Fast Shared On-Chip Memory Architecture for
Efficient Hybrid Computing with CGRAs

Jongeun Lee, Yeonghun Jeong and Sungsok Seo
School of ECE
Ulsan National Institute of Science and Technology, Ulsan, Korea
jlee@unist.ac.kr

Abstract—While Coarse-Grained Reconfigurable Architectures
(CGRA) are very efficient at handling regular, compute-intensive
loops, their weakness at control-intensive processing and the
need for frequent reconfiguration require another processor,
for which usually a main processor is used. To minimize the
overhead arising in such collaborative execution, we integrate a
dedicated sequential processor (SP) with a reconfigurable array
(RA), where the crucial problem is how to share the memory
between SP and RA while keeping the SP’s memory access
latency very short. We present a detailed architecture, control,
and program example of our approach, focusing on our optimized
on-chip shared memory organization between SP and RA. Our
preliminary results demonstrate that our optimized memory
architecture is very effective in reducing kernel execution times
(23.5% compared to a more straightforward alternative), and
our approach can reduce the RA control overhead and other
sequential code execution time in kernels significantly, resulting
in up to 23.1% reduction in kernel execution time, compared to
the conventional system using the main processor for sequential
code execution.

I. INTRODUCTION

While Coarse-Grained Reconfigurable Architectures
(CGRAs) are very good at regular, compute-intensive loops,
they may not be able to deal with other variants very
efficiently, such as those that contain irregular memory
accesses, function calls (including basic math functions like
exponential and trigonometric functions), and deeply nested
conditionals or loops. Even perfectly nested loops cannot be
directly executed by CGRAs, leading to a hybrid mode of
execution [1], where the inner-most loops are executed by a
CGRA while the outer loops are carried out in software by
the main processor. Borrowing the power of main processor
for every small unsupported operation of a CGRA can make
programming and optimization cumbersome. More critically,
the speedup by the CGRA can be greatly offset by the control
overhead on the main processor. Our study, agreeing with
[2], shows that the control overhead of a CGRA can be as
high as 40% of kernel execution time. It is such limitations
of CGRAs that motivate our work in this paper.

In this work we explore a different way to reduce the
overhead—by adding a small dedicated processor for a CGRA.
A dedicated processor can be placed right next to the CGRA,
without going through multiple interconnections unlike a main
processor in today’s System-On-Chip (SOC). Moreover, a ded-
icated processor can be customized for the CGRA accelerator,

978-3-9815370-0-0/DATE13/(©2013 EDAA

including special instructions and custom memory interface.
Further, by delegating the management of the CGRA, the
main processor can work on more important work with less
interruption, or be put into low power mode. We call this ap-
proach SPIRA (Sequential Processor Integrated Reconfigurable
Array), where Sequential Processor (SP) and Reconfigurable
Array (RA) refer to the dedicated processor and the CGRA,
respectively.

One pitfall of adding a processor is the (newly added)
communication overhead between SP and RA. Therefore we
consider it essential for them to have a shared memory,
preferably all of the RA’s local memory being accessible to the
SP, and the SP can use the RA’s local memory as its primary
data memory to minimize the hardware cost. However, this
creates a new problem of increasing the memory access latency
of the SP. The local memory architecture of the RA is typically
optimized for throughput and bandwidth, and therefore can
deal with latency, which is mostly due to a crossbar switch
between multiple PEs and multi-bank memories [3]. If the SP
has to share the same memory interface (e.g., by extending the
crossbar switch with a port for the SP), the memory access
latency could be increased so much as to negate the potential
advantage of adding a dedicated processor.

In this paper we present a novel memory architecture for
SPIRA, which enables the sharing of the data memory between
the SP and the RA, while simultaneously providing for the
SP very fast access latency for RA’s memory as well as
RA’s registers. This is made possible by our novel memory
interface and a set of hardware controllers ensuring that SP and
RA are never simultaneously active. This exclusive execution
semantics between SP and RA can also help reduce the
synchronization delay as well as conserve the energy.

