
A Low-Power, High-Performance Approximate
Multiplier with Configurable Partial Error Recovery

Cong Liu
Department of Electrical and

Computer Engineering
University of Alberta

Edmonton, Alberta, Canada T6G 2V4
Email: cong4@ualberta.ca

Jie Han
Department of Electrical and

Computer Engineering
University of Alberta

Edmonton, Alberta, Canada T6G 2V4
Email: jhan8@ualberta.ca

Fabrizio Lombardi
Department of Electrical and

Computer Engineering
Northeastern University

Boston, MA 02115
Email: lombardi@ece.neu.edu

Abstract—Approximate circuits have been considered for
error-tolerant applications that can tolerate some loss of accuracy
with improved performance and energy efficiency. Multipliers are
key arithmetic circuits in many such applications such as digital
signal processing (DSP). In this paper, a novel approximate multi-
plier with a lower power consumption and a shorter critical path
than traditional multipliers is proposed for high-performance
DSP applications. This multiplier leverages a newly-designed
approximate adder that limits its carry propagation to the
nearest neighbors for fast partial product accumulation. Different
levels of accuracy can be achieved through a configurable error
recovery by using different numbers of most significant bits
(MSBs) for error reduction. The approximate multiplier has
a low mean error distance, i.e., most of the errors are not
significant in magnitude. Compared to the Wallace multiplier,
a 16-bit approximate multiplier implemented in a 28nm CMOS
process shows a reduction in delay and power of 20% and up
to 69%, respectively. It is shown that by utilizing an appropriate
error recovery, the proposed approximate multiplier achieves
similar processing accuracy as traditional exact multipliers but
with significant improvements in power and performance.

I. INTRODUCTION

Approximate computing has emerged as a potential so-
lution for the design of energy-efficient digital systems [1].
Applications such as multimedia, recognition and data mining
are inherently error-tolerant and do not require a perfect
accuracy in computation. For these applications, approximate
circuits may play an important role as a promising alternative
for reducing area, power and delay in digital systems that
can tolerate some loss of accuracy, thereby achieving better
performance in energy efficiency.

As one of the key components in arithmetic circuits, adders
have been extensively studied for approximate implementation
(see [1] for a review). New methodologies to model, analyze
and evaluate the approximate adders have been discussed in
[2]–[4]. However, there has been relatively less effort in the
design of approximate multipliers. A multiplier usually con-
sists of three stages: partial product generation, partial product
accumulation and a carry propagation adder (CPA) at the
final stage. [5] considers using approximate adders to generate
the radix-8 Booth encoding 3x with error reduction. In [6],
approximate partial products are computed using inaccurate
2 × 2 multiplier blocks, while accurate adders are used in
an adder tree to accumulate the approximate partial products.
[2] briefly discusses the use of approximate speculative adders

for the final stage addition in a multiplier. The error tolerant
multiplier (ETM) of [7] is based on the truncation of a
multiplier into an accurate multiplication part for MSBs and a
non-multiplication part for LSBs.

In this paper, a novel approximate multiplier design is
proposed using a simple, yet fast approximate adder. This
newly designed adder can process data in parallel by cutting
the carry propagation chain (and thus, introducing an error). It
has a critical path delay that is even shorter than a conventional
one-bit full adder. Albeit having a high error rate, this adder
simultaneously computes the sum and generates an error
signal; this feature is employed to reduce the error in the
final result of the multiplier. In the proposed approximate
multiplier, a simple tree of the approximate adders is used for
partial product accumulation and the error signals are used to
compensate the error for obtaining a better accuracy. Compared
to the traditional (exact) Wallace and Dadda trees, the proposed
multiplier has a significantly shorter critical path as well as a
reduced circuit complexity.

II. PROPOSED APPROXIMATE ADDER

In this section, the design of a new approximate adder is
presented. This adder operates on a set of pre-processed inputs.
The input pre-processing (IPP) is based on the interchange-
ability of bits with the same weights in different addends.
For example, consider two sets of inputs to a 4-bit adder:
i) A = 1010, B = 0101 and ii) A = 1111, B = 0000.
Clearly, the additions of i) and ii) produce the same result.
In this process, the two input bits AiBi = 01 are equivalent
to AiBi = 10 (with i being the bit index), because of
the interchangeability of the corresponding bits in the two
operands.

