
DRAM-based Coherent Caches and How to Take
Advantage of the Coherence Protocol to Reduce the

Refresh Energy
Zoran Jakšić

Dept. of Computer Architecture
Universitat Politècnica de Catalunya

Barcelona, Spain
zjaksic@ac.upc.edu

Ramon Canal
Dept. of Computer Architecture

Universitat Politècnica de Catalunya
Barcelona, Spain

rcanal@ac.upc.edu

Abstract—Recent technology trends has turned DRAMs into
an interesting candidate to substitute traditional SRAM-based
on-chip memory structures (i.e. register file, cache memories).
Nevertheless, a major problem to introduce these cells is that
they lose their state (i.e. value) over time, and they have to be
refreshed. This paper proposes the implementation of coherent
caches with DRAM cells. Furthermore, we propose to use the
coherence state to tune the refresh overhead. According to our
analysis, an average of up to 57% of refresh energy can be
saved. Also, comparing to the caches implemented in SRAMs
total energy savings are on average up to 39% depending of the
refresh policy with a performance loss below 8%.

Index Terms—FinFETs, 6T SRAM, 3T DRAM, retention time,
cache coherence

I. INTRODUCTION

The introduction of FinFET technology has prolonged
Moore’s Law by solving the problem of process variability
caused by random dopant fluctuations (RDF). However, in
deep sub 20nm technologies threshold variability caused by
Line Edge Roughness (LER) and Metal Gate Granularity
(MGG) significantly increases [1]. Also, besides the fabrica-
tion process, devices change their characteristics over time due
to temporal fluctuation of voltage and temperature due to aging
(NBTI, PBTI, and HCI).

On the other hand, novel multi-core processor architectures
demand more on-chip caches for effectively sharing informa-
tion across parallel processing units. Traditionally, on chip
memories are based on SRAMs with the 6T (and recently 8T)
cells as major building units. Since memory structures occupy
the biggest part of the chip area, it is of crucial importance
that these cells are scaled to the minimal dimensions. This, in
turn, makes them most vulnerable to the effects of process
variability (i.e. read noise margin is reduced, stability is
compromised and static power consumption shoots up).

Many literature papers propose state of the art techniques to
reduce cache leakage and increase cell stability. One of those
ideas that has drawn great attention lately is to use multiple
transistor DRAM cells to replace classical SRAM cells in dif-
ferent cache levels. Comparing to the conventional destructive-
read 1T1C memory cell, these cells typically use the stored
charge to control the transistor in the read-out path. Thus,
they have a non-destructive read [2]. The area and leakage of
these cells are smaller than that of the classical 6T SRAMs
while read access time is not significantly degraded. There are
many papers that analyze gain cells and suggest optimization

techniques for their implementation at different cache levels.
[3]–[5] This paper explores DRAM-based coherence caches.
On top of that, we perform our analysis on future 10nm
SOI FinFETs. We analyze memory power consumption and
overall system performance when classical 6T SRAM cells are
replaced by dynamic gain cells. Our analysis also includes the
proposal of novel refresh techniques based on the coherence
state of each cache line. As far as we know, this is the first
paper that uses the cache coherence state to reduce refresh
energy. In short, the main contributions of this paper are:

• The proposal and evaluation of DRAM-based L1 and L2
coherent cache structures;

• Extensions to the MESI coherence protocol to support
DRAMs refresh implementation;

• Performance figures based on future SOI FinFET tech-
nology analysis.

When compared to the 6T baseline, our proposal reduces
energy by an average of 39% for the PARSEC and SPLASH
benchmarks with a performance loss below 8% on average.

The rest of the paper is organized as follows. In section II,
we present the related work. In section III, we describe
MESI cache coherence protocol and its adjustment for DRAM
cache implementation. In section IV, we present simulation
methodology and simulation results. Finally, in section V, we
draw the conclusions.

