
Trade-offs in Execution Signature Compression for
Reliable Processor Systems

Jonah Caplan∗, Maria Isabel Mera†, Peter Milder†, and Brett H. Meyer∗
∗ Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada

{jonah.caplan@mail.mcgill.ca, brett.meyer@mcgill.ca}
† Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York, USA

{maria.mera, peter.milder}@stonybrook.edu

Abstract—As semiconductor processes scale, making transis-
tors more vulnerable to transient upset, a wide variety of microar-
chitectural and system-level strategies are emerging to perform
efficient error detection and correction computer systems. While
these approaches often target various application domains and
address error detection and correction at different granularities
and with different overheads, an emerging trend is the use of state
compression, e.g., cyclic redundancy check (CRC), to reduce the
cost of redundancy checking. Prior work in the literature has
shown that Fletcher’s checksum (FC), while less effective where
error detection probability is concerned, is less computationally
complex when implemented in software than the more-effective
CRC. In this paper, we reexamine the suitability of CRC and
FC as compression algorithms when implemented in hardware
for embedded safety-critical systems. We have developed and
evaluated parameterizable implementations of CRC and FC
in FPGA, and we observe that what was true for software
implementations does not hold in hardware: CRC is more efficient
than FC across a wide variety of target input bandwidths and
compression strengths.

I. INTRODUCTION

While advances in semiconductor manufacturing have
made it possible to fabricate ever smaller, faster, and lower-
power transistors, these trends result in an increase in transistor
density and reduction in the critical charge Qc required to
disrupt a transistor. The transistors in mission- and safety-
critical systems have thus become more vulnerable to errors
introduced by cosmic rays, packaging radiation and thermal
neutrons [1]. These errors are called single event upsets
(SEU)—they occur once due to external stimuli, and are not
repeatable—and may lead to complete system failure.

SEU have been addressed before through the use of sophis-
ticated data redundancy such as error detecting codes (EDC)
and error correcting codes (ECC) [2], and redundant computa-
tion, such as lockstep dual-modular redundancy (DMR) [3].
However, EDC and ECC come at high computational cost
and area overhead [4]. Furthermore, lockstep is wasteful of
compute resources when the DMR pair is not fully utilized
executing safety-critical tasks, as is increasingly the case for
mixed-criticality systems that devote some of their resources
to the execution of non-critical tasks.

As a result, a number of techniques have emerged to
make it easier to employ redundancy when needed but allow
cores to execute in isolation otherwise, such as single- and
multi-processor redundant threading [5], [6], and execution
fingerprinting [7], [8]. These techniques utilize two or more

threads executing on one or more processors for the purpose of
redundancy checking, with an important caveat: unlike under
lockstep execution, the threads need not execute at the same
time, often yielding efficiencies. To support this, many such
techniques compress the changes in processor state—such as
store addresses and data—that must be compared to ensure
coherent execution of the redundant threads. This compression
reduces comparison bandwidth requirements at the expense of
a small, tunable chance of aliasing and undetected error.

There are many design choices and trade-offs to consider
when implementing hardware to compress execution state,
such as: what state to compress; the compression algorithm
used; and, the hardware implementation of the targeted com-
pression algorithm, and other implementation details such as
the size and organization of buffers.

In this paper, we focus on the selection and implementation
of compression algorithms for this purpose. The selection of
a compression algorithm and the microarchitectural details of
how it is built is crucial—especially in the case of low-cost,
low-power embedded safety-critical system. Beyond affect-
ing traditional system design metrics (such as performance
and power), the compression algorithm contributes to critical
design metrics such as error detection latency (EDL) and
error detection probability (EDP). Maxino and Koopman [9]
investigated the tradeoffs of software performance and error
detection probability for different algorithms, such as cyclic
redundancy check (CRC) and Fletcher’s checksum (FC). Given
a generator polynomial, CRC takes a sequence of bits (the
message) and performs polynomial division in the Galois
Field GF(2); the remainder of this division is used as the
signature characterizing the aggregate changes in state. Al-
ternatively, FC divides the message into blocks and performs
two different accumulations over the blocks; the resulting sums
are concatenated and used as the signature. In the context
of software implementations, Maxino and Koopman found
that while implementations of FC are more computationally
efficient, they are much less robust than CRC in terms of EDP.