The basic rule for the IPP is to switch Ai and Bi if Ai = 0
and Bi = 1 (for any i), while keeping the other combinations
(i.e., AiBi = 00, 10 and 11) unchanged. By doing so, more
1’s are expected in A and more 0’s are expected in B. If ȦiḂi
are the ith bits in the pre-processed inputs, the IPP functions
are given by:

Ȧi = Ai +Bi, (1)

Ḃi = AiBi. (2)

(1) and (2) compute the propagate and generate signals used
in a parallel adder such as the carry look-ahead (CLA). The

978-3-9815370-2-4/DATE14/ c©2014 EDAA

TABLE I. TRUTH TABLE OF AN APPROXIMATE ADDER CELL.

ḂiḂi−1 00 01 10 11
Ȧi Ȧi Ȧi 1 1

Ci−1/Ḃi−1 0 1 0 1
Si Ȧi 1 0 1
Ei 0 Ȧi 0 0

proposed adder can process data in parallel by cutting the carry
propagation chain. A carry propagation chain starts at the ith
bit when Ḃi = 1, Ȧi+1 = 1, Ḃi+1 = 0. In an accurate adder,
Si+1 is 0 and the carry propagates to the higher bit. However,
in the proposed approximate adder, Si+1 is set to be 1 and an
error signal is generated as Ei+1 = 1. This prevents the carry
signal from propagating to higher bits. By doing so, a carry
signal is produced only by the generate signal, i.e. Ci = 1
only when Ḃi = 1, and it only propagates to the next higher
bit, i.e. the (i+1)th position. Table I shows the truth table of
the approximate adder, where Ȧi, Ḃi and Ḃi−1 are the inputs
after IPP, Ci−1 is the carry signal, Si and Ei are the sum and
error bits, respectively. The error signal is utilized for error
compensation purposes as discussed in a later section. In this
case, the approximate adder is similar to a redundant number
system [8] and the logical functions of Table I are given by

Si = Ḃi−1 + ḂiȦi, (3)

Ei = ḂiḂi−1Ȧi. (4)

Replacing Ȧ, Ḃ using (1) and (2), the logic functions with
respect to the original inputs are given by

Si = (Ai ⊕Bi) +Ai−1Bi−1, (5)

Ei = (Ai ⊕Bi)Ai−1Bi−1. (6)

Consider as an example a 6-bit adder with two inputs given
by A = 001111 and B = 000110. The correct (exact) sum S
is 010101; however, the approximate adder produces the sum
S
′
= 001101 and an error E = 001000. It is easy to show

that
S = S

′
+ E. (7)

Note that in (7) ’+’ means the addition of two binary numbers
rather than the ’OR’ function. The error E is always non-
negative and the approximate sum is always equal to or smaller
than the accurate sum. This is an important feature of this
adder, because an additional adder can be used to add the
error to the approximate sum as a compensation step.

III. PROPOSED APPROXIMATE MULTIPLIER

In the proposed approximate multiplier, an adder tree is
utilized for partial product accumulation; the error signals in
the tree are then used to compensate the error in the output to
obtain a product with a better accuracy.

A. Partial Product Accumulation

A significant feature of the proposed approximate multi-
plier is the simplicity to use approximate adders in the partial
product accumulation. [6] has shown that this may lead to poor
performance, because errors may accumulate and it is difficult
to correct errors using existing approximate adders. However,
the use of the newly proposed approximate adder overcomes

Fig. 1. An approximate multiplier with OR-gate based partial error recovery
using 4 MSBs of the error vector.

this problem by utilizing the error signal. The resulting design
has a critical path delay that is shorter than a conventional
one-bit full adder, because the new n-bit adder can process
data in parallel.