Our experimental results from detailed system-level simula-
tion using applications from computer vision and multimedia
benchmarks demonstrate that our novel memory architecture
can reduce kernel execution times by up to 38.9% (23.5% on
average) compared to simply extending the crossbar switch.
Also despite the slower speed and the simpler architecture
of the SP over the MP, our SPIRA approach can reduce the
RA control overhead and other sequential execution time in
kernels by 25.3% and 39.5% on average, respectively, resulting
in significant reduction in total kernel execution time—up to
23.1% (12.7% on average)—compared to the conventional
system using the main processor for sequential code execution.

| SPIRA S |—|
[sPIRA2
SPIRA |]
Sequential —
Processor SPM -
Main s B
Processor < - Banl 0 | |
P leaa| P
t £ [| PN 1 p Bank | | [
. . —
r o |t 110 # Bank2 | [7]
.o -
- il | -
. ™ ™ Banks | =

— =L,

4 F 3

¥

Main Mcemory

Fig. 1. System architecture employing multiple SPIRA accelerators.

II. RELATED WORK

Coupling a sequential processor to a reconfigurable architec-
ture is not new. Many CGRAs [4]-[6], as well as other types of
coprocessors, typically assume a main processor. However, the
main processor of those coprocessors is very different from our
SP, since the main processor is not typically customized for a
coprocessor, and has its own memory hierarchy including data
caches and even address translation, none of which is shared
with the RA. Our SP processor uses a scratchpad memory as
its only data memory (no data cache or address translation),
which is fully shared with the RA.

In particular, the ADRES reconfigurable processor [6] sup-
ports the idea of tightly-coupled coprocessor, which has a
design-time option of making part of the CGRA (typically 4
PEs) reconfigurable as a VLIW processor. However, the VLIW
is very different from our SP from the memory architecture’s
perspective, and more similar to the main processor mentioned
above. Moreover, unlike the SP, the VLIW “mode” cannot be
used to reconfigure the RA.

Some recent FPGAs include a hard or soft processor in
the fabric. A hard processor is a physical processor core built
into the FPGA silicon, such as PowerPC embedded in Xilinx
Virtex-4 and ARM922T in Altera Excalibur, and therefore has
little flexibility. On the other hand, soft processors are built
using the FPGA’s general-purpose logic, and therefore can be
easily customized [7], [8] for the target application. Our SP
processor is designed to make runtime reconfiguration faster,
which however is not the primary focus of soft processor due
to the much slower reconfiguration with current FPGAs.

When a loop is accelerated using a reconfigurable architec-
ture, the portion of the sequential code becomes larger than
in the original sequential execution. Especially when there are
one or more outer loops, the iteration control in the outer
loops may be even higher than that of the innermost loop in
terms of the execution time [2]. The overhead can be very high
especially if there are one or more outer loops. To remedy this

problem, [1] proposes a hardware solution for 2-deep nested
loops only, whereas our approach is more versatile and can be
applied to any arbitrary loop level. [9] applies polytope-based
loop parallelization to CGRAs, which can handle arbitrary
loop levels; however, it is not known how to automatically
generate such implementations for arbitrary loops including
imperfect ones.

III. SPIRA APPROACH
A. Hardware Architecture

We base our RA architecture on ADRES [3], which is a
4x4 array of PEs coupled with a full crossbar switch and a
multi-banked scratchpad memory. The SP is a single-issue,
in-order, pipelined processor whose primary role is to control
the RA and, when profitable, to complement the RA by
performing control-intensive code or other operations that are
not supported by the RA. As such, the SP does not have
cache or address translation for data memory. Making the
SP simple (viz., single-issue, in-order, no cache or address
translation) helps not only minimize its power consumption,
but also optimize the memory access latency, which is critical
for the SP’s main job.

1) Expanding the Crossbar: A straightforward way to
create a shared memory between SP and RA is to connect the
SP’s address and data buses to an input port of the crossbar
switch located between the RA and the scratchpad memory
(SPM). However, this approach requires adding a new port,
and can increase the SP-to-SPM path latency significantly. In
the ADRES architecture, the crossbar can add to the latency
by 4 to 8 cycles depending on how well bank conflict is
avoided [3]. Moreover, this can affect not only the SPM access
latency but also the latency to the RA’s registers.