II. RELATED WORK
Gain cells have drawn more attention since Luk et. al [6]

proposed a novel 3T1D DRAM cell (Figure 1a). Its access
time is comparable to the 6T SRAM [6]. The gated diode acts
as a storage device and an amplifier for the cell voltage. Before
a read occurs, RBL is precharged to Vdd. When a logic ”1”
(high voltage) is stored in the cell, the gate of the PD transistor
is strongly biased during the read process. High current flows
through the PD transistor, and the output capacitance of the
RBL is strongly discharged to ground. On the other hand,
when the opposite situation occurs (low voltage stored in the
cell), the bias on the gate of the PD transistor is lower, the
current trough the PD transistor is reduced and the output
capacitance is discharged more slowly.

The main issue in these cells is retention time (τ). Due to
the leakage currents (mostly through the WR transistor) the
cell loses its state after some time, and it has to be refreshed.
In [3], [7] authors show that 2% of processor performance is
lost when a 3T1D with retention time of 0.8µs is used in the
L1 cache.978-3-9815370-2-4/DATE14/ c© 2014 EDAA

WBL

RBL

RL

PD

RDWL

a)
RL

WBL

RBL

RL

PD

RD

D

PU1 PU2

PD1 PD2

PG1PG2

BL BLB

WL

Q QB

WL
)

a) b)

WR

WL

WR

Fig. 1. Gain Memory Cells: a) Dynamic 3T1D; b) Dynamic 3T

Using a slightly different dynamic gain cell, the authors in
[4], [8] analyze the performance and power of DRAM-based
last-level shared L3 cache. They conclude that refresh energy
is the biggest contributor to overall consumption. On the other
hand, if no refresh is applied in the L3 cache performance is re-
duced almost by 40%. Moreover, they assume a cell retention
time of 20µs which might be challenging to achieve in sub
20nm technologies for high performance devices, especially
at high temperatures. For instance, in [9] Jaksic and Canal
characterize a 3T cell at 10nm. Although they report retention
times greater than 20µs, even for higher temperatures, that
comes at the cost of having two additional voltage sources to
maintain retention time at this level.

In [10], authors present refresh technique for L2 and L3
caches in order to reduce refresh energy. They based their line
refresh proposal on the last access moment, and its state (clean,
dirty, idle-dirty lines not being accessed for long time). They
state 56% energy reduction comparing to classical SRAM im-
plementation with 6% increasing in execution time. However,
they based their work on low power devices and nominal
system frequency of 1GHz in order to sustain retention time
up to 100µs.

In this paper, we simulated cache memories implemented
with the 3T DRAM cell (Figure 1c). This cell is smaller (1
transistor less) than the 3T1D. Plus, as shown in [9], the
read access time is comparable to that of the 6T cell when
they are implemented with 10nm FinFETs. In this paper,
we analyze the performance and the power consumption of
coherent caches (typically L1 and L2 caches nowadays) when
they are implemented with dynamic cells. We also explore how
the cache coherence protocol can help in tuning the refresh
energy while keeping the performance untouched. We also
show how to extend the MESI cache coherence protocol to
direct DRAM refresh policies.

III. CACHE COHERENCE
A. MESI protocol

The MESI protocol [11]–[15] is a widely-used cache co-
herency and memory coherency protocol. Every cache line is
marked as one of the following states:

• Modified (M): Cache line exists only in that cache and it
is dirty (it is not consistent with the lower level memory
value). It should be written to lower memory level before
it is invalidated or replaced.

• Exclusive (E): Cache line exists only in that cache and it
is clean (it is consistent with the value in the lower level
memory).

• Shared (S): Cache line may exist in other caches and it
is clean.

• Invalid (I): Cache line doesn’t hold valid data.
A cache reads can be serviced from any cache state besides

Invalid. On the other hand, cache writes can take place only if

the line is in Modified or Exclusive state. If the cache line is
in Shared state, first we have to triger a request for ownership,
and -consequently- all shared lines will be invalidated first.

A cache line that is in Modified or Exclusive state has to
“snoop” all other caches accesses to intercept any request to
the same address in the lower memory level. If this is the
case, the line changes to the Shared state, and if the line was
previously in the Modified state, it is writen back to the lower
cache before moving into the Shared state and sent to the
requester.