B. Error Reduction

As (7) is applicable to the sum of every single approximate
adder in the tree, an error reduction circuit is applied to
the final multiplication result rather than to the output of
each adder. Two steps are required to reduce errors: i) error
accumulation and ii) error recovery by the addition of the
accumulated errors to the adder tree output using an accurate
adder (Fig. 1).

1) Error Accumulation: The error signals can be summed
up using accurate adders and thus, the accumulated error can
fully compensate the inaccurate product; however to reduce
complexity, an approximate error accumulation is introduced.
Consider the observation that the error vector of each approx-
imate adder tends to have more 0’s than 1’s. Therefore, the
probability that the error vectors have an error bit ’1’ at the
same position, is quite small. Hence, an OR gate is used to
approximately compute the sum of the errors for a single bit.
If m error vectors (denoted by E1, E2, ..., Em) have to be
accumulated, the sum of these vectors is obtained as

Ei = E1i OR E2i OR ... OR Emi. (8)

2) Error Recovery: To reduce the error, an accumulated er-
ror vector is added to the adder tree output using a conventional
adder (e.g. a carry look-ahead adder). However, only several
(e.g. k) MSBs of the error signals are used to compensate
the outputs for further reducing the overall complexity. The
number of MSBs is selected according to the extent that errors
must be compensated. For example in an 8×8 adder tree, there
are a total of 7 error vectors, generated by the 7 approximate
adders in the tree. However, not all the bits in the 7 vectors
need to be added, because the MSBs of some vectors are less
significant than the least significant bits of the k MSBs. In the
example of Fig. 1, 4 MSBs (i.e. the 11-14th bits) are considered
for error recovery and as a result, 4 error vectors are considered
(i.e. the error vectors of adders A3, A4, A6 and A7). Note that
the error vectors of the other three adders are less significant
than the 11th bit, so they are not considered. The accumulated
error E is obtained using (8); then, the final result is found by
adding E to S using a fast accurate adder. The adder tree and
the error reduction scheme are shown in Fig. 1.

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of Bits Used for Error Reduction

N
M

E
D

OR Gate Error Accumulation
Exact Error Accumulation

(a)

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of Bits Used for Error Reduction

M
R

E
D

OR Gate Error Accumulation
Exact Error Accumulation

(b)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Bits Used for Error Reduction

E
R

OR Gate Error Accumulation
Exact Error Accumulation

(c)

Fig. 2. Accuracy comparison of the approximate multiplier using OR-gate and exact error accumulation: (a) NMED (b) MRED (c) ER vs. different number
of bits for error reduction.

IV. ACCURACY EVALUATION

In [4], the error distance (ED) and mean error distance
(MED) are proposed to evaluate the performance of approxi-
mate arithmetic circuits. For multipliers, ED is defined to be
the arithmetic difference between the accurate product (M)
and the approximate product (M

′
), i.e., ED = |M ′ − M |.

MED is the average of EDs for a set of outputs (obtained
by applying a set of inputs). A metric for comparing mul-
tipliers of different sizes is the normalized MED (NMED):
NMED = MED

Mmax
, where Mmax is the maximum magnitude

of the output of an (accurate) multiplier, i.e. (2n − 1)2 for an
n× n multiplier. The relative error distance (RED) is defined
as: RED = |M

′
−M |
M = ED

M . Similarly, the mean relative
error distance (MRED) can be obtained. The error rate (ER)
is defined as the percentage of erroneous outputs among all
outputs. These three metrics (NMED, MRED and ER) are
used to evaluate the proposed multiplier. A functional model
of the proposed multiplier is implemented using Matlab and an
exhaustive simulation is performed for an 8 × 8 approximate
multiplier.