We revisit the issue of algorithm selection in the context of
hardware-based signature compression and observe that prior
findings about the relative costs of Fletcher’s checksum and
CRC do not hold when implemented in hardware. Hardware-
based compression operates under very different constraints
than software-based approaches: (a) awkward arithmetic or
bit-wise operations can be cost-effectively realized, but (b)
storage is relatively expensive. In this paper, we focus on
FPGA implementations of compression logic. Investigating

978-3-9815370-2-4/DATE14/©2014 EDAA



these trade-offs in the context of an ASIC design flow is the
subject of future work; however, the importance of FPGAs
in embedded systems cannot be understated, especially in the
aerospace domain where manufacturing volumes remain low,
and therefore ASICS are rare.

We design, synthesize, and evaluate a wide variety of CRC
and FC signature compression circuits. For each, we consider a
variety of implementation options, varying the checksum width
as well as the data input rate. Our CRC implementations are
based on the flexible design in [10], and our FC implementa-
tions are based on a novel parallelization technique we have
developed, which supports scaling the input data rate with a
linear increase in cost; the Verilog/VHDL generation scripts we
developed are available at http://bhm.ece.mcgill.ca/~resc. Our
evaluation shows that when implemented on an FPGA, CRC
implementations are much more efficient than FC in terms of
data throughput per unit cost.

II. RELATED WORK

Surveys in the literature provide a valuable overview of the
general area of fault tolerance. Overviews of the fundamental
structures of fault-tolerant computing are available in [11]–
[13], while more recent work [14] covers transient errors and
architectures to mitigate them.

More specifically, fault-tolerant hardware can be classified
by how redundancy is achieved; of relevance to the present
work are approaches that employ either (a) microarchitectural
or (b) system-level redundancy. Generally, microarchitectural
techniques, such as error-correcting codes, achieve moderate
coverage at high cost [4]. A variety of system-level techniques
have been proposed to address this cost and take advantage of
opportunities to share resources in the multi-core era.

One body of research employs redundant multi-threading to
achieve redundancy [5]. Subramanyan, et al. reduce throughput
losses in a multiprocessor when a redundant thread lags
the leading thread by forwarding loaded values and branch
outcomes [6]. Sloan and Kumar developed a framework that
distributes voting logic to support efficient, dynamic nMR
group formation in chip multiprocessors (CMPs) [15].

Another body of emerging research compares compressed
state during redundancy checking. Argus employs CRC-6,
amongst other things, to achieve low-cost single-core fault
tolerance [16]. CRC is also used by Dynamic and Scalable
DMR (DDMR, CRC-16) and Dynamic Core Coupling (DCC,
2x CRC-32) to compress state to support techniques that
dynamically form pairs of redundant processors [17], [18].
Distributed temporal redundancy (DTR) also proposes to use
CRC for fingerprint compression to allow statically scheduled
safety-critical tasks to execute out of lockstep [8].

While [9] goes a long way towards characterizing the EDP
of FC and CRC, their recommendations on which to use based
on implementation cost do not carry over into the embedded
hardware domain. Furthermore, [19] and [10] describe CRC
designs that sacrifice circuit area to maximize the operating
frequency by introducing pipelining and extremely wide cir-
cuits into the parallel design. Designers considering how best
to include compression hardware in their systems may conse-
quently reach the conclusion that CRC is prohibitively complex

and expensive. To the best of our knowledge, ours is the first
work developing a flexible parallel hardware implementation
of Fletcher’s checksum, allowing us to reassess the tradeoffs
between the two compression algorithms in this context.

An evaluation of forward error-correcting codes, such as
low-density parity check codes, which are generally more
complex than backward error-correcting codes, is left for future
work. Cryptographic hashes are also of interest, but are also out
of scope due to their increased complexity relative to CRC and
FC in the cost-constrained environment of embedded systems.