B. MESI extensions for DRAM support
The main drawback of using dynamic cells is that they

loose state over time and they have to be refreshed. In general,
memory refresh reduces system performance (since access to
the memory is blocked during that time) and increases dy-
namic energy (refresh energy). Many techniques for reducing
DRAM refresh energy have been presented in the past [3],
[7], [16]. Although the block refresh is the simplest solution
for implementation (refreshing whole memory block after a
predefined time period) it doesn’t leave room for any further
optimization. On the other hand, techniques that assume line
refresh are slightly complicated to implement but a significant
amount of refresh energy can be saved.

In this section, we show how the cache coherence state
can be exploited to find an energy-delay optimal refresh line
policy. Since different programs access cache in a different
way, we propose coherency-aware refresh. In other words, we
consider refreshing a cache line depending on its coherence
state. In order to make this possible, we extend the MESI
protocol the following way:

• Modified (M): In case that a Modified line expires, and
depending of on the specific refresh scheme, it should be
either refreshed which keeps the line in Modified state or
it must be evicted to a lower memory level before it is
tagged as Invalid.

• Exclusive (E): If the line is refreshed, it will stay in
Exclusive. Otherwise, it must be invalidated (no eviction
is needed since the correct data exist in lower cache).

• Shared (S): If a cache line in this state is refreshed it
stays in Shared. In case of no refresh, the line must be
invalidated (same as Exclusive).

• Invalid (I): Since this line doesn’t hold valid data it
should never been refreshed since that would be unnec-
essarily energy consumption.

According to the combination of the line states that can be
refreshed or not, 8 refresh policies can be defined: NONE, M,
E, S, ME, ES, SM, MES (letter identify that states the states
that lines should be in to be considered for refreshed, NONE
means that no line is being refreshed.

Figure 2 presents the state diagram of the modified MESI
protocol. Dashed lines present modified transitions. One more
state is added to handle expired lines in Modified state.
Standard line definitions are used to describe state transitions
(“PrRd” - Processor Read (Read request from processor),
“PrWr” - Processor Write (Write request from processor),
“BusRd” - Bus Read (Read request from the bus without intent
to modify), “BusRdX” - Bus Read Exclusive (Read request
from the bus with intent to modify)). Label “Exp“ is used to
define expired line transition.

M E S IprRD
prWR

prRD prRD

busRD/
flush

busRDX
flush

busRDX/
flush/
EXP busRDX/

EXP/
flush busRDX/

flush/
EXP/

prWR
busRDX

prRD

prRD
busRDprWR

prWR
busRD

Fig. 2. MESI protocol with extensions (dashed lines) to handle expired lines

IV. SIMULATION RESULTS
A. Methodology

In this section, we present the simulation results of the dy-
namic coherent cache memory. The configuration parameters
can be found in Table I. For simulation we used marssx86, a
full-system simulator for x86-64 CPUs. [17], [18]

In order to simulate dynamic memories with marssx86,
we enhanced it with additional refresh controller logic. Since
the access time of gain cells is similar to SRAMs, memory
refreshing is the only reason that can influence the system
performance and energy consumption [9]. We implemented
line (or block) counters that measure the lifetime of each line
in the cache (i.e. time since last write -or refresh). Counters
are 10 bits wide. Due to the area savings achieved by using
3T over 6T cells, the counter overhead is neglected. When
the counter reaches a certain limit (minimum retention time),
the refresh controller is triggered and it reacts according to
the configuration (refresh policy). If the line is meant to be
refreshed, it blocks a cache access port to complete the refresh
(2 cycles in this paper). In case the line is not refreshed, the
controller acts accordingly (as explained in section III) in order
to preserve data consistency.

