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Abstract—Register renaming is a widely used technique to 

remove false dependencies in contemporary superscalar 

microprocessors. A register alias table (RAT) is formed to hold 

current locations of the values that correspond to the 

architectural registers. Some recently designed processors take a 

copy of the rename table at each branch instruction, in order to 

recover its contents when a misspeculation occurs. In this paper 

first we investigate the RAT vulnerability against transient 

errors. Then we analyze the vulnerability of RAT checkpoints 

and propose two techniques for soft error detection and 

correction utilizing redundantly taken copies of the entries whose 

content is the same with the previous and/or next checkpoints. 

Simulation results of the spec 2006 benchmarks reveal that on 

the average RAT vulnerability is 25% and checkpoint 

vulnerability is 6%. Results also reveal that redundancy exists at 

sequential checkpoint copies and can be used for error detection 

and correction purposes. We propose techniques that exploit this 

redundancy and show that faults in 41% of all checkpoints and 

44% of rolled-back checkpoints can be detected and errors in 

33% of the rolled-back checkpoints can be corrected. Since we 

exploit the already available storage, proposed error detection 

and correction techniques can be implemented with minimal 

hardware overhead.   

Keywords— Microprocessors, Register Rename, Checkpoint,   

RAT Vulnerability, Soft Error, Error Detection and Correction 

I. INTRODUCTION 

ALPHA particles released by packaging radioactive 

impurities and neutrons caused by cosmic particles coming 

from outer space are known to cause transient errors in 

contemporary microprocessors [8]. Capacitive nodes of the 

processor storage components such as SRAM bitcells and 

latches are the most sensitive parts to these particle hits. These 

hits may cause single or multi-bit transient errors since they do 

not cause permanent defects in the hardware and hence are 

called soft errors in the literature.  

Contemporary microprocessors use performance boosting 
techniques like out-of-order execution, deep pipelines, and 
dynamic scheduling. Moreover, almost all contemporary 
processors use register renaming in order to cope with false 
data dependencies. Register renaming technique brings the use 
of a Register Alias Table (RAT) where all architectural to 
physical register mappings are stored.  
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Speculative execution is also another technique by taking 
the advantage of the information about the taken or not taken 
history of the conditional branches. Any speculative path with 
mispredicted conditional branch would need a proper roll-back 
mechanism for returning to a safe state just before the path. 
This roll-back mechanism can be constructed as a reorder 
buffer (ROB) based or checkpoint-based implementation.  

Since errors are hazardous for correct program flow our 
main motivation is the identification and measurement of the 
most vulnerable areas against soft errors in the checkpoint-
based RAT recovery methods. In this paper we start by 
investigating the RAT vulnerability against transient errors. 
The RAT contains current mappings of the architectural to 
physical registers and hence is important for correct execution. 
Then we analyze the vulnerability of the RAT checkpoints 
taken for recovery purposes. A checkpoint may also be crucial 
if it is rolled-back and written onto the RAT. Finally, we 
propose two techniques for soft error detection and correction 
utilizing redundant information stored in consecutive 
checkpoints. Conventional error detection and correction 
methods utilize redundant storage [12] with increased area 
overhead for the copies. However, our technique exploits 
already existing redundancy between consecutive RAT copies. 

The rest of the paper is organized as follows: the discussion 
about the related work is placed in the Section II. Two main 
misprediction recovery approaches are detailed in section III. 
In section IV, vulnerability analysis on RAT and its 
checkpoints is given. Checkpoint assisted error detection and 
correction schemes and their hardware implementations are 
presented in section V. We present our experimental results in 
section VI. Finally, we offer our concluding remarks in the 
same section VI. 

