
Scheduling Independent Liveness Analysis for
Register Binding in High Level Synthesis

Vito Giovanni Castellana, Fabrizio Ferrandi

Politecnico di Milano – Dipartimento di Elettronica ed Informazione
Via Ponzio 34/5, 20133, Milan, Italy
{vcastellana,ferrandi}@elet.polimi.it

Abstract— Classical techniques for register allocation and
binding require the definition of the program execution order,
since a partial ordering relation between operations must be
induced to perform liveness analysis through data-flow equations.
In High Level Synthesis (HLS) flows this is commonly obtained
through the scheduling task. However for some HLS approaches,
such a relation can be difficult to be computed, or not statically
computable at all, and adopting conventional register binding
techniques, even when feasible, cannot guarantee maximum
performances. To overcome these issues we introduce a novel
scheduling-independent liveness analysis methodology, suitable
for dynamic scheduling architectures. Such liveness analysis is
exploited in register binding using standard graph coloring
techniques, and unlike other approaches it avoids the insertion of
structural dependencies, introduced to prevent run-time resource
conflicts in dynamic scheduling environments. The absence of
additional dependencies avoids performance degradation and
makes parallelism exploitation independent from the register
binding task, while on average not impacting on area, as shown
through the experimental results.

I. INTRODUCTION

Register allocation and binding are the tasks of mapping
storage values into physical registers. Usually physical regis-
ters are allowed to store different storage values, provided that
their life intervals never overlap. Liveness analysis provides
such information, and it is commonly performed iteratively
solving the Data-Flow (DF) equations [1], starting from a
graph representation of the subprogram highlighting its execu-
tion order (e.g. State Transition Graphs). In HLS the operations
execution order is determined through the scheduling task,
which associates each operation to a control step. Never-
theless, for some synthesis approaches, such an ordering is
not statically computed, making DF equations ineffective: we
refer to them as dynamic scheduling approaches. In dynamic
scheduling architectures, execution order varies at run-time,
according for example to different input parameters or variable
latencies of the hardware resources [2]. In these cases the
allocation and binding tasks may impact on performance: they
are addressed assuming a static operation ordering: run-time
adjustments are constrained through the insertion of depen-
dencies denoting resource conflicts. Thus safety is obtained
through a potentially unnecessary serialization of operations,
mitigating the available parallelism exploitation. On the other
side, adopting conservative approaches as exclusively bind
hardware resources may lead to non-negligible increase in
area. For this reason we introduce a novel Liveness Analysis
methodology that does not require a pre-computed schedule,

making it suitable for any dynamic scheduling approach. The
proposed analysis can be exploited in the register binding task,
with the aim of maximizing the parallelism exploitation.

II. RELATED WORK

Common HLS approaches acquire liveness information as-
suming a partial ordering relation between operations, obtained
through a static schedule [3][4]. Liveness information is then
captured in the form of a Conflict Graph, and register binding
often addressed as a graph coloring problem [5]. We refer to
such techniques, where register binding exploits the scheduling
task results, as post-scheduling approaches. On the other side,
in pre-scheduling approaches allocation is performed before
scheduling: in this case minimizing the number of allocated
registers may lead to the introduction of false dependencies in
order to avoid resource conflicts. Despite the absence of a pre-
computed schedule, proposed register binding methodologies
for dynamic scheduling architectures are usually designed as
post-scheduling approaches. Examples are given in [6] and
[7], where the authors propose a distributed controller for
managing Speculative Functional Units (SFUs) in HLS. Data-
dependent operations will wait until the needed results are
correctly computed. Register binding is performed through
a left-edge based algorithm [8], assuming a static execution
order: structural dependencies are introduced to achieve safety
in the case of runtime adjustments to the initial schedule,
due to wrong predictions. In order to reduce the impact of
structural dependencies on execution latency, the binding has
been customized adopting a Least Recently Used policy, which
tries to bind different registers for close in time operations.
However this approach cannot provide a conflict free regis-
ter assignment. The binding approach based on the liveness
analysis proposed in this paper instead, completely avoids any
runtime resource conflict, associating operations that may be
executed concurrently to different registers. A similar idea has
been introduced in [9], where register allocation is performed
through the coloring of a parallelizable conflict graph (PCG)
which avoids the insertion of false dependencies. The PCG is
built starting from a pre-computed conflict graph, adding edges
between storage values defined by possibly concurrent opera-
tions. Such approach is heavily influenced by the initial con-
flict graph construction, which still requires a statically defined
operations ordering. Obviously this requirement induces severe
restrictions to the number of feasible schedules: violating the978-3-9815370-0-0/DATE13/ c©2013 EDAA

