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Abstract—SIMD extensions have gained widespread accep-
tance in modern microprocessors as a way to exploit data-level
parallelism in general-purpose cores. Popular SIMD architectures
(e.g. Intel SSE/AVX) have evolved by adding support for wider
registers and datapaths, and advanced features like indexed mem-
ory accesses, per-lane predication and inter-lane instructions, at
the cost of additional silicon area and design complexity.

This paper evaluates the performance impact of such advanced
features on a set of workloads considered hard to vectorize
for traditional SIMD architectures. Their sensitivity to the most
relevant design parameters (e.g. register/datapath width and L1
data cache configuration) is quantified and discussed.

We developed an ARMv7 NEON based ISA extension
(ARGON), augmented a cycle accurate simulation framework for
it, and derived a set of benchmarks from the Berkeley dwarfs.
Our analyses demonstrate how ARGON can, depending on the
structure of an algorithm, achieve speedups of 1.5x to 16x.

I. INTRODUCTION

Single Instruction, Multiple Data (SIMD) instruction set
extensions are the norm in modern general-purpose micro-
processors. They allow programmers and compilers to exploit
data-level parallelism by relying on narrow hardware vectors,
without resorting to external accelerators such as GPGPUs [1].
In recent years, chip vendors have pushed the boundaries of
the SIMD paradigm by extending the range of supported data
types, widening registers and datapaths, and introducing fea-
tures like per-lane predication and indexed memory accesses
that were previously exclusive to high performance computers
[2]. While such features extend the applicability of SIMD to
new domains, they impose a considerable cost in terms of
silicon area, design complexity and power consumption.

This paper focuses on the analysis of advanced SIMD
features with regards to their performance impact on a set
of workloads that are: a) relevant for current and future appli-
cations from different domains, and b) hard to vectorize with
traditional SIMD architectures, due to irregular computation
and memory access patterns. To perform a quantitative analy-
sis, we developed a benchmark suite inspired by the Berkeley
dwarfs [3] (Sec. IV), and an experimental ISA (ARGON)
derived by extending ARMv7 NEON with additional SIMD
features and the ability to target different vector widths. Our
key contributions are:

• A detailed analysis quantifying performance gains achiev-
able by advanced SIMD features.

• A set of recommendations for future SIMD extensions to
increase the vectorizabilty and datapath utilization

The following sections discuss related work (Sec. II), ad-
vanced SIMD features of interest (Sec. III), the analyzed

benchmarks (Sec. IV), our evaluation methodology (Sec. V)
and results (Sec. VI). Our key observations and conclusions
are presented in Sec. VII.

II. RELATED WORK

Several authors have investigated the limitations of SIMD
and proposed techniques to speedup workloads which cannot
be easily vectorized. Govindaraju et al. [4] analyze some
of these restrictions and propose a more flexible accelerator
and an augmented compiler to perform the transformations
necessary for an efficient mapping. However, their approach
is unable to tackle quintessentially irregular algorithms like
sparse matrix-vector multiplication. The problem of endowing
a compiler with sufficient intelligence in order to successfully
map arbitrary programs to SIMD has been well-studied [5]
and some more advanced approaches even rely on machine-
learning [6]. However, it is generally accepted that such
autovectorisation often leads to performance below that obtain-
able via manual optimization. Some SIMD extensions reduce
programmer effort and improve scalability when approaching
difficult algorithms by providing more flexible primitives
such as indexed memory accesses [2]. Furthermore, several
researchers have advocated the use of primitives performing
inter-lane operations such as scans [7].

Problems emerging from a lack of regularity in computation
patterns and memory accesses are the bane not just of in-core
accelerators but also of other data-level parallel structures. The
high latency associated with data transfers and the large energy
cost of underutilization often favor CPU-centric approaches.
While some degree of non-linearity in memory accesses is
tolerable in GPUs due to the inherent decoupling of processing
from memory accesses [8], branch divergence within warps
leads to low utilization and poor efficiency. One solution pro-
posed by Sengupta [9] involves tracking concurrency by par-
titioning data into segments. Unfortunately, many approaches
still suffer from the fact that the primitives they introduce
are not general or expressive enough to be readily adopted
by programmers [10]. Lee et al. [1] challenge this notion by
performing an extensive design space exploration to find a
design point which can be highly efficient and yet provide
easier programmability. However, these authors neglect the
subword-SIMD pattern considered in this paper which can
be potentially more efficient by unifying otherwise separate
decode, dispatch, and register read operations within a CPU. It
also leverages efficiency gains in the design of scalar datapaths
when performing control-flow dominated tasks.
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III. ADVANCED VECTOR FEATURES

Key challenges for the vectorization of general purpose code
are irregular computation patterns and data dependencies. We
increase NEON’s applicability by extending it with:

A Vector Length Register (VL), to allow the deliberate
underutilization of a SIMD datapath for loops that exhibit
iteration counts indivisible by the hardware vector length,
without the need for scalar fix-up operations.