III. EXECUTION SIGNATURE COMPRESSION

An execution signature compression system (ESCS) uses
a hash function (e.g. cyclic redundancy check or Fletcher’s
checksum) to compress state changes (e.g. store addresses and
data) or other information (e.g. checkpoints) into a single,
fixed-width word called a signature. Often, this signature is
then buffered for comparison against the signatures generated
by a redundant thread executing on the same core at a later
time or on another core (a la DCC [17] and DDMR [18]), or
matched against a pre-computed signature (Argus [16]). If the
signatures match, the redundancy check passes, and execution
continues. If not, corrective action is taken, either in the form
of executing an additional copy of a thread [8] or performing
a rollback-and-recovery operation.

A. ESCS Design Space

Three key parameters affect the performance and cost of
an ESCS: input bandwidth, signature width, and algorithm.
Input bandwidth, the number of bits compressed in a cycle,
is often related to the error detection latency (EDL) of an
ESCS. Compressing more bits of state information in a single
cycle allows erroneous state to enter the compression stream
more quickly, reducing EDL. We will use the variable W to
represent input bandwidth (in bits per clock cycle).

Increasing input bandwidth also increases ESCS cost
(area); however, reducing input bandwidth beneath the number
of bits that can potentially arrive for compression in a single
cycle implies the use of input buffers, which are themselves
costly. Prior work has shown that this buffering can vary from
as little as a few kB to hundreds of kB, depending on the
characteristics of the bitstream being compressed [20].

The signature width determines the compression strength;
increasing it increases error detection probability (EDP) by
reducing the chances that two different bitstreams alias. In-
creasing signature width generally increases the cost of an
ESCS, as (a) more registers are needed to store the portion
of the bitstream being operated on, and (b) maintaining the
same bitstream throughput requires additional logic. We will
use the variable M to represent signature width (in bits). To
the first order, the error detection probability of a compression
approach with an M -bit signature is 1− 2−M .

Different algorithms behave differently in response to
changes in the length of the compressed message or signa-
ture width. For example, 32-bit Fletcher’s checksum achieves
an error Hamming distance (EHD)—the minimum difference
between two messages (in bits) that is not guaranteed to be
detected—of 3 for messages up to and including 1,048,951 bits



Ai

RTLA
W

RTLA
W-1

RTLA
W-M

RTLA
1

M-bit Signature

0

1

... ...

Write

M 0's

W-bit Data

Reset

Fig. 1. Reduced lookup table algorithm (RTLA) implementation of CRC [10].

long [9]. Several 32-bit CRC polynomials, on the other hand,
achieve an EHD of 6 for messages up to 32,738 bits long [21].
Safety-critical systems such as X-by-wire require an EHD of
6 [22]; a properly designed ESCS must meet the reliability
requirements of a given application while minimizing cost
overhead. In this work, we aim to provide designers with an
understanding of the microarchitectural tradeoffs related to the
implementation of signature compression units. A designer can
then combine this understanding with an application-specific
evaluation of error detection probability for his or her system
(or rely upon general-purpose evaluations such as [9]).

B. Signature Compression with CRC

Cyclic redundancy check (CRC) is a coding technique
that is often used for ensuring that errors—burst errors in
particular—introduced to a bitstream can be detected. Given
a generator polynomial, CRC performs polynomial division
over GF(2), dividing a bitstream message by the generator,
to compute the remainder. This remainder is used as the
signature. After transmission, the division on the bitstream is
performed again; if the remainder matches, the message was
transmitted error-free. Otherwise, an error occurred, requiring
that the message be retransmitted. A more detailed description
of CRC can be found in the literature [22].