Fig. 1: Example Dependencies Graph.

previously selected ordering may lead to incorrect execution.
On the contrary, the register binding based on the proposed
methodology guarantees correctness without performance loss
for any possible runtime schedule. In [10] the author propose
a dynamic scheduling architecture supporting variable latency
functional units. Focus is on parallelism exploitation: conflicts
among registers are avoided adopting unique binding.

III. PRELIMINARY NOTIONS AND DEFINITIONS

a) Flow Graphs: Denoting with V the set of vertices
and with E the set of edges, a node v ∈V of a graph G(V,E)
has out edges that lead to successor nodes and in-edges that
come from predecessor nodes. The set out(v) represents the
set of out edges, while in(v) represents the set of in edges.
Moreover we denote with pred(v)⊂V the set of predecessors
of node v and with succ(v) ⊂ V the set of successors of v.
Given e ∈ E, source(e) ∈ V represents the source node of
e, while target(e) ∈ E represents the target node. A directed
path p = a→ b is a sequence of edges e0,e1, ...,en such that
source(e0) = a,source(e1) = target(e0), ... , target(en) = b.

b) Uses and Defs: Representing with VAR the set of
variables in a subprogram P, and with G(V,E) a graph
representation of P: the set de f (x)⊂V of a variable x ∈VAR
is the set of graph nodes that define it; the set use(x)⊂V of a
variable x ∈VAR is the set of graph nodes that use it; the set
de f (v) ⊂ VAR of a graph node v ∈ V is the set of variables
that it defines; the set use(v)⊂VAR of a graph node v ∈V is
the set of variables that it uses.

c) Liveness Analysis and Data-Flow Equations: A vari-
able x ∈VAR is said to be alive on edge e ∈ E if ∃ a directed
path p from e to a node b ∈ use(x). A variable x ∈ VAR is
live-in at node v ∈ V if ∃e ∈ in(v) such that x is alive on e;
similarly x∈VAR is live-out at node v∈V if ∃e∈ out(v) such
that x is alive on e. Live-in and live-out sets capture liveness
information useful to perform register allocation and binding.
Such information is obtained from use and def through Data-
Flow equations:

live in(v) = use(v)∪ (live out(v)\de f (v)) (1)

live out(v) =
⋃

s∈succ(v)

live in(s) (2)

Liveness analysis is performed iteratively solving the Data-
Flow (DF) equations, until the least fixed point is reached [1].

Fig. 2: Liveness analysis results solving standard DF equations (a), livep
sets(b), for the example DG in Figure 1.

IV. SCHEDULE-INDEPENDENT LIVENESS ANALYSIS

DF equations as formulated in (1) and (2) require a graph
representation of the specification characterized by a single
execution flow, which reflects a given execution order. For
dynamic scheduling architectures a single flow representation
will not adequately represent the run-time execution order, and
standard liveness analysis will produce inaccurate information.
However, even if a static schedule is not available, it is always
possible to partially define execution order according to the
dependencies between operations. If operation a depends on
operation b, then a must be executed after b. A convenient
way to represent such relations is a Dependencies Graph (DG),
capturing both control and data dependencies. In the following,
the DG is assumed to embed also flow information (e.g. loop
back-edges). If there exist a path p = x → y between two
nodes x and y of the DG, then y will be executed after x.
Such a relation is not defined for all the possible pairs of
nodes: if such a path does not exist, then it is not possible
to state, simply analyzing the DG, which operation will be
executed first; obviously in this case it is also not possible to
establish if the two operations will be executed concurrently. In
Figure 2(a) the results obtained through DF liveness analysis
on an example DG (Figure 1) are shown. Analyzing the live-
in/live-out sets it results that variables a1 and b1 are never
simultaneously alive. According to this result, these variables
may be mapped on the same physical resource, since their life
intervals do not overlap, not ensuring correctness for all the
possible execution orders. For example, if operations 2 and
3 complete their execution in the same control step, then a1
and b1 cannot be stored in the same physical register. Notice
that for nodes 2 and 3 it is not possible to compute an order
relation. Such nodes can be denoted as parallel nodes because
they may be executed concurrently. It is possible to define a
binary relation || among the nodes of the DG: given two nodes
a and b, a||b iff there is not a path p = a→ b or p = b→ a,
i.e. they are parallel. In order to guarantee correctness in the
presence of parallel nodes two sets are defined. Denoting with

parallel(x) = {y|@ a path p= x→ y and @ a path p= y→ x}
(3)

the set of parallel nodes with respect to node x, we define:

livep(n) =
⋃

s∈parallel(n)

live in(s)∪ live out(s)