Both the OR gate error accumulation and the exact error
accumulation are considered for the proposed multiplier; Fig.
2 shows the three metrics (NMED, MRED and ER) for using
different numbers of MSBs for error reduction. Let m denote
the number of MSBs used for error reduction. It can be
seen that the NMED and MRED drop drastically as m is
increased from 0 to 6 and continue to drop as m increases,
even though at a slower rate. The ER also decreases as m is
increased. For the approximate multiplier, there is no error in
the most significant bit of the output, so the largest number
of MSBs used is 15. It is also shown that the OR gate error
accumulation produces a good approximation to the exact error
accumulation. Therefore, m=6 or m=7 may be appropriate for
a good trade-off in terms of the NMED and MRED. For m=7,
the NMED is below 0.3% and the MRED is approximately
1.8%. However, the error rate is reduced significantly as m
increases; it decreases to 20% when m=12 for OR gate error
accumulation. These three figures indicate that the proposed
approximate multiplier has a rather high error rate, but the
error is usually very small compared to both the accurate and
the largest possible output of the approximate multiplier. For
example, for m=7, the error rate can be as high as 62%, but the
MRED is only 1.8%, i.e., most of the errors are not significant.

TABLE II. ARITHMETIC ACCURACY COMPARISON BETWEEN THREE
APPROXIMATE MULTIPLIERS.

Proposed multiplier ETM [7] 2× 2 approximate multiplier [6]
NMED (%) 0.20 2.85 1.39
MRED (%) 0.62 25.21 3.25

ER (%) 31.59 98.88 46.73

(a) (b)

Fig. 3. (a) An exact full adder and (b) the approximate adder cell.

The proposed multiplier is compared with two other ap-
proximate multipliers: the ETM in [7] and the 2 × 2 ap-
proximate multiplier in [6]. In this comparison, the ETM
is divided equally into multiplication and non-multiplication
sections, while the proposed multiplier uses 10 MSBs for error
reduction. As shown in the results in Table II, the proposed
multiplier has the lowest NMED, MRED and ER among the
three approximate multipliers. In particular, it has very low
NMED and MRED compared to the other two designs.

V. DELAY AND POWER EVALUATION

A. Delay Estimation

Based on the linear model of [9], the delays of a full
adder (Fig. 3(a)) and the approximate adder cell (Fig. 3(b)) are
derived to be approximately 3τg and 2τg , respectively, where
τg is an approximate “gate delay”. For an n-bit approximate
multiplier, there are dlog2ne layers in the adder tree. Taking
into consideration the delay of the error accumulation using
OR gates, the delay of the proposed multiplier is given by

DAp = (2 dlog2ne+ 1)τg. (9)

There are blog1.5nc layers in the Wallace or Dadda tree and
their delays are given by [10]

DW,D = 3 blog1.5nc τg. (10)

Table III shows the delay of the partial product accumulation
tree in both the proposed and Wallace/Dadda multipliers. For a

TABLE III. DELAY OF PARTIAL PRODUCT ACCUMULATION TREE OF
THE PROPOSED AND CONVENTIONAL MULTIPLIERS OF DIFFERENT SIZES.

n 8 16 32 64 2k

DAp(τg) 7 9 11 13 2k + 1
DW,D(τg) 12 18 24 30 ≈ 5k

TABLE IV. POWER CONSUMPTIONS OF FPGA IMPLEMENTATIONS OF
THE 16-BIT APPROXIMATE AND WALLACE MULTIPLIERS.

Dynamic Quiescent Total
Wallace (W) 0.122 0.083 0.205

Approximate (W) 0.068 0.082 0.150

16-bit multiplier, the delay of an exact multiplier tree is twice
as large as the delay of the proposed multiplier tree; as the size
of the multiplier increases, this factor is approximately 2.5.
Since the approximate adder cell is simpler than a full adder,
the approximate multiplier has no additional area overhead to
achieve the shorter delay. For the 2×2 approximate multiplier
in [6], only the partial product generation layer is simplified
and the height of the partial product tree is only decreased
by 1, so the delay reduction is quite limited. The ETM in [7]
can reduce the n × n partial product tree to n

2 ×
n
2 . By (10),

the difference between the delays of n×n and n
2 ×

n
2 trees is

approximately 3log1.52τg ≈ 5.13τg . In summary, the other two
multipliers reduce the critical path delay by a limited value. In
contrast, the proposed multiplier can reduce the delay of the
partial product accumulation tree by nearly 60%, which scales
with the size of the multiplier.