2) Proposed Memory Architecture: Fig. 1 illustrates our
proposed architecture, where the SP and the RA are connected
to the SPM through one set of address and data buses.
These buses are primitive wires without arbitration or address
decoder, as they were originally one-to-one connections. We
now need arbitration and address decoder because of the
sharing of the same buses with the SP. Thus we add them
only on the SP’s data paths as illustrated in the figure. Address
decoder’s output, when the SP is running, controls which SPM
bank should be enabled, and all the banks are fed with the
same address lines from the SP. Arbitration is done by running
the SP and the RA exclusively, as explained in Section III-B.

B. Software and Control

Initially the MP Code runs on the main processor. Soon
the main processor invokes SPIRA by writing to one of
its memory-mapped registers. The written value is the start
address for the SP, which the SPIRA controller receives and
sends it through a dedicated set of wires to the SP, along
with a wakeup signal. At the same time, the controller wakes
up the SP, which starts executing the SP Code. In addition
to executing sequential code outside of the kernel, the SP
performs a series of store instructions to initialize certain

registers of the RA and to set up the pipeline, which is
followed by the invocation of the RA.

C. Memory Access Latency

Minimizing the memory latency for SP is critical, since the
SP performs control-intensive computations including control-
ling the RA. While the SP can access the SPM, RA registers,
or even external memory or devices, the most important paths
are those reaching the SPM and RA registers.

The SP-to-SPM path latency is determined by the SPM
latency plus the mux or decoder delay. Both the mux and
the decoder have extremely small delay, because their sizes
are very small, and their control input, coming from the ECU,
is kept constant except when the SP or RA changes the power
state. Using Cacti 6.5 [10], we estimate that the SPM of 256
KB on a 65 nm techniques has 3.52 ns latency and 1.58 ns
cycle time. This can give a fast 2-cycle load latency for SP
running at 520 MHz. Similarly the SP-to-RA-register latency
is dominated by the RA register access time, which we assume
to be 2 SP cycles.

The RA has one memory access path, which is from
memory-accessing PEs to SPM banks via the crossbar switch.
This path is almost identical to that of the original RA, and
so should be the latency.

IV. EXPERIMENTS
A. Experimental Setup

To evaluate the effectiveness of our SPIRA architecture we
use applications from San Diego Vision Benchmark Suite (SD-
VBS) [11], MiBench [12], and MediaBench [13]. We select
1~3 kernels from each application that are the most important
in terms of execution time, and map them to SPIRA. Only
the inner-most loops are mapped to the RA using a modulo
scheduling algorithm [14] while outer loops are mapped to the
SP. For comparison we also map kernels to a system with the
RA accelerator only; in this case, the inner-most loop is still
mapped to the RA but the outer loops are mapped to the main
processor.

We extend the SimpleScalar simulator [15] integrated with
DRAMSsim 1.2 [16] to model the target system, which includes
a main processor, a SPIRA accelerator, a system interconnect,
a DMA engine, and a main memory. The main processor
is modeled after ARM Cortex A8 processor (dual-issue, in-
order) running at 720 MHz [17] with separate level-1 caches,
each with 16 KB, and a unified level-2 cache of 256 KB.
The SP processor is modeled after ARM11 processor (single-
issue, in-order) [18] running at 520 MHz with no cache or
address translation. The RA has an array of 4x4 PEs (with
the exception of MPEG2 kernels which we were able to
map only to a 6x6 PE array with 6 SPM banks), including
four load-store PEs that are connected to four 256 KB SPM
banks via a crossbar switch. The RA runs at 520 MHz and
supports bidirectional mesh-plus-diagonal PE-to-PE intercon-
nection. The system interconnect is 32-bit wide, runs at 166
MHz, and supports multiple outstanding transactions with
pipelining similar to the ARM AXI protocol. The DMA engine

B Expanding the Crossbar @ SPIRA

Sooooooooo
o—vwhrULauxoo

Fig. 2. Our proposed memory architecture vs. expanding the crossbar (kernel
execution time, normalized).

is 32-bit wide and multi-threaded. The main memory is 32-bit
wide DDR-333 SDRAM.