We implement a fast, parallel CRC circuit based on prior
work [10], illustrated in Figure 1. This circuit has the dual
advantages of performing the CRC operation in parallel on
input data and supporting a variety of input data widths.
The circuit takes an N -bit word to compress into an M -bit
signature at a rate of W bits per clock cycle. Compressing
an N -bit word therefore takes N/W clock cycles. When the
first input block is presented to the circuit, the reset signal is
asserted, clearing the previous signature and restarting the CRC
calculation for the new data. The bits of the block Ai, which
we will refer to as aj , are used as select lines for Reduced
Table Lookup Algorithm (RTLA) multiplexers. The RTLA
multiplexers output zeros when aj = 0, j ∈ {0, ...,m − 1}.
When aj = 1, the multiplexers output the CRC of 2j (which is
pre-calculated and stored). All the RTLA signals are XORed
together and then stored in the signature register. When the
next W bits of data are presented to the circuit, reset is de-
asserted, and the result of previous calculation is incorporated
in the next stage by XORing it with the highest M bits of the

+x[n] reg. + reg.

s[n]

t[n]

+
B

B
B+1

bits [B-1:0]

bit [B]

+B

1
B

(a)

(b)

Fig. 2. (a) Serial implementation of Fletcher’s checksum. (b) Structure of a
B-bit ones’ complement adder.

new block. In our implementation we assume W ≥M . More
detail on this technique is available in [10].

Based on this design, we have written a flexible hardware
generation script that takes as input parameters W , M , and
the generator polynomial, and produces the corresponding de-
scription as synthesizable VHDL. With this tool we can easily
produce a variety of different implementations that exhibit
different trade-offs. For instance, as W and M increase the
circuit grows in size and its maximum frequency is reduced.
Other published CRC designs such as [19] exhibit similar
architectures that can be pipelined to reach higher frequencies,
but require several times more hardware than our technique.

C. Signature Compression with Fletcher’s Checksum

The Fletcher’s checksum (FC) [23] of size M is a ones’
complement integer algorithm that produces an M bit check-
sum from a series of B = M/2 bit inputs. Typically, FC
is computed on serially-arriving data (where one B-bit input
block arrives per clock cycle). Figure 2(a) illustrates such a
serial implementation. During clock cycle n, one B-bit word
(x[n]) enters the system, and two sums (s[n] and t[n]) are
calculated. First, s[n] calculates the B-bit ones’ complement
sum of all current and prior values of x[n]. Then t[n] calculates
the B-bit ones’ complement sum of all prior and current values
of s[n] (that is, the sum of sums). The M -bit checksum is the
concatenation of s[n] and t[n].

B-bit ones’ complement arithmetic can be viewed as
unsigned arithmetic modulo 2B − 1, so the required operation
is implemented (as shown in Figure 2(b)) with a B-bit adder,
where the carry bit is added to the lower B bits of the sum. (We
use a similar technique for ones’ complement multiplication.)

The computation of FC maps naturally to a serial im-
plementation. However, a designer may want to calculate an
M -bit checksum at a rate faster than B input bits per clock
cycle. In this case, it is desirable to parallelize the checksum
computation so that more than one input word can be processed
concurrently. Tight data dependencies make it appear difficult
to parallelize this algorithm (for example, s[k] cannot be
computed until s[k − 1] is known). However, we are able to
address this by computing several independent checksums in
parallel on independent streams of data, and then merge the
results such that the final checksum is equivalent to performing
a single checksum serially on the same data. To the best of
our knowledge, this technique has not been previously shown.



x0[n]

x1[n]

s0[n]

s1[n]
t1[n]

t0[n]
serial Fletcher's 

checksum

serial Fletcher's 
checksum

+

�
s0[n]
s1[n]

t1[n]
t0[n]

s[n]

+

⇥2

s1[n]

t[n]

Fig. 3. P = 2 implementation of Fletcher’s checksum.

s0[n]
s1[n]

s[n]
s2[n]
s3[n]

+

+

+

t1[n]
t0[n]

t[n]

t3[n]
t2[n]

s1[n]
s2[n]
s3[n]

+

+

+

⇥2

⇥3

⇥4

+

+

�

Fig. 4. Final merge steps of P = 4 implementation of Fletcher’s checksum.