A Mask Register (VM), to enable per lane predication
(Fig. 1a) and permutations of elements originating from
two sources. Both use cases combine control- and data-
plane computations to vectorize conditional statements such
as C[i] = (A[i] > B[i]) ? A[i] : B[i];.

Indexed Memory Accesses (Gather/Scatter), to allow the
vectorization of data-dependent memory accesses. We use a
scalar base address and a vector of 32-bit offsets independent
from the underlying data type. This requires multiple instruc-
tions to service all elements of a vector register, but smaller
offsets would limit the addressable memory region.

Scans, to perform cumulative operations over sequences of
vector elements to identify specific elements within a data set
(e.g. the minimum), or reduce multiple elements to a single
outcome (e.g. sum). Fig. 1b illustrates the data-flow underlying
the timing profile used as baseline for scans in Sec. VI. It
respects inter-lane dependencies when computing up to N
elements in log2N + 1 cycles. This performance advantage
over a serialized alternative is desirable; however, the energy
consumed by the increased number of operations is concern-
ing. Furthermore, as most floating point (FP) operations are
not associative, their accuracy may be affected.

Segmented Scans, to allow arbitrary length segments within
vectors to be processed in parallel. While VL allows scans to
operate on a reduced number of adjacent elements, segmented
scans can improve datapath utilization by effectively perform-
ing multiple independent scans within a single vector.
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Fig. 1. Use Case for VM, and Timing of log2N + 1 Scan Implementation

IV. ANALYZED BENCHMARKS

ARGON attempts to widen the scope of traditionally
multimedia and DSP focused SIMD ISAs. The benchmarks
developed here are inspired by the Berkeley Dwarfs [3], a set
of algorithmic methods capturing computation and communi-
cation patterns representative of future applications.

While the highest optimization level is employed to com-
pile all analyzed implementations, the vectorized portions
are hand-coded to leverage the newly implemented features.
We refrain from using default library code when this would
result in discrepancies between scalar and vector variants.
Similarly we avoid system calls to minimize OS interactions
and other system-level effects. Additional implementations
to those introduced in Tab. I were investigated, but are not
further discussed because they exhibited inferior performance
or behaviors very similar to those presented.

V. EVALUATION METHODOLOGY

The toolchain in Fig. 2 includes i) a unified database to
represent ARGON instructions, ii) source files for intrinsics
and equivalent C functions to allow functional verifications,
and iii) a custom LLVM front-end, GNU Assembler and gem5
framework. Most components are automatically generated and
parameterized to reduce turnover times and potential error
sources. gem5 is augmented to support the features described
in Sec. III, and its cache model extended with banks, ports,
sub-blocks, and an accurate contention model. The latencies

TABLE I
ANALYZED BENCHMARKS, CORRESPONDING WORKING SETS AND IMPLEMENTATIONS

Benchmark Name and Description Working Set Params. Implementation Specific Considerations Utilized Features

A
E

SE
nc Advanced Encryption Standard as established by NTIS

in 2001 [11]; very computation-intensive; primarily
focused on combinational logic; exhibits nonlinearly
dispersed memory accesses

CTR (counter) mode;
128-bit keys

Scalar & 32-bit based version combining multiple round
transformation steps in a single set of table lookups indexed mem. acc.;

VL (to a minor
degree)

ARGON

NEON Lack of support for indexed loads favors 8-bit based
SIMD version

B
ac

kP
ro

p

Backpropagation; used to train neural networks [12];
Parameters outside the default working set, did not
significantly affect the observed performances, except
for cases where the number of elements per layer
exactly matched the vector width; these improved the
results observed for the ARGON variant

3 input and 2 output
nodes; 1 hidden layer
including 5 neurons;
8 training sets;
randomly initialized
weights

Scalar —

indexed mem. acc.;
VL; VM; scans /
segmented scans

NEON Lack of advanced features makes it not worthwhile
ARGON Based on scans and VL; processes one neuron at a time

ARGON
SegScan

Segmented scans to process multiple neurons in
parallel; initialization phase to precompute indexes
and segmentation masks

B
itA

llo
c Bit Allocation; elemental step in compression and

optimization algorithms; analyzed variant models the
allocation of bits to carriers within a DSL transmission
channel based on their SNR (16-bit integers)

256 carriers equivalent
to working set
provided by EEMBC
TeleBench v1.1

Scalar —
VM; scans; VL (to
a minor degree)

NEON Lack of VM allows only partial vectorization

ARGON Employs VM to remove control dependencies; almost
fully vectorized

Pa
th

Fi
nd Dijkstra’s Algorithm; fastest single-source shortest path

algorithm for arbitrary directed graphs with unbounded
non-negative weights [13]; inherently scalar nature
limits vectorizability