We assume a baseline retention time of 3µs. For 10nm
FinFET technology this value can be achieved just with one
additional voltage source. A small negative voltage in WL
when the cell is on hold mode is needed to achieve this value
at higher temperature. [9]

For our analysis, we used 2 parallel benchmark suites -
PARSEC and SPLASH-2 [19]–[21]. We configured them as
single process, 2 thread workloads. We used simmedium con-
figuration for PARSEC. SPLASH benchmarks are configured
according to [22]. Initialization phase is skipped and only each
application’s region of interest is simulated. All workloads
run on top of Ubuntu 9.04 (Linux 2.6.31). The full list of
workloads that marssx86 supports can be found in [17]. All of
them are simulated. We report 7 individual benchmarks plus
the average (of all benchmarks in both suites). This sample
was chosen in order to present extreme cases as well as the
diversity in behavior for the different refresh policies proposed.
In other words, we tried to avoid plotting benchmarks that
show similar behavior.
B. System performance

Figure 3 shows normalized system performance. For a
system performance metric, we present execution time. Re-
sults are normalized to the baseline multiprocessor which has
SRAM cache memories. Figure 3 also includes a bar for the
simple block refresh technique. This technique is the simplest
for DRAMs (i.e. when the counter reaches the limit it refreshes
the line regardless of its coherent state). Also, it assumes whole

TABLE I
BASE SYSTEM ARCHITECTURE

Processor 2 core Out of Order, 4-wide issue width
L1 Data Cache 2x32KB (organized in 32KB blocks), MESI

L1 Instruction Cache 2x32KB (organized in 32KB blocks), MESI
L2 Cache 2x256KB (organized in 32KB blocks), MESI
L3 Cache 1MB (organized in 32KB blocks) Shared

Main Memory 4GB (50ns delay) 1 channel
Technology 10nm FinFETs

Retention Time 3us
System Frequency 2.5GHz

memory refresh (even the invalid lines) that would needlessly
block the cache access and consume refresh energy.

In general, the MES technique delivers the same perfor-
mance as the baseline SRAM system. Nevertheless, the other
schemes perform within a 8% of the baseline which is a minor
performance degradation (given the energy benefits, as we
will see in short). The individual behavior of the benchmarks
can be quite different among them (e.g. ”facesim“ achieves
high performance when the Exclusive state is refreshed while
”blackscholes“ achieves this for the Shared). In terms of
system performance, ”blackscholes“ and ”facesim“ show the
greatest performance lost.

C. Energy Consumption
In order to estimate energy, we run HSPICE simulations to

characterize the different cells (6T SRAM and 3T DRAM).
We simulated a memory column when it is exposed to pro-
cess and environmental variation as shown in [9]. For this
simulation, we used 10nm SOI FinFET model card developed
by the University of Glasgow, Device Modeling Group [1].
For process variation, we assumed 16% standard deviation of
Tfin and 12% variation of Hfin as in [9], [23]. We assumed
random variation as the main cause of it is LER and MGG
[1]. Chip temperature is 50C. In order to minimize statistical
error, we used the Monte Carlo method and we simulated 1000
instances. We, then, calculated the average static and dynamic
power consumption of one memory block with 64 lines 512
bit wide each.

After the estimation of the power at the circuit level, full
system simulation was done with the Marssx86 simulator. We
used total number of cache accesses (number of total read
hits, read miss, write miss, write miss) and cache ”snooping“
communication in order to estimate dynamic energy. We also
extracted the total number of refresh lines in order to evaluate
refresh energy and the total number of cycles in order to
evaluate leakage. Combining the access/cycle counts and the
energy per access/cycle we obtained the final energy numbers.

Figure 4 shows the total energy of the coherent cache. Data
is normalized to the SRAM baseline. It can be seen that
DRAM memory with block refresh consumes, on average,
18% more energy than the one implemented in SRAMs.
However big part of this energy is consumed on refresh.
Applying our proposed refresh techniques, we get savings of
21-57% (comparing to block refresh) of the total energy with
a performance loss of 1-8% depending of the refresh policy. It
should be noted that leakage may vary between configurations
as it is a directly proportional to the execution time. In other
words, due the performance lost, the total execution time is
increased which proportionally affects total leakage energy.
Highest energy saving can be achieved when just ”Shared“
state is refreshed (57%). For ”S“ refresh policy performance