Sets livep(n) are introduced in order to take in account
interferences between variables alive at parallel nodes. The
main reason for keeping these sets separated from live in(n)

Fig. 3: Proposed liveness analysis results for the example DG in Figure 1.

and live out(n) is that this will facilitate the construction
of the conflict graph representing the interferences between
storage values. The introduced sets are computed when the DF
equations (as in (1) and (2)) have been already solved. Figure
2(b) reports livep sets for the previous example. However,
there is another issue to be considered, concerning death of
variables. In the proposed example, variable k results dead
on exit on both nodes 2 and 3, since there are no uses
of k reachable from these nodes. Nevertheless, k cannot be
considered dead until both 2 and 3 are completed; the equation
defining livep is modified in order to consider this aspect:

livep(n) =
⋃

s∈parallel(n)

live in(s)∪ live out(s)∪dead(s,n) (4)

where
dead(s,n) = {x|@ a path n→ u,u ∈ use(x),x ∈ use(s)},

i.e. dead(s,n) is the subset of use(s) of variables that are not
live out at s, but are used on a parallel node. Applying these
equations, the sets livep for nodes 2 and 3 now include variable
k. Even if the computation of livep sets allows a conservative
construction of a conflict graph, the DF equations, in their
standard formulation, produce over-conservative sets. For in-
stance, in the considered example variables a and b results
alive on exit at node 1, even if they have not already been
defined. To avoid this issue, DF equations can be modified as
follows:

live in(n) = use(n)∪ (out(n)\de f (n)) (5)

live out(n) =
⋃

s∈succ(n)

in′(s) , in′(s)⊂ in(s) (6)

where
in′(s) = {x|∃ a path d→ n,d ∈ de f (x)}

i.e. in(s) is the subset of in(s) of variables whose definition
reaches node n. The resulting sets, for the considered exam-
ple, are shown in Figure 3. Summarizing, in the proposed
approach liveness information is obtained iteratively solving
the modified DF equations, as formulated in (5) and (6), and
then computing livep sets as in (4), which characterize the
relations between variables alive at parallel nodes.

d) Mutual Exclusiveness: In this section, parallel nodes
have been described as nodes such that there is not a path be-
tween them in the DG. According to this definition, operations
belonging to mutually exclusive branches will be detected
as parallel. This can be avoided refining the set parallel(x),
defined in (3) as follows: if node x lays on the i-th branch
of a n-ary branch node d, then any node y, laying on the j-
th branch of d (j 6= i), is removed from the set parallel(x).

TABLE I: High Level Synthesis results: Register Binding.

Conflict-Free Non Conflict-Free
Regs # Regs # Regs

Benchmark # Regs (Unique) (Coloring) (Left Edge)
crc32 13 19 7 7

ethernet 13 42 8 8
gcd 15 37 9 9

sha-1 32 161 15 15
cftmdl 39 72 14 14
chem 176 341 176 176

dir 65 121 63 63
lee 27 72 8 8

matmul 16 28 16 16
mcm 46 94 30 30

Mutually exclusive nodes can be detected considering the
control dependencies in the DG.

V. CONFLICT GRAPH CONSTRUCTION

Liveness analysis allows the definition of an interference
relation among the storage values, usually represented through
a Conflict Graph (CG). Overlapping life-intervals may be
detected looking at live-out sets. Given a node v in the
DG, storage values belonging to live out(v) interfere with
each other, since the associated variables are simultaneously
alive. Storage values belonging to live outp(v) in stead may
not interfere each other; however each storage value xp ∈
live outp(v) interfere with each storage value x ∈ live out(v).
This properties avoid the insertion of unnecessary interfer-
ences. Consider as an example the DG in Figure 1: it results
2||3, 2||5, 4||3, 4||5. Live outp for node 2 contains both b and
b1, but b and b1 will never be simultaneously alive. Thus,
while storage values belonging to live out(v) will be cliqued
in the CG, storage values belonging to live out(v)p will not.
This is the reason for keeping these sets separated. Once built
the CG, register binding may be addressed through standard
techniques such as vertex coloring algorithms.