B. Comparison against Expanding the Crossbar

While our SPIRA architecture connects the SP directly
to the SPM without going through the crossbar switch, a
more straightforward solution would be to simply expand the
crossbar. In this experiment we compare kernel execution
times of using our proposed memory architecture vs. the
alternative (i.e., expanding the crossbar).

First we note that there are side effects to expanding the
crossbar, that the latency of the crossbar itself is increased
(because instead of 4-to-1 muxes, 8-to-1 muxes must be used
now), and that the crossbar’s latency must also be added to
the SP’s memory access latency. We ignore the former and
only evaluate the latter, which seems much more critical.
Considering the differences in the technology, frequency, and
memory size, we estimate that the latency is increased to
6 cycles from 5 cycles reported in [3]. Fig. 2 shows our
simulation results. As expected, our SPIRA architecture can
reduce kernel runtime consistently in all the applications.
Overall, by using our SPIRA architecture kernel runtime is
reduced by up to 38.9% (in tfexture synthesis) and on average
23.5%, as compared to the alternative. The SP runtime alone
(outer loops and RA control) is reduced by 40.0% on average,
and 42.8% at most (not shown in the graph).

C. Comparison against Using Main Processor

In the next two sets of experiments we compare our SPIRA
approach with more conventional system architecture. Without
SPIRA, one has to use the main processor to complement
the RA. Thus our first comparison is against using the main
processor instead of the SP. Note that though SPIRA requires
more resources due to the SP and the small controllers, the
SPIRA case doesn’t utilize the main processor at all for
kernels; therefore, it can be seen as a fair comparison as far
as the kernel performance is concerned.

Fig. 3 compares kernel execution times normalized to that
of the MP+RA case. The first four applications are from SD-
VBS, the next two from MiBench, and the last two from
MediaBench. For applications with multiple selected kernels,
we report the sum of kernel execution times, weighted by their

O Outer loop(s)
O RA control
B inner-most loop executed on RA

il
3

|

tlelslelzlelz]elzl 2]zl 2]els)e]5]e
SIB| s |B[sh|s|h 5% 5|5 5|6 5|8 5[k
‘nlspar:w‘ shtch texture |mul_ncut| cusan_s rlffmedmn!mpegz_decmpegz_enl [Geo. ‘

aynrhosis | er\nn]
Fig. 3. SPIRA vs. MP+RA (kernel execution time, normalized).

execution frequencies. We assume that DMA for configuration
and array data is finished before kernel execution.

In the graph the execution time of each application is broken
down into three parts: outer loop(s), RA control for the inner-
most loop, and the inner-most loop. Since the inner-most loop
is executed on the RA, this part is the same regardless of the
architecture. The other parts vary, but are mostly reduced in
the SPIRA’s case.

First we observe that the RA control part is reduced consis-
tently in the SPIRA’s case. This is not surprising, considering
that the SP is tightly-coupled with the RA, and therefore has an
edge over the MP, in quickly accessing RA registers as well as
synchronizing with it. However it is unexpected that the outer
loop execution time is also reduced in the SPIRA’s case—
often significantly—with one exception of texture synthesis,
even though the MP is more powerful than the SP (viz.,
38% faster clock frequency and dual-issue). This can be
attributed to the following factors: most of outer loop codes are
simple; the dual-issue feature of the MP couldn’t be utilized
very effectively due to control statements (i.e., branches);
and the SP has a fast level-1 memory access time—even
faster than the MP with the clock speed difference taken into
account. Lastly the degree of kernel speedup by our SPIRA
approach is strongly correlated with how much portion of the
kernel execution time is spent on non-RA execution issues. In
summary our SPIRA architecture can reduce the outer loop
execution time and the RA control overhead by 39.5% and
25.3%, respectively, resulting in 12.7% reduction in the kernel
execution time, all on average.

V. CONCLUSION

We presented the SPIRA approach and its fast, shared mem-
ory architecture for SP, which can reduce the control overhead
in hybrid computing involving main processor and CGRA
processors. We find that optimizing the memory architecture
is crucial to realize the potential advantage of the SPIRA
approach. Our experiments using applications from computer
vision and multimedia benchmarks indicate that combining

all three processors—main processor, SP, and RA—can result
in the best performance in most situations, than using either
pair of the processors only. Our preliminary results demon-
strate that not only can our proposed memory architecture
significantly reduce the kernel runtimes compared to a more
straightforward alternative, our proposed technique has signif-
icant benefit in terms of performance over the conventional
system employing the main processor for sequential code
execution. While we expect the cost of adding a SP and the
small controllers to a CGRA to be small compared to that of
a CGRA due to the SP’s simple architecture (no data cache
or address translation), accurate evaluation of it remains for
future work.

ACKNOWLEDGMENT

This work was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology, under grant 2010-0011534.

REFERENCES

[11 Y. Kim et al., “Improving performance of nested loops on reconfig-
urable array processors,” ACM Transactions on Architecture and Code
Optimization, 2012.

[2] N. Kapre et al., “VLIW-SCORE: Beyond C for sequential control of
spice FPGA acceleration,” in IEEE International Conference on Field-
Programmable Technology (FPT 2011), 2011.

[3] B. Bougard et al., “A coarse-grained array accelerator for software-
defined radio baseband processing,” IEEE Micro, vol. 28, no. 4, pp.
41-50, 2008.

[4] J. Hauser and J. Wawrzynek, “Garp: a mips processor with a reconfig-
urable coprocessor,” in FPGAs for Custom Computing Machines, 1997.
Proceedings., The 5th Annual IEEE Symposium on, apr 1997.

[5] H. Singh et al., “MorphoSys: an integrated reconfigurable system
for data-parallel and computation-intensive applications,” IEEE Trans.
Comput., vol. 49, no. 5, pp. 465481, 2000.

[6] B. Mei et al., “ADRES: An architecture with tightly coupled VLIW
processor and coarse-grained reconfigurable matrix,” Lecture Notes in
Computer Science, vol. 2778, pp. 61-70, 2003.

[7] P. Yiannacouras et al., “The microarchitecture of FPGA-based soft
processors,” in Proc. CASES. ACM, 2005, pp. 202-212.

[8] C. H. Chou et al., “Vegas: soft vector processor with scratchpad
memory,” in International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’11. ACM, 2011.

[9] F. Hannig et al., “Mapping of regular nested loop programs to coarse-
grained reconfigurable arrays - constraints and methodology,” in Proc.
of IPDPS, april 2004, p. 148.

[10] N. Muralimanohar. et al., “Cacti 6.0: A tool
to understand large caches,” 2009. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.3834

[11] S. Venkata et al., “Sd-vbs: The san diego vision benchmark suite,”
in Workload Characterization, 2009. [ISWC 2009. IEEE International
Symposium on, oct. 2009, pp. 55 —64.

[12] M. Guthaus et al., “Mibench: A free, commercially representative em-
bedded benchmark suite,” in Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop on, dec. 2001, pp. 3 — 14.

[13] C. Lee et al., “Mediabench: a tool for evaluating and synthesizing
multimedia and communicatons systems,” in MICRO-30, Washington,
DC, USA, 1997, pp. 330-335.

[14] H. Park et al., “Edge-centric modulo scheduling for coarse-grained
reconfigurable architectures,” in Proc. PACT. New York, NY, USA:
ACM, 2008, pp. 166-176.

[15] T. Austin, E. Larson, and D. Ernst, “Simplescalar: an infrastructure for
computer system modeling,” Computer, vol. 35, 2002.

[16] D. Wang et al., “Dramsim: a memory system simulator,” SIGARCH
Comput. Archit. News, vol. 33, pp. 100-107, November 2005.

[17] OMAP3530/25 Applications Processor, Texas Instruments.

[18] ARM1176JZF-S Technical Reference Manual, ARM.