II. RELATED WORK 

RAT and checkpoints can be implemented as RAM or 
CAM array. RAM array table is fast and scalable whereas 
CAM array [11] requires smaller storage area and is easy to 
recover. Checkpoint for a CAM array table need only copy of 
the valid bits whereas for a RAM array RAT whole table is 
copied. Random access buffer [2] checkpointing recovers in 1 
clock cycle and we selected this scheme in our hardware 
implementation but our techniques can also be adapted to 
sequential access buffer scheme. Zeng et.al. [6] suggests CAM 
array RAT and checkpoints and storing bit vectors instead of 
storing whole RAT as in RAM array. However, recovery 
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Fig. 1. Checkpoint entries with Same Bit  

mechanism needs multiple cycles for reconstructing the rename 
table and hence causes roll-back performance degradation.  

There are many contributions including AVF analysis like 
the studies of Mukherjee et. al. [13] which proposes AVF 
analysis on computer elements, however to the best of our 
knowledge the RAT and checkpoint AVF analysis are firstly 
introduced in this paper.  Montesinos et.al. [9] investigates the 
register lifetime for soft error analysis on register files. The 
error resilience in fault tolerant systems is generally sustained 
with adding redundancy by copying data. As an illustration, 
storage-based systems use two copies for error detection and 
three copies for error correction where the latter is a well-
known example of the triple modular redundancy mechanism 
[12]. However, such systems have hardware cost for extra 
storage and comparison circuitry. Redundant information in 
RAM-based sequential RAT checkpoints is the main 
inspiration point of our work. There are also several studies by 
using architectural implementations as an whole unit of error 
detection and correction like Sorin’s contribution, an error 
detection unit called Argus [12]. Furthermore, there exist some 
well known techniques like exploiting parity bits in case of 
single error occurrence commonly used applied to current 
systems because of their high success rates. In our work, we 
exploit already existing redundancy in these copies of RAT for 
soft error detection and correction without extra hardware 
overhead for storage in order to build up resilient systems 
against multiple errors. 

III. MISPREDICTION RECOVERY 

Superscalar microprocessors use speculative flow control 
like branch target speculation to increase performance further. 
However, on a mispredicted branch this speculative flows need 
to recover to the last known safe state. This can be done by 
recovery mechanisms utilizing reorder buffer (ROB) or taking 
checkpoints of the state before branch. ROB-based 
mechanisms are wait, walk forward and backwards [5]. 
Checkpoint-based mechanisms can be implemented as 
sequential access (shift registers) [9] and random access [3]. 
The simplest way to recover from a misprediction is to keep 
the information for the history of the committed instructions. 
The table that holds the location of the commited values of the 
architectural registers is called the commit rename table (CRT). 
A scheme that makes use of the CRT to recover from branch 
mispredictions, starts from the beginning of the ROB and waits 
until the mispredicted branch commits. Once the branch is 
committed, contents of the CRT, which contains the last known 
safe state, are copied onto the RAT.  Checkpoint mechanism is 
taking the snapshot of the RAT [14] when a conditional branch 
arrives to the rename stage. Recovery with checkpointing from 

a misprediction is a faster solution but brings higher 
complexity in circuit level compared to ROB-based 
counterparts. RAT and checkpoints can be RAM array where 
entries are accessed by index with architectural register ids [2], 
[5]. In a CAM array RAT, the number of entries equal to the 
number of physical registers and indexed with physical register 
ids [1]. In RAM array method, the whole RAT table is 
checkpointed, whereas in CAM array RAT only valid bits 
vector is needed to be copied. Checkpoints can be accessed in 
sequential or random access fashions [2]. Taking a snapshot of 
the status at each branch may create redundant states to be 
copied consecutively. These redundancies will be used to 
detect and/or correct a soft error. 

