Detection can happen in the pre-manufacturing and the post-
manufacturing phase [11]. In the pre-manufacturing phase, the 
detection is based on the completeness of chip verification. 
However, if a (potentially untrustworthy) third party supplier 
of IP blocks is involved, additional logic can be added 
between their IPs to make Trojan activation more difficult 
[23]. Moreover, by using unique chip properties/features, 
hardware Trojans can be also detected at the design stage. For 
instance, in [24] the authentication of hardware by checking 
its implementation at low level has been demonstrated. The 
microarchitecture features of the chip are complex and unique 
such that a unique checksum can be computed; this checksum 
is based on a cycle-to-cycle activity of the microarchitecture 
and it has been shown that small differences can result in 
significant deviations in the checksum; hence detecting 
malicious alteration of hardware.   
 
For detection of the Trojans at the post-manufacturing phase, 
the “golden chip” approach can be used. A golden chip is 
known to be free from hardware Trojans and is used for 
comparison to other chips of the same functionality. Here both 
reverse engineering (e.g., use the scanning electron 
microscope to make photos of all layers of the chip and 
compare them to the layout masks in order to detect additions 
to layers or wires) or side-channel information (e.g., collect 
the of the golden chip information on power, 
electromagnetics, or time and compare with the that of the 

chip under investigation)  can be used as means of Trojan 
detections [25, 26, 27].  
  
HW Trojans design, analysis, implementation and detection 
are topics for further research. Even though there are no 
reported incidents involving hardware Trojans, we have 
already accumulated research that could help us in fighting 
this type of security problems. Globalized IC business model 
and advances in chip complexity make hardware Trojans an 
easy-feasible  scenario. 

C. Countermeasures against fault injection 

The countermeasures against fault injection (perturbation) 
attacks can be classified into four classes [28]: 
 Integrity Check for Inputs: many fault injection attacks 

tries to (a) exploit forcing the computation to take place in 
a different way that originally implemented, or (b) exploit 
properties of some chosen inputs. Checking the 
unexpected properties on inputs can prevent such attacks 
[29]. 

 Parallel Redundant Computations: algorithms can be 
extended with redundancy to detect manipulations [30, 
31, 32, 33].  

 Inherent Algorithm Properties: some algorithms already 
have an inherent type of redundancy, and checking them 
can help in detecting the faults [34,35]. 

 Sensors: built-in transient error detector (based for 
instance on the bulk current sensors) can be used to 
trigger an alarm whenever a possible attach is detected 
[36].  

IV. IC DESIGN ATTACKS 

As already mentioned, IC design (IP) attacks aim at getting 
more information on design in order to counterfeit it. As the 
complexity of the electronic systems and integrated circuits 
increased significantly over the past few decades, they are 
mostly fabricated and assembled globally to reduce the 
production cost. This globalization has led to an illicit market 
willing to undercut the competition with counterfeit and fake 
parts. 
 
In the rest of this section we first briefly propose a taxonomy 
of counterfeit type. Thereafter IC supply chain vulnerability 
will be discussed; and finally the countermeasure will be 
described.  

A. Counterfeit components 

 As defined in [2], a counterfeit component has one of the 
following properties: (i) is an unauthorized copy; (ii) does not 
conform to original component manufacturer (OCM) design, 
model, and/or performance standards; (iii) is not produced by 
the OCM or is produced by unauthorized contractors; (iv) is 
an off- specification, defective, or used OCM product sold as 
“new” or working; or (v) has incorrect or false markings 
and/or documentation.  
 
Based on the definition above and analyzing supply chain 
vulnerabilities, we classify the counterfeit types into seven 
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very effectively. Finally, electronic IDs (ECIDs) have been 
commonly used by semiconductor industry for field return 
analysis. Such technology can also protect clones and 
remarking of ICs. 

V. FUTURE CHALLENGES 

As the semiconductor industry continues progress towards 
smaller and smaller nodes and new microarchitectures are 
emerging, we witness increasing richness of applications and 
at the same time increasing complexity of data processing. It 
is difficult, and may be economically not affordable to capture 
every potential use case of the chip (including security) at 
design time and verify design before the production. Security 
solutions for the chips will be then incomplete; nevertheless, 
they should be able deal with the possible “unexpected” in 
field. Globalized economy with continuous pressure on time-
to-market and cheaper products also shape the security 
solutions in chips of the future. “Too much” or “too few” 
security in the chips, due to incomplete design and 
implementation process and market forces, will help the new 
classes of attacks on the chips to emerge; some will be 
combination of different attacks, containing passive and active 
attacks.    
 
When securing the chip, today designers consider different 
aspects like protection of inputs, processing and memory parts 
and the control flow. Designers follow proactive strategy of 
protecting chips; they anticipate the attacks and build the 
mechanisms to defend the chips. Designers assume that 
attackers are reasonable and act according to certain 
probability distributions. The main question is either this will 
work for future chips? Obviously, much research is to be 
done; understanding hardware security problems in the future 
will strongly depend on novel applications and 
microarchitectures. However, the following can be stressed:  
 With rising complexity of chips, the complexity of 

defenses will also rise and probability that defenses are 
inadequate against some attacks. The complexity prevents 
us to patch every last vulnerability in the chips.  

 If we could patch every last vulnerability in chips, we 
would invest the resources in fortification of the chip 
protecting the chip against attacks that may never happen. 
The bigger the chip is, the bigger fortification will be, and 
consequently the more costly the chip will be. 

 We cannot assume that attackers in the future will be 
reasonable and act according to fixed probability 
distribution, as we assume about attacker today. We must 
make worst-case assumptions, including that attackers 
have knowledge of chip defenses and that all chip 
vulnerabilities are not patched.  

 
So, what is the strategy for defending the chip in the future? 
Since we cannot patch every last vulnerability and anticipate 
every new attack or combination of attacks, we still have to 
enable the chip to react to vulnerabilities and attacks and apply 
defenses where they are needed. This reactive strategy with 
inherent flexibility may cost less than the full fortification of 

the chip and may respond better to previously not anticipated 
attacks. 

 

VI. CONCLUSION 

This paper has presented different aspects if hardware security; 
a classification is of all existing hardware attacks is provide. 
Most popular hacking methods and their countermeasures  are 
discussed.  
 
Hardware security and attack prevention are becoming very 
important aspects of today’s electronics especially when 
considering the presence of professional well-funded (criminal) 
organization with the purpose hardware hacking!    
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