B. Experimental Results

1) FPGA Implementation: 16× 16 approximate and Wal-
lace multipliers are implemented in VHDL using the Xilinx
Spantan3E XC3S500E FPGA. The critical path delays of the
proposed approximate multiplier and the exact Wallace multi-
plier are 13.990ns and 21.999ns, respectively, thus achieving
a reduction of 36.4%. The input data for simulating power
consumption are given by the multiplication of two images.
The node activity rates are extracted by performing post-
place and route simulation running at the maximum frequency
of the Wallace multiplier. Based on the activity rates, the
Xilinx XPower Analyzer is used to obtain the power con-
sumption, as shown in Table IV. The quiescent power of the
approximate multiplier is slightly smaller than the Wallace
multiplier, however the approximate multiplier saves 44.3%
of the dynamic power compared to the Wallace multiplier.
Overall, the proposed multiplier achieves a reduction of 26.8%
in total power consumption.

2) ASIC Implementation: ASIC designs for n × n (n =
8, 16) approximate multipliers with n-bit error reduction and

Fig. 4. Two neighboring approximate adder cells for ASIC implementation.

(a) (b)

Fig. 5. Power vs. frequency for (a) 8-bit and (b) 16-bit approximate and
Wallace multipliers.

Wallace multipliers of the same size have been implemented
in STM 28nm CMOS process. The approximate adder cell
in Fig. 3(b) is implemented using shared logic between two
neighboring approximate adder cells, as shown in Fig. 4,
thereby saving additional area. In Fig. 4, the signal Ci is given
by Ci = AiBi and shared between two cells. The critical path
delays of 16 × 16 approximate and Wallace multipliers are
0.48ns and 0.6ns, respectively, resulting in a delay reduction
of 20%. The power consumption for image multiplication is
obtained by applying three frequencies (0.1 GHz, 0.25 GHz
and 1GHz) to all these multiplier circuits. As shown in Fig. 5,
the 8× 8 and 16× 16 approximate multipliers achieve power
savings in the ranges of 37%-53% and 48%-69%, respectively,
compared to the accurate Wallace multipliers.

VI. CONCLUSION

In this paper, a novel approximate multiplier design is
proposed using a newly designed approximate adder. On a
statistical basis the proposed multiplier has a very small error
distance and thus a high accuracy. Simulations have shown
that the proposed design has a shorter critical path delay and a
significantly lower power consumption compared to an exact
Wallace multiplier. It also uses a configurable error recovery
that can produce more accurate results than other state-of-the-
art approximate multipliers.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate Computing: An Emerging
Paradigm For Energy-Efficient Design,” in IEEE ETS, 2013.

[2] J. Huang, J. Lach, and G. Robins, “A methodology for energy-quality
tradeoff using imprecise hardware,” in DAC 2012, pp. 504–509.

[3] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and
synthesis of quality-energy optimal approximate adders,” in ICCAD
2012, pp. 728–735.

[4] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders,” IEEE Transactions on Comput-
ers, vol. 62, no. 9, pp. 1760–1771, 2013.

[5] S.-L. Lu, “Speeding up processing with approximation circuits,” Com-
puter, vol. 37, no. 3, pp. 67–73, 2004.

[6] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in 24th IEEE Intl. Conf.
on VLSI Design, 2011, pp. 346–351.

[7] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed
multiplier for error-tolerant application,” in IEEE Intl. Conf. Electron
Devices and Solid-State Circuits (EDSSC), 2010, pp. 1–4.

[8] B. Parhami, Computer arithmetic. Oxford university press, 2000.
[9] N. H. Weste and H. David, CMOS VLSI Design-A Circuit and Systems

Perspective, 3rd ed. Pearson Addison Wesley, 2005.
[10] K. Bickerstaff, E. Swartzlander, and M. Schulte, “Analysis of column

compression multipliers,” in 15th IEEE Symp. on Computer Arithmetic,
2001, pp. 33–39.