New York City road
map [14]

Scalar Binary heap stored as consecutive array to simplify
address calculations and speed up memory accesses indexed mem. acc.;

VL; VM; scansNEON Lack of advanced features makes it not worthwhile
ARGON d-heap; d equal to number of 32-bit elem. per vector

Sp
M

V

Sparse matrix-vector multiplication; integral building
block for a variety of science and engineering
applications; generally involves matrices with a large
number of zero elements stored in a compressed
format; analyses based on matrix sizes from 2*2 to
1000*1000 elements show that SegScan M1
consistently outperforms basic ARGON variant

randomly generated
matrix in Yale format;
100*100 elements;
15% density

Scalar —

indexed mem. acc.;
VL; VM; scans /
segmented scans

NEON Mimics indexed mem. accs. by using scalar loads
ARGON Based on scans and VL; processes one row at a time
ARGON Segmented scans to process multiple rows in parallel;

segmentation masks computed within every iterationSegScan
ARGON Assumes at least one non-zero element per row;

avoids conditional branch used for scalar fix-upSegScan M1
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Fig. 2. Block Diagram of the ARGON Evaluation Toolchain

TABLE II
SIMULATION PARAMETERS OF THE BASELINE CONFIGURATION

Component Parameter
Processor single-core, OoO, 1 GHz, 40 ROB entries, 3 elem. fetch/decode/rename,

6 elem. dispatch, 8 elem. issue, LogNScans (Sec. VI-C), 256-bit SIMD
L1D cache 32 KByte, 2 cycle latency, 64 byte lines, 2-way set-assoc., 128-bit

sub-blocks per line, m 2B 1P configuration (Sec. VI-D)
L2 cache 1 MByte, 12 cycle latency, 16-way set-assoc.
DRAM 512 MByte, 30 cycle latency

of vector FUs are parameterizable by a set of timing profiles
(Sec. VI-C). The baseline configuration used for the following
analyses, represents a high-end ARM A-class core and the
corresponding memory hierarchy (Tab. II).

VI. EVALUATION RESULTS

A. Baseline Configuration

Fig. 3 shows speedups for the baseline configurations of
all implementations introduced in Sec. IV relative to their
scalar counterparts. Labels along the x-axis and colors identify
specific benchmarks and implementations. The NEON variants
of AESEnc, BitAlloc and SpMV show speedups of 0.8x,
1.3x and 0.9x, respectively. The first is limited by the lack
of indexed memory accesses, which favors an 8- instead of a
faster 32-bit version of the algorithm (Sec. IV). The second
is only partially vectorizable due to the absence of per lane
predication, and the third relies on scalar fix-up operations to
gather/scatter vector elements and emulate scans.

ARGON implementations consistently outperform both,
scalar and NEON variants. Utilizing VM to remove data
dependencies from BitAlloc allows a high degree of vector-
ization yielding a speedup of 13.5x, which approaches the
theoretical maximum of 16x for 16-bit operations on a 256-
bit datapath. Although AESEnc exhibits a similar degree of
vectorization, it is held back by its nonlinearly dispersed
memory accesses, as indicated by the fact that more than 50%
of its read requests are stalled due to an insufficient number of
cache ports/banks. Furthermore, as we considered instructions
like element-wise rotation as too algorithm specific, we rely
on a slower combination of two shifts and one OR instead.

The ARGON versions of BackProp and SpMV are fully
vectorized, too. However, with an average of only 3.5 and 6.0
elements active, respectively, they underutilize the available
datapath. Employing segmented scans (SegScan) increases the
achieved speedups from 1.3x to 2.1x and from 2.1x to 2.3x,
respectively. Moreover, assuming a minimum of one element
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Fig. 4. Speedup over Scalar Impl. for different Datapath Configurations

in each row of SpMV (Min1), allows the elimination of a
conditional branch (Sec. IV), yielding a speedup of 3.6x.

The datapath utilization of the inherently scalar PathFind
algorithm depends on the underlying heap size; e.g. a complete
8 element vector within the decreaseKey() function requires∑7

i=0

(
8i
)
= 7, 907, 396 nodes (1 + 8 = 9 for extractMin()).

Fig. 3 shows that the vectorized version of this function still
increases the overall performance of the algorithm slightly.

B. Dependency on the Datapath Configuration

The simulation results obtained for a series of different
datapath widths (Fig. 4) exhibit two distinct behaviors; i.e.
performances either independent of, or proportional to the
underlying datapath width. The former indicates a low de-
gree of vectorization, or a frequently underutilized datapath.
In particular, due to the limited number of network nodes,
BackProp ARGON and ARGON SegScan saturate at 4.0 and
6.3 active elements, respectively. This also explains the poor
performance of the NEON variants for BitAlloc and SpMV.
The lack of VL and VM requires them to regularly fall back
to scalar fix-up operations. Certain ARGON implementations
exhibit linear gains from wider vectors. However, the energy
cost and hardware complexity incurred by wider datapaths
potentially outweigh the benefits of higher performance gains.