We wish to perform an M -bit checksum at a rate of
W bits per clock cycle (W ≥ B, where B = M/2), so
we define parameter P = W/B as the desired parallelism.
Figure 3 illustrates our parallel approach for P = 2. First,
we decompose our input stream x[n] into even (x0[n]) and
odd (x1[n]) parts, with resulting checksums (s0[n], t0[n]) and
(s1[n], t1[n]). Then, we use these intermediate checksums to
calculate our final checksum values as s[n] = s0[n] + s1[n]
and t[n] = 2(t0[n] + t1[n])− s1[n]. (All arithmetic operations
are ones’ complement.) The merging step of the P = 2
implementation requires three additional ones’ complement
adders and one constant multiplier (with constant 2).

As P increases, computation is performed in a similar
way, as follows. First, the input stream is decomposed into
P parallel streams (so that x[0] goes into stream 0, x[1] goes
into stream 1, and so on). Then, the FC is computed for each
of the P streams. We will label the P individual checksums
as (sa[n], ta[n]), where 0 ≤ a < P . Then, the final s[n] and
t[n] are computed from these terms as

s[n] =

P−1∑
k=0

sk[n], t[n] = P

P−1∑
`=0

t`[n]−
P−1∑
m=1

msm[n]. (1)

So, the final merging steps must (a) sum up all the intermediate
values of sk[n], (b) sum up the intermediate values of t`[n]
and scale them by P , (c) sum up scaled versions of sm[n],
and lastly (d) subtract the result of (c) from the result of
(b). These steps are illustrated for P = 4 in Figure 4.
Straightforward evaluation of (1) confirms the correctness
of the decomposition, and we have additionally verified the
correctness in simulation.

The P -parallel FC has complexity O(P ), where we mea-
sure cost as the number of arithmetic units and registers
required. More specifically, the P parallel serial checksums
require 2P additions; the merging step requires 3P − 3
additions and P − 1 multiplications by small constants (with

constants ≤ P ). This parallel design allows a high amount of
flexibility in the amount of pipelining to be used. The three
summations in (1) each are implemented as adder trees with
depth dlog2 P e. They may be highly pipelined or implemented
fully combinationally. If enough pipelining is used, the critical
path will eventually become the feedback path within the serial
modules (as in Figure 2(a)).

We have built a hardware generator that takes as input the
parameters M and W , as well as parameter to control the
pipelining, and produces a synthesizable Verilog implementa-
tion based on (1). Our generator currently assumes that W is
a power-of-two multiple of B, although this restriction can be
relaxed to any integer multiple.

IV. EXPERIMENTAL SETUP

We conducted experiments to compare the relative cost and
performance of different implementations of CRC and FC. In
each case, we explored how parameters W (input bandwidth)
and M (signature width) affect the system’s implementation
costs and throughput. For each set of design parameters, we
use our generation scripts to produce a design, synthesize
it targeting an Altera FPGA, and determine the resource
consumption, and the maximum clock frequency.

A. CRC Polynomials

The generator polynomial used with CRC is crucially
important to determining the probability of error detection. For
signature widths 8, 16, and 32, there are several polynomials
known to be be good choices for general purposes [21], [24].
However there is no similar peer-reviewed research on polyno-
mials of other lengths. Further complications occur because the
properties of a given polynomial depend on the length of mes-
sages to be compressed. That is, some polynomials give higher
Hamming distance at smaller message lengths but perform
poorly compared to alternatives at higher lengths. However,
the specific polynomial has no effect on the throughput rate
achieved, and only a very small effect on the system’s logic
cost. For example, we evaluated a range of 32-bit polynomials,
implemented with M = 32, and observed less than 5%
difference in the amount of logic required. For this reason, we
have chosen not to focus on the impact of polynomial selection
on circuit cost. Our current designs are built and customized for
a single polynomial given at design time, although they could
easily be modified to produce a system that allows runtime
selection from among several polynomials (with an increase
in design cost). In this experiment, we used the following
polynomials: 0x8e [24], 0xb75 [24], 0xcbe5 [24], CRC-24,
0xf4acfb13 [21], and CRC-64-ECMA-182.