0

0.2

0.4

0.6

0.8

1

1.2

E
x
e
c
u
ti
o
n
 T

im
e

Refresh Policy

Execution Time vs. Refresh Policy
streamcluster

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

blackscholes

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

facesim

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

fluidanimate

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

fft

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

lu c

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

barnes

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

mean

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

Fig. 3. System Performance for Different Refresh Policies Normalized SRAM Coherent Cache

0

0.2

0.4

0.6

0.8

1

1.2

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Refrefsh Policy

Energy Consumption vs. Refresh Policy

streamcluster

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

blackscholes

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

facesim

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

fluidanimate

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

fft

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

lu c

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

barnes

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

mean

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

dynamic static refresh

Fig. 4. Energy Consumption For Different Refresh Policies Normalized to SRAM Coherent Cache

0

0.2

0.4

0.6

0.8

1

O
ff
 c

h
ip

 a
c
c
e
s
s

Refrefsh Policy

Number of off chip access vs. Refresh Policy

streamcluster

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

blackscholes

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

facesim

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

fluidanimate

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

fft

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

lu c

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

barnes

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

mean

B
L
O

C
K

M

E
S

 M

E

 M

S

 S

E

M

E

S

 N
O

N
E

Fig. 5. Off Chip Access Number Normalized to SRAM Coherent Cache

loss is 8%. On the other hand 29% of the energy can be saved
(compared to block refresh) when ”Exclusive and Shared“
states are refreshed, and performance loss is 3%.
D. Off Chip Communication

Given that DRAM-based caches may induce a higher num-
ber of accesses to the lower levels of the memory hierarchy,
Figure 5 shows the number of access to the external memory.
It can be observed that external memory communication is
not significantly changed. In the worst case, the number of
accesses increases 2% comparing to SRAM baseline.

V. CONCLUSION
This paper has described the implementation of DRAM-

based coherent caches and the integration with the MESI
coherence protocol. In addition, we propose to use cache
coherence state to define different refresh policies which is
discussed for the first time. We performed thorough analysis
in terms of performance and energy of multiprocessor system
implementing these novel refresh policies. Our results show
that cache refresh energy of the coherent cache can be reduced
by 39% with performance loss below 8% depending of the
refrefresh policy.

ACKNOWLEDGMENT
This work has been partially supported by the Spanish

Ministry of Education and Science under grant TIN2010-

18368, the Generalitat of Catalunya under grant 2009SGR1250
and Intel Corporation.

REFERENCES

[1] X. Wang et. al, in IEDM, 2011.
[2] W. Luk et. al, in IEEE journal of solid-state circuits, April, 2005.
[3] X. Liang et. al, in MICRO, 2007.
[4] M.-T. Chang et. al, in HPCA, 2013.
[5] E. Amat et. al, in Device and Materials Reliability, IEEE Transactions

on, January, 2013.
[6] W. Luk et. al, in VLSIC, 2006.
[7] X. Liang et. al, in Micro, IEEE, 2008.
[8] M.-T. Chang et. al, in http://hdl.handle.net/1903/13296, 2013.
[9] Z. Jaksic et. al, in ICCD, 2012.

[10] A. Agrawal et. al, in HPCA, 2013.
[11] J. H. Papamarcos et. al, in ISCA, 1984.
[12] M. Monchiero et. al, in ICPP, 2009.
[13] A. Patel et. al, in ISLPED, 2008.
[14] X. Qin et. al, in DATE, 2012.
[15] T. Suh et. al, in DAC, 2005.
[16] M. Ghosh et. al, in MICRO, 2007.
[17] “http://marss86.org/ marss86/index.php/home,” marssx86 home page.
[18] A. Patel et. al, in DAC, 2011.
[19] C. Bienia et. al, in IISWC, 2008.
[20] “http://www.capsl.udel.edu/splash/,” SPLASH-2 Benchmark Suite, 2013.
[21] “http://parsec.cs.princeton.edu/,” PARSEC Benchmark Suite, 2013.
[22] I. Choi et. al, in Computer Architecture Letters, February, 2011.
[23] Z. Jaksic et. al, in Electron Devices, IEEE Transactions on, January,

2013.