VI. EXPERIMENTAL RESULTS

In order to validate the described methodology, a register
allocator based on the proposed liveness analysis has been
implemented in C++, and integrated in a HLS flow [11].
Such allocator performs the register binding task by coloring
a CG. We choose to target a dynamic scheduling architecture,
composed by a datapath and a distributed controller, as de-
scribed in [10]. The execution of each operation starts when
all its dependencies are satisfied. This check is performed
directly at run-time without considering any pre-computed
schedule. This makes such architecture a good candidate for
validating our approach, which aims to provide a conflict free
register assignment regardless to the run-time schedule. All the
considered applications have been synthesized adopting the
proposed register binding, and allocating a register for each
storage value (unique binding). This comparison is motivated
by the fact that unique binding always produces a conflict
free binding, thus not impacting on performance. The same
Functional Unit binding has been adopted for both the ap-
proaches, in order to isolate the effects of the register binding.
FUs sharing is managed through dedicated logic, without in-
troducing false dependencies imposing serializations. For each
benchmark, both the approaches led to the same execution
latency (in terms of clock cycles): this result confirms the
proposed methodology to produce a conflict-free binding.

TABLE II: Design Compiler Synthesis Results.

Conflict-Free Non Conflict-Free
Proposed Approach Unique Binding Vertex Coloring

Bench SEQ CMB CON TOT SEQ CMB CON TOT Gain SEQ CMB CON TOT Gain
crc32 2189 5125 1716 9032 3262 5188 1903 10354 -12.8% 1251 7880 2168 11300 -20.1%

ethernet 2189 5504 2040 9734 6837 5520 2747 15104 -35.5% 1430 5874 2045 9350 +4.11 %
gcd 2681 4899 2250 9831 6094 4796 2739 13630 -27.8% 1609 4600 1991 8200 +19.9%

sha-1 5720 53394 14952 74067 28779 55310 19095 103184 -28.2% 2681 86527 21469 110678 -33.1%
cftmdl 6971 32557 9681 49209 12870 32812 10675 56358 -12.7% 2502 31114 8505 42121 +16.83%
chem 31460 486579 112141 630180 61133 487025 116870 665028 -5.2% 31460 486817 112235 630512 -0.05%

dir 11619 156088 36421 204128 21629 156654 38171 216454 -5.7% 11261 156444 36455 204160 -0.02%
lee 4826 30320 8447 43594 12870 30583 9763 53216 -18.1% 1430 29774 7747 38951 +11.9%

matmul 2860 43901 10078 56839 5005 44026 10454 59486 -4.45% 2860 44020 10122 57002 -0.3%
mcm 8222 89471 21846 119540 16803 90330 23491 130624 -8.48% 5362 89343 21399 116104 +2.9%

Synthesis Results Our approach has been compared with
three different register binding algorithms: unique binding,
left edge and standard vertex coloring based binding. Table
I compares the number of allocated registers. Moreover the
datapaths designs obtained through our algorithm, unique
binding and vertex coloring, have been synthesized by means
of Synopsys Design Compiler, using Nangate 45nm Open Cell
Library. Table II reports the obtained results, indicating non-
combinational (SEQ columns), combinational (CMB), inter-
connection (CON) and overall (TOT) area costs in terms of
library units. Percentage average gains adopting the proposed
approach are also shown.

Comparison with unique binding The provided HLS
results show that the proposed binding allocates 55.2% fewer
registers, on average, when compared with the unique binding,
that is the only other conflict free strategy. This result has
been confirmed by the synthesis experiments, that reported
a 55.8% average reduction in non-combinational area. In
addition, despite the introduction of steering logic due to the
register sharing it is also observed, an average reduction for
both the combinational and interconnection parts: 0.48% and
6.92% respectively.