B. Design Simulation and Synthesis

In order to validate the correctness of our CRC and FC
designs, we simulated them with random inputs, and compared
the results with software-computed checksums. To evaluate
implementation costs and performance, we synthesized each
design using Altera Quartus II targeting an Altera Arria II GX
FPGA (EP2AGX45DF29C5). After using Quartus II to run
the procedures for analysis, synthesis, fitting (place and route),
and static timing analysis, we determined: (i) the number of
adaptive LUTs (ALUTS) used (ii) the number of registers used,



0 

20 

40 

60 

80 

100 

120 

0 500 1000 1500 2000 2500 3000 3500 

Th
ro

ug
hp

ut
 (G

bi
t/s

ec
) 

ALUTs 

0 

20 

40 

60 

80 

100 

120 

0 500 1000 1500 2000 2500 3000 3500 4000 

Th
ro

ug
hp

ut
 (G

bi
t/s

ec
) 

registers 

CRC M=8

CRC M=32

FC M=8

FC
M=32CRC M=64

FC M=64

CRC M=16 FC
M=16

CRC M=8

CRC M=32

FC M=8

FC
M=32

CRC M=64

FC
M=64

CRC M=16 FC
M=16

Fig. 5. Comparison of throughput versus ALUTs (left) and throughput versus registers (right) for M = 8, 16, 32, and 64 for CRC and FC.

and (iii) the maximum clock frequency. Then, we determined
the system’s throughput by multiplying the clock frequency by
W , the number of input bits per clock cycle.

V. RESULTS

The results of our experiment are summarized in the two
graphs shown in Figure 5. In both graphs the y-axis shows
the throughput (input data rate, equal to W times the clock
frequency) in gigabits per second. The x-axis of each graph
shows an area cost metric—the left graph illustrates the logic
cost in the number of Adaptive Look-Up Tables (ALUTs),
which are combinational logic blocks, and the right graph’s x-
axis indicates the number of registers required. Separate lines
are shown for signature widths M = 8, 16, 32, and 64, and for
both CRC and Fletcher’s checksum (FC). For both checksums,
we evaluate all legal values of W (the number of input bits
processed per cycle) in (4, 8, 12, 16, 24, 32, 48, 64, 128, 256).
(Recall that our CRC implementation can process any value
of W ≥M and our FC implementation requires 2W/M to be
equal to a power of two ≥ 1.) In each line, the smallest value
of W is located in the lower-left corner, and increasing values
of W proceed above and to the right.

We observe that a CRC design has much lower cost than
its FC equivalent. One can quantify the efficiency of designs
in terms of throughput per ALUT and throughput per register.
Within the range of parameters considered here, the CRC units
are 1.4–22× more efficient in terms of throughput per ALUT
than their equivalent FC design, and they are between 8.0–15×
more efficient in terms of throughput per register.

Given a checksum method and a value of M (that is, a line
on the graph), as W increases, the designs exhibit a roughly
linear relationship between throughput and cost (matching our
expectations). The line’s slope provides a visual indication
of the relative area cost needed to increase throughput; the
steeper the slope is, the less expensive it is to reach higher data
rates. The slope of a line depends on the checksum method
and the signature size (M ). Naturally, larger signatures require
more operations to be performed (XORs and lookups in CRC,
and wider additions in FC), and thus designs with larger M
require more resources to reach a given throughput. However,
the choice of checksum (CRC or FC) is much more important
than M in determining the cost and performance of the design.

TABLE I. NUMBER OF ALUTS, NUMBER OF REGISTERS, AND
THROUGHPUT, AVERAGED OVER DESIGN SPACE, NORMALIZED TO CRC.

ALUTs registers throughput

CRC 1 1 1
FC (minimal pipelining) 4.9 2.5 0.22
FC (intermediate pipelining) 4.9 5.4 0.63
FC (full pipelining) 5.5 11.8 0.88

In fact, the line for CRC with M = 64 has a more efficient
slope than even the M = 8 FC design (though its maximum
throughput is more limited).

Although it is shown only indirectly in these graphs, clock
frequency is a crucial factor in determining system throughput.
For CRC implementations, the clock frequency in this design
space varies from 214 MHz (for M = 64, W = 256) to 844
MHz (for M = 8, W = 8). For FC, the clock frequency
varies from 255 MHz (for M = 64, W = 256) to 489 MHz
(for M = 8, W = 8).