IV. VULNERABILITY ANALYSIS 

RAT Vulnerability: RAT contains current architectural to 
physical register mappings and hence is critical for the correct 
execution. Any error on this table may not only cause data 
corruption but also incorrect flow control. As an illustrative 
case, vulnerability of an entry in this table is directly related to 
the current mapping being requested by any other instruction’s 
source or not. In other words if there is no dependent to the last 
mapping of an architectural register then any error on this 
mapping entry would be invisible in program outcome. In 
another case, a branch misprediction may cause a roll-back and 
effectively vulnerability of the table entries in the speculative 
path will be zero. Consequently, average AVF of each 
architectural to physical register mapping can be determined 
according to net lifetime of the mapping in a program which is 
the difference between total lifetime in execution and total 
speculative lifetime on mispredicted branch executions. The 
AVF of all mapping entries corresponding to each architectural 
register is found for AVF of the RAT. 

Checkpoint Vulnerability: Considering the random access 
buffer checkpoint mechanism proposed in [2], M cell 
corresponds to typical RAT without any other specific 
condition and its vulnerability can be determined as in (2).  
However, vulnerability of the checkpoints (C) is slightly 
different. Vulnerability is zero for unused checkpoints since 
they have no effect on the program flow. Vulnerability of the 
rolled-back checkpoints depends on the duration starting from 
the taken time to the roll-back time. 

The AVF of the RAT for each SPEC2006 benchmark 

programs are given in Fig. 2. The AVF of the RAT is 

minimum 14.2% for specrand with 32-checkpoint 

configuration maximum 49.4% for leslie3d with base 

configuration and 25% on the average. RAT vulnerability is 

the average of active life cycle of each entry in the RAT. Life 
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cycle for an entry in the RAT begins with a rename and ends 

with the last read from the corresponding architectural 

register. The AVF of checkpoints for each benchmark 

program is given in Fig. 3. Vulnerability of the checkpoint 

begins at the taking a copy of RAT and ends with roll-back. 

Checkpoint AVF is low for some benchmarks where the 

number of roll-backs is small. Vulnerability increases with the 

number of checkpoints since more checkpoints allows more 

in-flight branches and decreases stalls. As a result total 

lifetime of the checkpoint in the storage area increases. 

V. CHECKPOINT ASSISTED ERROR DETECTION 

AND CORRECTION 

 Considering an architectural register between two 

consecutive conditional branches, checkpoint entries in some 

rows (architectural to physical mappings) can be same. This 

situation occurs if there is no rename operation took place for 

the corresponding entries and corresponding physical registers 

are not released. An error detection algorithm may utilize this 

redundancy in the consecutive checkpoints. We define 

comparable entries (CE) as any individual entry in the table 

has a redundant copy at its neighborhoods. 

We define same bit which guarantee that consecutive are 

real comparable entries. For instance, assume that two 

consecutive entries have the same value X. Having the same 

value does not guarantee that these two entries are 

comparable. In order to assure comparable entries two distinct 

situations must be satisfied. Firstly, there is no new rename for 

the corresponding register since last conditional branch point. 

Secondly, this same bit must act as a valid bit for each 

checkpoint to indicate corresponding checkpoint is not flushed 

due to a mispredicted older branch or its speculative branch is 

not committed. A conceptual view of the checkpoints with 

same bit is given in Fig. 1. We propose two different schemes 

at distinct phases for error detection in RAT, namely On-the-

fly Check and On-Demand Check. 

On-the-fly Check: First scheme takes place when there is a 
speculative flow in the program where a checkpoint is created 
and stored in checkpoint space. We are proposing to compare 
the current copy of each RAT entry with the previous copy if it 
is known that there is no register rename for the corresponding 
register since last checkpoint. We add an extra same bit to each 
entry in the table that indicates current and next copy are 
comparable as illustrated in Fig. 4. Each checkpoint updates 
these control bits in the previous checkpoint copy which will 
be utilized in the second scheme. The circuit is given in Fig. 4.  

On Demand Check: Comparison at this scheme starts when 
there is a roll-back request for the corresponding checkpoint. 
During roll-back, each table entry is compared with the 
corresponding CEs in either preceding or next checkpointed 
tables. If same bit is ