
Verification-guided Voter Minimization
in Triple-Modular Redundant Circuits

Dmitry Burlyaev Pascal Fradet

Inria; Univ. Grenoble Alpes
{first}.{last}@inria.fr

Alain Girault

Abstract—We present a formal approach to minimize the
number of voters in triple-modular redundant sequential circuits.
Our technique actually works on a single copy of the circuit
and considers a user-defined fault model (under the form “at
most 1 bit-flip every k clock cycles”). Verification-based voter
minimization guarantees that the resulting circuit (i) is fault
tolerant to the soft-errors defined by the fault model and (ii) is
functionally equivalent to the initial one. Our approach operates
at the logic level and takes into account the input and output
interface specifications of the circuit. Its implementation makes
use of graph traversal algorithms, fixed-point iterations, and
BDDs. Experimental results on the ITC’99 benchmark suite
indicate that our method significantly decreases the number of
inserted voters which entails a hardware reduction of up to
55% and a clock frequency increase of up to 35% compared
to full TMR. We address scalability issues arising from formal
verification with approximations and assess their efficiency and
precision.

I. INTRODUCTION

Circuit tolerance towards soft (non-destructive, non-
permanent) errors is an important research topic. As tech-
nology shrinks to feature sizes below 0.25µm, the risk of
soft errors increases [1]. Triple-Modular Redundancy (TMR)
proposed by von Neumann [2] remains the most popular
fault tolerance technique in Field-Programmable Gate Arrays
(FPGAs) to mask soft-errors. Yet, manual introduction of
TMR [3] into a circuit design is often a tedious and error-prone
process. Hence, automatic introduction of TMR is essential for
fault tolerant FPGA designs.

In a triplicated sequential circuit, adding voters at the pri-
mary outputs is not sufficient in general. Indeed, an error may
remain in a memory cell long enough till other errors occur. If
another error occurs in a different copy of the circuit, then the
final vote may produce an incorrect output. Voter insertion
after each memory cell is sufficient to prevent errors from
remaining in cells. However, it greatly increases hardware
overhead and the critical path, which directly influences the
circuit performance. In most cases, introducing a voter per cell
is excessive. But, to the best of our knowledge, there is no tool
dedicated to voter minimization in TMR that guarantees fault-
tolerance according to a user-defined fault model. The main
existing research trends in TMR are probabilistic-based.

Our objective is to propose an automatic, optimized, and
certified transformation process for TMR on digital circuits.

This transformation process should insert as few voters as
possible, while guaranteeing to mask the considered errors.
In this paper, we focus on the optimization aspect of the
automatic transformation.

We consider circuits described at the gate level (i.e., netlists
of AND, OR, NOT gates plus flip-flops (FFs) – also called
memory cells). This level has two main advantages:
• gate level netlists can be described by an elementary

language, which simplifies correctness proofs;
• it is easier to prevent synthesis tools to optimize (undo)

our transformation at this late stage;
Since the main contributors to Soft-Error Rate (SER) are the

FFs [4], we focus on errors caused by Single-Event Upsets
(SEUs) (i.e., bit-flips in FFs). We consider fault models of
the form “at most one bit-flip within K cycles” denoted by
SEU (1,K).

The proposed voter-minimization methodology is based on a
static analysis that checks whether an error in a single copy of
the TMR circuit may remain after K cycles. If not, protecting
the primary outputs with voters is sufficient to mask the error.
If, for instance, the circuit is a pipeline without feedback
loops, then any bit-flip will propagate to the outputs and will
thus disappear before K cycles (assuming that all paths in
the circuit are shorter than K). If the state of the circuit is
still erroneous after K cycles (in the form of an incorrect
value stored in one of its memory cells), there is a potential
error accumulation since, according to the SEU (1,K) model,
another bit-flip may occur in another copy of the circuit. In
this case, a voter is needed to prevent error accumulation.

Our static analysis consists of four steps. The first step,
described in Sec. II, is purely syntactic and finds all loops in
the circuit. Error accumulation can be prevented by keeping
enough voters to cut all loops.

In many cases, a circuit resets (overwrites) some memory
cells, which may mask errors. Detecting such cases allows
further useless voters to be removed. This second step is
performed by a semantic analysis (Sec. III) taking into account
the logic of the circuit.

Circuits are also often supposed to be used in a specific
context. For instance, a circuit specification may assume that
a start signal occurs every x cycles and outputs are only
read y cycles after each start. When such assumptions exist,
taking them into account makes the semantic analysis more978-3-9815370-2-4/DATE14/ c©2014 EDAA

effective. These third and fourth steps are presented in Sec. IV
and Sec. V for input and output specifications respectively.

Our analysis has been implemented based on graph al-
gorithms and fixed point iterations using Binary Decision
Diagram (BDD). We have tested several (safe) approximations
and trade-offs between cost and precision. The implementation
and experiments are presented in Sec. VI. Related work on
TMR and voter insertion strategies are reviewed in Sec. VII.
We summarize our contributions and sketch a few extensions
in Sec. VIII.

II. SYNTACTIC ANALYSIS

We consider a triplicated circuit with voters but we actually
work on a single copy of the circuit. The insertion or removal
of voters is represented as the effect it would have on that
single copy in the TMR circuit. We model a sequential circuit
C as a directed graph GC where each vertex represents a FF
(memory cell or latch) and an edge x → y exists whenever
there is at least one combinational path between the two FFs
x and y in C. An error in a cell x may propagate, in the
next clock cycle, to all cells connected to x by an edge in this
graph. Note that this is an over-approximation since the error
may actually be masked by some logical operation.

Under the fault model SEU (1,K), error accumulation is
the situation where an error remains in the circuit K clock
cycles after the SEU that caused it. Indeed, any circuit C
without feedback loop will return, after an SEU, to a cor-
rect state before K clock cycles, provided that K is larger
than the maximal length of the simple paths in GC (paths
without repeating vertices). In environments with high levels
of ionizing radiations (e.g., space, particle accelerators), K is
bigger than 1010 [5]. So, even if our approach can deal with
any K, we can assume that K is larger than the max length
of all simple paths in GC . It follows that error accumulation
can only be caused by cycles in GC , which must therefore be
cut by removing vertices. Removing a vertex in GC amounts
to protecting the corresponding memory cells with a voter in
the triplicated circuit.

The best solution to cut all cycles in GC is to find the
Minimum Vertex Feedback Set (MVFS), i.e., the smallest set
of vertices whose removal leaves GC without cycles. This
standard graph problem is NP-hard [6] but there exist good
polynomial time approximations [7]. The exact algorithm was
efficient enough to be used in all our experiments.

A voter after each cell belonging to the MVFS prevents error
accumulation1. This simple graph-based analysis is very effec-
tive with some classes of circuits. In particular, it is sufficient
to remove all internal voters in pipelined architectures such as
logarithm units and floating-point multipliers (see Table 3).

However, this approach is insufficient for many circuits due
to the extensive use of loops in circuit synthesis from Mealy
machine representation. In such circuits, most cells are in self-
loops (e.g. D-type flip-flops with Enable input). This entails
many voters if the syntactic analysis is used alone. However, if

1For small Ks, other voters should be kept to cut paths greater than K.

the circuit functionality is taken into account, we can discover
that such memory cells may not lead to erroneous outputs.
Detecting such cases requires to analyze the logic (semantics)
of the circuit. We address this issue in the following section.

III. SEMANTIC ANALYSIS

The semantic analysis first computes the Reachable State
Set (RSS) of the circuit with a voter inserted after each
memory cell in the MVFS. Then, for each cell m ∈ MVFS, it
checks whether its voter is necessary: (i) the voter is removed
and all possible errors (modeled by bit-flips of each cell in
each state of RSS) are considered; (ii) if such an error leads
to error accumulation, then the voter is needed and kept.

Correct and erroneous values are represented by the four-
value logic domain D1:

D1 = {0, 1, 0, 1}

where 0 and 1 represent erroneous 0 and 1, respectively. The
truth tables of standard operations in this four-value logic are
given in Table 1. Note that AND and OR gates can mask
errors: for instance, 0∨ 1 = 1 or 0∧ 1 = 0. The err function
models bit-flips. The vot function models the effect of a
voter on a single copy of the circuit, i.e., it corrects an error,
1 becoming 0 and vice-versa 0 becoming 1.

TABLE 1
OPERATORS FOR 4-VALUE LOGIC DOMAIN D1

A sequential synchronous circuit with M memory cells and
I primary inputs is formalized as a discrete-time transition
system with the transition relation δ : {0, 1}M × {0, 1}I 7−→
{0, 1}M . We abuse the notation and use M (resp. I) to denote
both the number and the set of memory cells (resp. inputs) of
the circuit. The state of a circuit is just the values of its cells
and the initial state s0 is obtained after the circuit reset. We
write ∆(S) for the function returning the set of states obtained
from the set S after one clock cycle. Formally

∆(S) = {s′ | ∃i. ∃s ∈ S. δ(s, i) = s′}

∆ applies the transition function δ to all states of its argument
set and all possible inputs. The set of reachable states RSS is
defined by the following iteration:

S0 = {s0} Si+1 = Si ∪∆(Si) (1)

Starting from the initial state, we compute the set of reachable
states by accumulating states obtained by applying itera-
tively ∆. The set of possible states being finite, the iteration
reaches a fixed point representing the RSS denoted 2 by {s0}∗∆.

2We will use this notation with other initial states and transition functions

The second phase is to check whether the suppression of
voters may lead to an error accumulation under the fault-model
SEU(1,K). Let δV be the transition relation of a circuit
equipped with a voter after each cell in a given set V , and
let ∆V be its extension to sets. δV is defined as:

δV ((m1, . . . ,mM
), i) = δ((m′1, . . . ,m

′
M

), i)
where m′i = vot(mi) if mi ∈ V

= mi otherwise

This checking process can be expressed as the algorithm in
Fig. 1. It starts with the circuit equipped with a voter after

V := MVFS ; RSS := {s0}∗∆
forall m ∈ MVFS

V := V \{m};
S := ∆K

V (
⋃

mi∈M RSS [mi ← err(mi)]
if ErrAcc(S) then V := V ∪ {m}

Fig. 1. Semantic Analysis – Main Loop

each cell in the MVFS. For each such cell m, it checks
whether its voter suppression entails error accumulation. A
bit-flip is introduced in all possible cells and states of RSS
(
⋃

mi∈M RSS [mi ← err(mi)]). The transition function cor-
responding to the circuit with the current set of voters (V) is
applied K times (∆K

V). The set of states obtained shows error
accumulation if there exists an erroneous cell in at least one
state of this set, which we capture with the predicate ErrAcc:

ErrAcc(S)⇔ ∃s ∈ S. ∃m ∈ s. m = 0 ∨m = 1

If the set S does not show error accumulation, the voter
is useless and can be left out. Otherwise the voter is re-
introduced.

In practice, ∆ is applied the small number of times dictated
by the circuit functionality and available simulation time. It is
always safe to stop the computation before reaching K; the
only drawback is to infer an error accumulation when there is
none. Furthermore, the iteration stops
• if the current set of states is errorless, then there cannot

be error accumulation (no error can reappear);
• or, if the erroneous current set is the same as the previous

one, a fixed point is reached and there is an error
accumulation.

The order in which the cells in MVFS are analyzed may
influence the number of voters introduced. We use heuristics
to choose a satisfying order but we do not describe it here for
lack of space.

This method is precise but costly since it considers all
possible inputs. In general, keeping track of the relations
between indeterminate inputs is not very useful. Fortunately,
our technique can be used as it is with other logic domains.
There are several domains that retain enough precision and
allow larger circuits to be analyzed. The 4-value logic domain
D2 decreases the state explosion that occurs with D1:

D2 = {0, 1,U,U}

The abstract value U represents a correct value (either 0 or 1)
and U represents any (possibly erroneous) value (i.e., 0, 1, 0
or 1). A vector of n inputs is represented as a unique vector
(U, . . . ,U) in D2 whereas 2n vectors had to be considered
in D1. The truth tables of standard operations in D2 are given

TABLE 2
OPERATORS FOR 4-VALUE LOGIC DOMAIN D2

in Table 2. In contrast with D1, a gate with two erroneous
values cannot produce a correct one. Logical masking of errors
can only occur with two operations: 0 ∧U and 1 ∨U. This is
sufficient to take into account masking performed by explicit
signals (e.g., resets).

Typical examples where the semantic analysis is effective
are circuits that use D-type flip-flips with an enable input
driven by a Finite State Machines (FSM) encoded in the
circuit. The syntactic approach would keep a voter for each
such cell (they are in self-loops). The semantic analysis can
detect that such cells are regularly overwritten by fresh inputs.
For example, the resource arbiter in Sec. VI is such a circuit.
After initialization, its finite state machine forces many cells
to be overwritten with fresh values every other cycle. The
semantic analysis is able to show that those cells, although in
self loops, do not need to be protected by voters.

IV. INPUTS SPECIFICATION

Circuits are often designed to be used in a specific context
where some input signals must occur at definite timings. Tak-
ing into account assumptions about the context may make the
semantical analysis much more precise, in particular, when the
logical masking of corrupted cells depends on specific inputs
(e.g., a start control signal). Our approach is to translate
these specifications into a new interface circuit feeding the
original circuit with the specified inputs. The analysis of the
previous section can be applied to that new combined circuit.
As a consequence, error accumulation is checked as before
but under the constraints specified by the interface. The only
small adjustment needed in Fig. 1 is to make sure that errors
are introduced only in the cells of the original circuit and not
in the cells of the interface circuit.

We use ω-regular expressions to specify circuit interfaces.
An ω-regular expression specifies constraints using vectors of
{0, 1, ?}, which replace primary inputs by 0, 1, or leave them
unchanged (? being the wild card). Consider, for instance,
a circuit with two primary inputs [i1, i2], then the expression
([1, 0]+[0, 1]).[?, ?]ω specifies that the circuit first reads either
i1 = 0 and i2 = 1 or i1 = 0 and i2 = 1 and proceeds with no
further constraints.

In general, specifications need non-determinism to describe
not fully specified or non-deterministic context. So, the afore-

mentioned ω-regular expression can also be seen as a Non-
deterministic Büchi Automaton (NBA) that reads inputs and
replace them by 0, 1, or leave them unchanged (?). The
previous regular expression can be represented as the two-state
NBA of Fig. 2 (a): in the first state, it reads inputs and returns
either the outputs [1, 0] or [0, 1] (regardless of the inputs).
Then, the automaton goes (and stays) in the second state where
inputs are read and produced as outputs.

1 2

[?
1
, ?

2
]/[1, 0]

[?
1
, ?

2
]/[0, 1]

[?
1
, ?

2
]/[?

1
, ?

2
]

1 2

[0, ?
1
, ?

2
]/[1, 0]

[1, ?
1
, ?

2
]/[0, 1]

[?
0
?
1
, ?

2
]/[?

1
, ?

2
]

(a) (b)

Fig. 2. Input interface as a NBA (a) and its deterministic version (b)

To generate a circuit, we first convert the corresponding
NBA into a deterministic automaton as follows. Each non-
deterministic edge is made deterministic using new inputs
(sometimes referred as oracles). If a vertex has n nondetermin-
istic outgoing edges, adding log2(n) new inputs is sufficient.
For example, the specification ([1, 0] + [0, 1]).[?, ?]ω can be
made deterministic by adding a single additional input i.
The automaton (see Fig. 2 (b)) now reads three inputs: if i
is 0 (resp. 1) it produces [1, 0] (resp. [0, 1]). The resulting
deterministic automaton is then translated into an interface
circuit using standard logic synthesis techniques [8, p.118]. If
the original circuit has I inputs, the resulting interface circuit
will have I + a (a new inputs to make it deterministic) inputs
and I outputs. It is then plugged by connecting its outputs to
the inputs of the circuit to be analyzed.

A typical example where input specification is useful is the
circuit b08 of Sec. VI. Such a circuit has a start input signal
and 8-bit data input. Its input interface specification can be
expressed as the following ω-regular expression:

([1, ?, ?, ?, ?, ?, ?, ?, ?].[0, ?, ?, ?, ?, ?, ?, ?, ?]17)ω (2)

A start signal is first raised and the input data is read.
For the next 17 cycles data is processed and start kept
to 0. This process is repeated over and over. Since start
is raised every 18 clock cycles, the internal data registers are
rewritten periodically with new data and can keep erroneous
data only until the next start signal. The circuit has also an
internal FSM which can be corrupted but the periodic start
ensures that it returns to its initial state. Consequently, error
accumulation is impossible (for large enough K) and no voters
(except implicit voters at primary outputs) need to be inserted.

V. OUTPUTS SPECIFICATION

Consider another example, similar to the previous one, with
2 inputs, 1 output and where some waiting can occur before
raising start signal. Formally, the input interface would be

([0, ?]∗.[1, ?].[0, ?]17)ω (3)

This interface does not guarantee that start will be raised
before K clock cycles. Since the analysis must consider the

case where start is not raised, it may detect error accumulation
even though start would ensure logical masking. However, if
the primary outputs are not read before some useful computa-
tion triggered by the start signal completes, a better analysis
can be performed.

We specify the output interface by adding to each vector
of the input interface a vector of {0, 1} indicating whether
the corresponding outputs are read (1) or not read (0). For
instance, the output interface of the previous example, where
the single bit output is read only after start is raised, can
be specified as

(([0, ?] : [0])∗.([1, ?] : [1]).([0, ?] : [1])17)ω (4)

It states that the output is not read ([0]) until the start signal
is raised. Then, the output is read ([1]) during 18 cycles.

The interface automaton is made deterministic as before.
The corresponding interface circuit will additionally produce
0 or 1 signals to filter the outputs of the original circuit. Each
such signal is connected using a AND gate to its corresponding
primary output.

The property to check must now be refined to allow error
accumulation as long as no error propagates to the (filtered)
primary outputs. When an error occurs, it is allowed to
propagate to outputs or voters before K clock cycles since
no additional bit flip can occur during that time. However, the
analysis must ensure that no error can propagate to outputs
or voters after K cycles. This ensures that a second error,
which can now occur in another redundant module of the
TMR circuit, will only propagate alone to voters or outputs,
and hence will be corrected.

When an error accumulation is detected in S (see Fig. 1), the
fixed point (of the same iteration as Equation (1) but starting
with S) S∗∆X

is computed. It represents all reachable states
after a single error and K clock cycles. The analysis checks,
for all states of that set, that no error propagates to the outputs
or to the voters. This check is iterated for a second error and so
on until a global fixed point is reached. Formally, the analysis
computes the fixed point of the following iteration:

E0 = S∗∆X

Ei+1 = Ei ∪ (∆K(
⋃

mi∈M Ei [mi ← err(mi)])
∗
∆X

At each bit-flip, we apply the transition function K times (in
practice a safe and much lower bound) and compute a local
fixed point Ei that represents the set of reachable states after
i bit-flips. The global fixed point, written E∗, represents all
reachable states after an arbitrary number of bit-flips separated
from each other by at least K clock cycles.

To detect error propagation at the outputs, each primary
output is represented by a new memory cell. Assuming that
out (resp. vot) is a predicate telling whether a cell is an output
(resp. a voter), checking error propagation is defined as:

ErrProp(E∗) ⇔ ∃s ∈ S. ∃m ∈ s. (out(m) ∨ vot(m))
∧ (m = 0 ∨ m = 1)

This check is added in the semantic analysis (Fig. 1) by
performing the computation of E∗ in the main loop (Fig. 1)

TABLE 3
VOTER MINIMIZATION AT ANALYSIS STEPS

Circuit FFs Syn. Sem. Sem.Inp. Sem.Out.
D1\D2 D1\D2 D1\D2

D
a
t
a

F
l
o
w

I
. Pipe.FP.Mult.8x8 [11] 121 0 0\0 0\0 0\0

Pipe.log.unit [11] 41 0 0\0 0\0 0\0
Sh./A.Mult.8x8 [13] 28 28 19\19 19\19 8\8
ITC’99 [12](subset)

C
o
n
t
r
o
l

F
l
o
w b01 Flows Compar. 5 3 3\3 3\3 3\3

I
n
t
e
n
s
i
v
e b02 BCD recogn. 4 3 2\3 2\3 2\3

b03 Resourc.arbiter 30 29 17\29 17\29 17\29
b06 Interrupt Hand. 9 3 3\3 3\3 3\3
b08 Inclus.detect. 21 21 21\21 0\21 0\21
b09 Serial Convert. 28 21 20\20 20\20 20\20

and replacing the conditional by:

if ErrAcc(S) ∧ ErrProp(E∗) then . . .

Output interfaces are especially useful for circuits whose
outputs are not read before some input signal is raised and
some computation is completed. For instance, the shift/add
multiplier (see Sec VI) waits for a start signal. During that
time, errors may accumulate in internal registers and propagate
to the outputs, which are not read. When start occurs, fresh
input data is read and written to internal registers (which are
thus reset). The outputs are read only after the multiplication
is completed and a done signal is raised.

VI. EXPERIMENTAL RESULTS

The presented voter minimization technique has been im-
plemented using a BDD library. Transition systems and set
of states are expressed by BDD formulas [9]. The introduced
four-value logic domains (D1 and D2) are encoded by a pair of
bits and the associated operators (Tables 1 and 2) are expressed
as logic formulae over those pairs. We used the fault-model
SEU(1,K) with K = 100, which allows K cycles/transitions
to be computed effectively (∆K). The obtained results are a
fortiori valid for any K ≥ 100.

BDDs proved to be quite efficient to express the data
structures and the processing required by our technique. We
made use of Rudell’s sifting reordering [10] while building
and applying the transition function. It allowed the semantic
analysis of circuits up to 100 memory cells on a standard
PC (Intel Core i5-2430M/2Gb-DDR3). We did not put much
efforts in the optimization but believe that there remain much
opportunities for improvement.

The algorithm has been applied to common arithmetic units
taken from the OpenCores project [11] and to the ITC’99
benchmark suite [12]. Table 3 summarizes the results on
those circuits. The column FFs shows the total number of
memory cells in the original circuit, while other columns show
the number of voters in the TMR circuit after the syntactic
and semantic steps (without, with input, with input/output
interfaces). In each case, we give the results obtained with
the D1 and D2 four-value domains.

The syntactic step eliminates all voters in circuits with a
pipelined architecture such as adders, multipliers, or logarith-

TABLE 4
FREQUENCY AND AREA GAIN OF OPTIMIZED vs FULL TMR

TMR circuit voters MHz gain hw gain

D
a
t
a

F
l
o
w

I
. Pipel.FP.Mult.8x8 121 60.5 2338

Optimized 0 71.0 17.4% 1831 21.7%
Pipel.log.un. 41 128.3 693
Optimized 0 184.1 43.5% 447 35.5%
Shift/Add.Mult.8x8 28 106.0 537
Optimized 8 108.0 1.9% 408 24.0%
b01 Flows Compar. 5 162.6 126

Optimized 3 162.6 0% 114 9.5%

C
o
n
t
r
o
l

F
l
o
w

I
n
t
e
n
s
i
v
e b02 BCD recogn. 4 181.9 69

Optimized 2 206.6 13.6% 60 13.1%
b03 Resourc.arbiter 30 81.6 594

Optimized 17 109.0 33.6% 576 3.0%
b06 Interrupt Hand. 9 144.8 168

Optimized 3 144.8 0% 134 20.2%
b08 Inclus.detect. 21 115.4 484

Optimized 0 142.4 23.4% 216 55.4%
b09 Serial Convert. 28 89.4 584

Optimized 20 95.0 6.3% 565 3.3%

mic units. With rolling pipelined architectures (e.g., shift/add
multiplier), a control part may require voter protection.

In general, control intensive circuits require a protection
of their FSMs. Almost all memory cells of the serial flow
comparator (b01) or the serial-to-serial converter (b09) have
to be protected. Nevertheless, our analysis is capable of
suppressing a significant amount of voters in many control
intensive circuits.

The logic domain D2 is, most of the time, precise enough.
However, correcting a bit-flip in D2 (e.g., 0→ U→ U) looses
information. In some circuits, like b03 and b08, substantial
logical error masking is performed by an FSM and the analysis
fails to detect it.

1 2 3 4 5 6 7 8 9 101112131415161718

b03-D2
b03-D1

b06-D2
b06-D1

4 5 9 21 28 30 49 66

ih'iterations|

CardinalityhRatiohofhReachablehStatehSets
inhdomainshD1handhD2h

NumberhofhMemoryhCellshinhCircuitsh'ITCT99|

1

10
10

1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

S
hhc

ar
di

na
li

ty
h|S

h|h
i

i

|RRSD1h|/|RRSD2|

1 2 3 4 5 6 7 8 9 101112131415161718

b03-D2
b03-D1

b06-D2
b06-D1

4 5 9 21 28 30 49 66

ih'iterations|

CardinalityhRatiohofhReachablehStatehSets
inhdomainshD1handhD2h

NumberhofhMemoryhCellshinhCircuitsh'ITCT99|

1

10
10

1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

S
hhc

ar
di

na
li

ty
h|S

h|h
i

i

|RRSD1h|/|RRSD2|

1 2 3 4 5 6 7 8 9 101112131415161718

b03-D2
b03-D1

b06-D2
b06-D1

4 5 9 21 28 30 49 66

ih'iterations|

CardinalityhRatiohofhReachablehStatehSets
inhdomainshD1handhD2h

NumberhofhMemoryhCellshinhCircuitsh'ITCT99|

1

10
10

1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

S
hhc

ar
di

na
li

ty
h|S

h|h
i

i

|RSSD1h|/|RSSD2|

|R
S

S
D

1h
|/|

R
S

S
D

2|

Fig. 3. Logic Domain Comparison: State Space Size

The scalability of logic domains D1 and D2 has also
been compared. Fig. 3 presents the growth of Si during the
computation of the RSS (see Section III) for the b03 and b06
circuits. The fixed point is reached with less iterations in D2,
and the number of states growths exponentially for D1 versus
linearly for D2. The same behavior is observed in all circuits
of Table 3. The bar graph shows the ratio of the size of RSS
in D1 to the corresponding size in D2. The RSSs in D1 are
several orders larger than the corresponding ones in D2. The
most computation demanding step of the whole analysis is
checking error propagation (see Sec. V). A prohibiting growth
of BDD structures representing the set of states Ei has been

observed with D1 for circuits of around 30 memory cells. The
logic domain D2 allows the analysis (with input and output
interfaces) of much larger circuits (∼ 100 cells).

In order to evaluate the benefits of our analysis, TMR
has been applied to the benchmarks with the minimized
set of voters. The final circuits have been synthesized with
Synplify Pro with no optimization applied (Resource Sharing,
FSM Optimization, etc.). As a case study, we have chosen
Flash-based ProASIC3 FPGA as a synthesis target. Its configu-
ration memory is immune to soft-errors [14] and data memory
is protected with voters. Table 4 compares the size and
maximum frequency of the circuit with full TMR (i.e., voters
after each FF) versus TMR with the optimized number of
voters. The gains are presented in terms of the required FPGA
hardware Core Cells (hw column) and maximum synthesizable
frequency (MHz column). The gain in the maximum frequency
depends on the location of the removed voters (in the circuit
critical path or not). The reduction in area directly depends on
the number of suppressed voters (up to 55%).

VII. RELATED WORK

Research on voter insertion and Selective Triple-Modular
Redundancy (STMR) mainly focuses on probabilistic ap-
proaches [15]–[17] without any guarantee that the final circuit
meets a fault-model. Johnson and Wirthlin [15] show how
selective voter insertion minimizes the negative timing impact
of TMR. In [18], probabilities are used to apply TMR on
selected portions of the circuit (STMR). In [17], STMR of
combinational circuits specifies input interfaces using input
signal probabilities. The main advantage of STMR over TMR
is that the area of the STMR circuit is roughly two-thirds
of the area of the TMR circuit. However, since the proposed
methods are probabilistic, some errors may propagate to
primary outputs. In our approach, the circuit is guaranteed
to mask all possible errors of the fault model.

Other work uses model-checking to guarantee user-defined
fault-tolerance properties [19], [20]. While these studies do not
address voter minimization, their formal approaches of fault-
tolerance are related to our work.

VIII. CONCLUSION

We proposed a logic-level verification-guided approach to
minimize the number of voters in TMR circuits that guarantees
a user-defined fault-model to be masked. The approach is
based on reachable state set computations and input/output
interface specifications. In order to avoid analyzing the trip-
licated circuit, we introduced two four-value logic domains,
which allow us to perform the analysis on a single copy of
the circuit. Our analysis shows that some voters are useless and
can be safely removed from the TMR application. We have
used as case studies several arithmetic circuits as well as the
benchmark suite ITC’99. They show that our technique allows
not only a significant reduction in the amount of hardware
resources (up to 35% for data flow intensive circuits and up
to 55% for control flow intensive ones), but also a significant

increase in the clock rate, compared to the full TMR method
that inserts a voter after each memory cell.

We demonstrated that the choice of the logic domain
influences the scalability of the analysis, while keeping enough
precision for the analysed circuits.

For space concerns, several extensions have not been pre-
sented. In particular, we have considered another logic domain
(combining 0, 1, 0, 1, U, and U) and the extension of our
analysis to Single-Event Transient (SET) (which may cause
multiple cell upsets). We have started the formal certifica-
tion of the approach using the Coq proof assistant. Further
research directions include the generalization of our approach
to other fault-tolerance techniques such as time redundancy
and making the analysis modular to allow its application on
much larger circuits.

ACKNOWLEDGMENTS

Thanks are due to Bertrand Jeannet for valuable discussions
about BDDs and implementation issues.

REFERENCES

[1] N. Cohen, T. S. Sriram, N. Leland, D. Moyer, S. Butler, and R. Flatley,
“Soft error considerations for deep-submicron CMOS circuit applica-
tions,” IEEE Int. Elect. Devices Meeting Tech. Dig., pp. 315–319, 1999.

[2] J. von Neumann, “Probabilistic logic and the synthesis of reliable
organisms from unreliable components,” Automata Studies, Princeton
Univ. Press, pp. 43–98, 1956.

[3] S. Habinc, “Functional triple modular redundancy FTMR,” European
Space Agency Contract Report, no. FPGA-003-01, December 2002.

[4] T. Heijmen, “Soft-error vulnerability of sub-100-nm flip-flops,” 14th
IEEE Int.On-Line Testing Symposium, pp. 247–252, 2008.

[5] A. Bogorad et al., “On-orbit error rates of RHBD SRAMs: Comparison
of calculation techniques and space environmental models with observed
performance,” IEEE Trans. on Nuclear Science, pp. 2804–2806, 2011.

[6] R. Karp, “Reducibility among combinatorial problems,” Complexity of
computer computations, vol. 43, pp. 85–103, 1972.

[7] G. Even, J. S. Naor, B. Schieber, and M. Sudan, “Approximating
minimum feedback sets and multi-cuts in directed graphs,” in Proc. 4th
Int. Conf. on Int. Prog. and Combinatorial Opt., 1995, pp. 14–28.

[8] G. De Micheli, Synthesis and Optimization of Digital Circuits, 1st ed.
McGraw-Hill Higher Education, 1994.

[9] E. M. Clarke, J. R. Burch, O. Grumberg, D. E. Long, and K. L.
McMillan, “Mechanized reasoning and hardware design,” 1992, ch.
Automatic verification of sequential circuit designs, pp. 105–120.

[10] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” in Proc. of CAD-93, 1993, pp. 42–47.

[11] Open Source Hardware IPs: OpenCores project, Michael Dunn- Loga-
rithm Unit; Launchbird Design Systems, Inc.-Floating Point multiplier,
http://opencores.org/.

[12] F. Corno, M. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” Design Test of Computers, pp. 44–53, 2000.

[13] S. Kilts, Advanced FPGA Design: Architecture, Implementation, and
Optimization. Wiley-IEEE Press, 2007.

[14] “Neutron-induced single event upset SEU,” Microsemi Corporation, no.
55800021-0/8.11, August 2011.

[15] J. M. Johnson and M. J. Wirthlin, “Voter insertion algorithms for FPGA
designs using triple modular redundancy,” in FPGA, 2010, pp. 249–258.

[16] B. B. Alagoz, “Fault masking by probabilistic voting,” OncuBilim
Algorithm And Systems Labs, vol. 9, no. 1, 2009.

[17] P. Samudrala et al., “Selective triple modular redundancy based single-
event upset tolerant synthesis for FPGAs,” IEEE Transactions on Nu-
clear Science, pp. 284 – 287, October 2004.

[18] O. Ruano, P. Reviriego, and J. Maestro, “Automatic insertion of selective
TMR for SEU mitigation,” European Conference on Radiation and Its
Effects on Components and Systems, pp. 284 – 287, 2008.

[19] S. Seshia, W. Li, and S. Mitra, “Verification-guided soft error resilience,”
in DATE ’07, 2007, pp. 1–6.

[20] S. Baarir, C. Braunstein et al., “Complementary formal approaches
for dependability analysis,” in IEEE Int.Symp. on Defect and Fault
Tolerance in VLSI Systems, 2009, pp. 331–339.