Our FC implementation is flexible with respect to the
amount of pipelining. The values in Figure 5 use the max-
imum number of pipeline stages. However, when we set our
generation tool to use fewer pipeline stages, we obtain designs
with roughly the same number of ALUTs, but varying values
of throughput and register count. To quantify this, Table I
gives average number of ALUTs and registers and the average
throughput of FC designs with minimum, maximum, and an
intermediate level of pipelining; all values are normalized with
respect to CRC for ease of comparison. These comparisons
are based only on the design parameters where both our
CRC and FC implementations are possible. (Recall, our FC
implementations can support a smaller W than our CRC
implementations, but they are more restricted in supported
values as W grows.) We observe that even with reduced
pipelining, the ALUT and register cost of FC remains several
times higher than that of CRC.

When implemented in software, FC is typically considered
to be a computationally cheaper alternative to CRC that is
appropriate when less robust error detection properties are
acceptable [9]. It is intuitive why FC is a faster algorithm when
implemented in software—its basic operation (addition) is well
suited to run on a processor when the addition’s data width



is compatible with the processor’s arithmetic unit. Meanwhile,
the XOR operations and the dataflow required by CRC lead to
significant overheads. Our results show that when implemented
in an FPGA, the situation is reversed: CRC achieves much
higher efficiency than FC. The same XOR operations that
are problematic in software map well to look-up tables in an
FPGA, while adders are relatively more expensive.

VI. CONCLUSIONS AND FUTURE WORK

System-level redundancy techniques are emerging as cost-
effective solutions for multi-core systems under growing vul-
nerability to transient upset. Such systems often employ sig-
nature compression to facilitate rapid redundancy checking.
However, designers often fail to consider the tradeoffs inherent
in embedded implementation of signature compression. We
advocate a systematic approach to evaluating the relevant
design space, taking into account how parameters such as the
compression algorithm chosen, the width of its signature, and
microarchitectural options affect cost and performance.

Using our generation tools, we evaluated a wide variety
of CRC and FC implementations targeting an Altera Arria
II GX FPGA. For each resulting design we evaluated (a)
logic element usage, (b) register usage, and (c) compression
throughput. As shown in Figure 5 and Table I, with respect
to the above metrics, CRC greatly outperforms FC for the
parameters evaluated (signature width M from 8 to 64 bits
and input bandwidth W from 8 to 256 bits per clock cycle).

Typically CRC is viewed (in the context of software) as a
more-expensive alternative to FC that results in stronger error
detection. Our results therefore reexamined this well-studied
trade-off, and show that when implemented as embedded
hardware, the relative costs of these alternatives do not follow
conventional wisdom. The ease with which XORs and lookup
tables can be implemented in hardware results in a clear
efficiency advantage for CRC in terms of throughput per unit
cost; in our results CRC implementations were 1.4–22× more
efficient than FC in terms of throughput per ALUT, and 8.0–
15× more efficient in terms of throughput per register.

Our future work aims to improve understanding of the
benefits and costs of execution signature compression systems.
To do so we will explore in two directions.

First, we will consider a wider variety of compression
algorithms and implementations and examine how trade-offs
(including energy) differ when implemented in other tech-
nologies such as ASIC. For example, in an ASIC-based CRC
design, run-time polynomial selection will likely become more
important, leading to additional costs. Further, our CRC im-
plementation’s lookup-table-based structure fits extremely well
into an FPGA’s reconfigurable logic elements; implementation
in an ASIC design flow may reverse this, leading to further
interesting and important considerations.

Second, we will study at a system-level how other options
(such as the choice of which aspects of system state to
compress) affect design issues such as aliasing probability,
detection latency, and system cost. By creating a framework
to ease evaluation and implementation of these high level
decisions, we will allow designers to intelligently optimize
and understand the implications of these choices on system
reliability, performance, and cost.

ACKNOWLEDGMENTS

This work is supported by: the Semiconductor Research
Corporation (SRC) through gift 2013-RJ-2371G; the Natu-
ral Science and Engineering Research Council of Canada
(NSERC) through grant RGPIN 418639-12 and the NSERC
Undergraduate Student Research Award Program; the McGill
University Faculty of Engineering Chwang-Seto Faculty
Scholar Research Award.

REFERENCES

[1] R. C. Baumann, “Radiation-induced soft errors in advanced semicon-
ductor technologies,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3,
2005.

[2] J. Kim, N. Hardavellas, et al., “Multi-bit error tolerant caches using
two-dimensional error coding,” in ISCA-40, 2007.

[3] M. Baleani, A. Ferrari, et al., “Fault-tolerant platforms for automotive
safety-critical applications,” in CASES’03, 2003.

[4] L. G. Szafaryn, B. H. Meyer, et al., “Evaluating overheads of multibit
soft-error protection in the processor core,” IEEE Micro, 2013.

[5] E. Rotenberg, “AR-SMT: a microarchitectural approach to fault toler-
ance in microprocessors,” in FTCS’99, 1999.

[6] P. Subramanyan, V. Singh, et al., “Multiplexed redundant execution:
A technique for efficient fault tolerance in chip multiprocessors,” in
DATE’10, 2010.

[7] J. C. Smolens, B. T. Gold, et al., “Fingerprinting: bounding soft-error
detection latency and bandwidth,” in ASPLOS’04, 2004.

[8] B. H. Meyer, B. H. Calhoun, et al., “Cost-effective safety and fault
localization using distributed temporal redundancy,” in CASES’11, 2011.

[9] T. C. Maxino and P. J. Koopman, “The effectiveness of checksums for
embedded control networks,” Dependable and Secure Computing, IEEE
Transactions on, vol. 6, no. 1, pp. 59–72, 2009.

[10] H. F. A. Hamed, F. A. Elmisery, et al., “Implementation of low area
and high data throughput CRC design on FPGA,” IJARCSEE, vol. 1,
no. 9, 2012.

[11] V. Nelson, “Fault-tolerant computing: fundamental concepts,” Com-
puter, vol. 23, no. 7, July 1990.

[12] V. Prasad, “Fault tolerant digital systems,” IEEE Potentials, vol. 8, no. 1,
February 1989.

[13] F. Cristian, “Understanding fault-tolerant distributed systems,” Com-
mun. ACM, vol. 34, no. 2, 1991.

[14] S. Mukherjee, Architecture Design for Soft Errors. Morgan-Kaufmann,
2008.

[15] J. Sloan and R. Kumar, “Towards scalable reliability frameworks for
error prone CMPs,” in CASES’09, 2009.

[16] A. Meixner, M. E. Bauer, et al., “Argus: Low-cost, comprehensive error
detection in simple cores,” in MICRO-40, 2007.

[17] C. LaFrieda, E. Ipek, et al., “Utilizing dynamically coupled cores to
form a resilient chip multiprocessor,” in DSN’07, 2007.

[18] A. Golander, S. Weiss, et al., “DDMR: Dynamic and scalable dual
modular redundancy with short validation intervals,” IEEE Computer
Architecture Letters, vol. 7, no. 2, 2008.

[19] M. Walma, “Pipelined cyclic redundancy check (CRC) calculation,” in
ICCCN’07, 2007.

[20] B. H. Meyer, M. Liu, et al., “Rapid, tunable error detection with
execution fingerprinting,” in SAE 2013 AeroTech, 2013.

[21] P. Koopman, “32-bit cyclic redundancy codes for internet applications,”
in DSN’02, 2002.

[22] J. Ray and P. Koopman, “Efficient high hamming distance CRCs for
embedded networks,” in DSN’06, 2006, pp. 3–12.

[23] J. G. Fletcher, “An arithmetic checksum for serial transmissions,” IEEE
Transactions on Communications, vol. COM-30, no. 1, January 1982.

[24] P. Koopman, “CRC selection for embedded network messages,”
https://www.ece.cmu.edu/~koopman/crc/, 2004.