Comparison with non conflict-free approaches In the
conducted experiments, left edge and vertex coloring have
been considered as non conflict-free approaches. In fact, they
exploit standard liveness analysis, where the ordering relation
for solving the DF equations is dictated by the scheduling task.
As a result, on the contrary compared to unique and proposed
bindings, for these approaches parallelism exploitation may
be limited by resource conflicts. Table I shows that left edge
and vertex coloring lead to allocation of the same number of
registers, that is the optimal one for the considered schedules.
These more aggressive register sharing techniques allocate
on average 21.7% less registers when compared with the
proposed one, and 64.9% less registers with respect to unique
binding. In two cases (chem, matmul) our algorithm is able to
obtain the same number of registers of left edge and vertex
coloring. However it must be taken into account that, since
these strategies do not consider the impact of interconnections
[12], massive sharing may not always lead to better results
in area. This guess is confirmed by the synthesis results for
the vertex coloring based datapaths, for which we registered
an impact in terms of combinational and interconnection costs:
adopting our approach, we obtained an area reduction for both
the components (3.67% and 2.03% on average respectively).
The effects of the multiplexers allocation arise more clearly
considering, for example, the results for the sha-1 benchmark,
where vertex-coloring allows a very aggressive register shar-
ing. In this case we reported for our approach an area reduction
of 38.29% for the combinational part, and 30.35% for the
interconnections. The greater number of allocated registers
for our approach, results in a non-combinational area increase
of 27.31%: nevertheless the overall results, including com-

binational and interconnection costs, demonstrate an overall
average area reduction of 1.81%. In the two designs in which
the same number of registers is used (chem and matmul), the
area results are nearly the same for both the approaches. These
results demonstrate that while providing a conflict free register
binding, the proposed approach is not affected on average by
area overheads.

VII. CONCLUSIONS

In this paper we presented a Liveness Analysis methodology
which does not require a pre-computed scheduling nor the
definition of a partial ordering relation among operations,
making it suitable for dynamic scheduling architectures. Such
analysis allows the construction of a conflict graph where
storage values alive at parallel nodes always interfere: per-
forming the register binding exploiting this graph avoids
the insertion of false dependencies to prevent resource con-
flicts. The approach always leads to a conflict-free binding,
avoiding performance loss due to unnecessary serializations
while ensuring correctness, as confirmed by the experimental
results. When compared with conventional approaches, which
instead cannot guarantee maximum parallelism exploitation in
dynamic environments, our approach leads to the allocation
of a greater number of registers: however we observed for
different examples, and on average, an overall area reduction,
due to the cost of interconnections and steering logic.

REFERENCES

[1] A. Appel and J. Palsberg, Modern compiler implementation in Java.
[2] S. M. Mueller, “On the scheduling of variable latency functional units,”

in Proceedings of the eleventh annual ACM symposium on Parallel
algorithms and architectures, ser. SPAA ’99, 1999.

[3] R. Beidas and J. Zhu, “Scalable interprocedural register allocation for
high level synthesis,” in Proceedings of the 2005 Asia and South Pacific
Design Automation Conference, 2005.

[4] P. Brisk, F. Dabiri, R. Jafari, and M. Sarrafzadeh, “Optimal register
sharing for high-level synthesis of ssa form programs,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 25, no. 5, 2006.

[5] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins,
and P. W. Markstein, “Register allocation via coloring,” Computer
Languages, vol. 6, no. 1.

[6] A. Del Barrio, M. Molina, J. Mendias, R. Hermida, and S. Memik,
“Using speculative functional units in high level synthesis,” in Design,
Automation and Test in Europe Conference, 2010.

[7] A. Del Barrio, S. Memik, M. Molina, J. Mendias, and R. Hermida,
“A distributed controller for managing speculative functional units in
high level synthesis,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 30, no. 3, 2011.

[8] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill Higher Education, 1994.

[9] S. S. Pinter, “Register allocation with instruction scheduling,” SIGPLAN
Not., vol. 28, 1993.

[10] Pilato, C., Castellana, V.G., Lovergine, S., and Ferrandi, F., “”A Runtime
Adaptive Controller for Supporting Hardware Components with Variable
Latency”,” NASA/ESA Conference on Adaptive Hardware and Systems,
2011.

[11] “PandA: A framework for Hardware-Software Co-Design of Embedded
Systems. http://panda.dei.polimi.it.”

[12] D. Chen and J. Cong, “Register binding and port assignment for
multiplexer optimization,” in Proceedings of the 2004 Asia and South
Pacific Design Automation Conference, 2004.