C. Dependency on Functional Unit Timings

Fig. 5 illustrates the effects of different timing profiles.
The baseline (LogNScans) processes scans in log2N + 1
cycles (Sec. III). However, certain algorithms may require
FP operations to be executed in-order. The SerialScan profile
shows that completely serialized scans impose a significant
performance penalty particularly for SpMV, which iterates
over a tight loop that is highly dependent on instruction
latencies. Nevertheless, as all implementations still outperform
their scalar counterparts, even high performance processors
might prefer serial scans to avoid FP associativity issues and
reduce energy costs by utilizing simpler functional units. Note
that we did not consider VL when determining scan latencies;
hence, they might be smaller if not all lanes are active.

The “Unpacked” profile estimates the contribution of CPU
cycles required at the begin and end of each vector instruction
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to route elements between their packed representation inside
registers to individual datapath lanes. A comparison to the
SingleCycle profile, which assumes one cycle latencies for
all vector operations, shows that the integer based algorithms
AESEnc and BitAlloc actually reach their theoretical peak
performance. However, BackProp and SpMV are still limited
by long latency FP operations.

D. Dependency on the Memory Model

To evaluate the impact of the underlying memory on the
observed speedups we investigated all combinations of the
following L1D cache parameters and identified the five distinct
groups of configurations represented in Fig. 6.

• 1, 2, 4, 8 or 16 banks (1B, 2B, ...)
• 1 rd/wt (1P) or 1 rd/wt & 1 rd port per bank (2P)
• allowing only one access per cache line or merging

accesses to the same 128-bit sub-block (m)
It can be observed that for these benchmarks multiple ports are
more beneficial than multiple banks. In particular, the speedup
of SpMV improves from 1.8x to 3.0x instead of 2.7x, when
comparing 2B 1P against the 1B 2P setup. However, as ad-
ditional ports dramatically increase cache energy consumption
and access latency, contrarily to banking which effectively
reduces those parameters, we decided to use an m 2B 1P
implementation as baseline for our analyses. The prefix “m ”
indicates the ability to merge accesses to the same 128-bit sub-
block, as it is common practice in high end vector processors.

The full performance impact of memory accesses on par-
ticular implementations can be observed when comparing the
baseline against the 1B 1P configuration. For instance, it
reveals that the ARGON variants of BackProp and SpMV
are computation-bound, whereas the corresponding SegScan
implementations are memory-bound. For SpMV this actually
allows ARGON to outperform ARGON SegScan. It is note-
worthy that even for the 1B 1P model all ARGON variants
outperform their scalar counterparts. This implies that gains
due to an increased degree of vectorizability would even
benefit low end systems, which might implement serialized
versions of indexed memory accesses.

VII. OBSERVATIONS AND CONCLUSIONS

There are several lessons to be learned from this study.
First, the combination of VL, VM and indexed memory
accesses can yield significant performance gains on high-end
CPUs, as well as on low-end systems which serialize scans
and implement simple caches. In a heterogeneous environ-
ment such as big.LITTLETM, this greatly benefits the bigger
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Fig. 6. Speedup over Scalar Impl. for different L1D Cache Configuration

core without diminishing its companion’s performance/energy
trade-off. Second, given a sufficiently high number of elements
to operate on, wider datapaths can yield substantial speedups.
Conversely, low-end systems may employ narrow datapaths
to improve energy efficiency while maintaining moderate
performance gains. Given current technology, the best trade-
off seems to be a SIMD width of 256-bit.

Furthermore, our results indicate that merging L1D cache
accesses to the same 128-bit sub-block yields higher gains
than having additional ports on the same number of banks.
From a performance/energy perspective, this suggests the
use of multiple single-ported banks that do support merging.
Another interesting observation is that segmented scans enable
algorithms to achieve higher datapath utilizations by collapsing
nested loops. However, their computational overhead favors
data sets that allow operations on at least two segments
concurrently. Limiting ARGON to a single VL and VM to
save encoding space has an adverse impact on the density and
performance of vectorized code. In particular, tight loops that
have multiple assignments of VL/VM suffer from latencies and
dependencies introduced by frequent updates of said registers.
As a compromise, we suggest an additional encoding bit to
activate/deactivate VL/VM for individual instructions. Finally,
we show that pipeline latencies incurred by the packing/un-
packing of vector elements diminish achievable speedups.
Based on this, we suggest a hybrid packing scheme optimized
for 32-bit elements; e.g. a 256-bit wide vector register com-
prising up to four 64-bit or eight 32/16/8-bit elements.
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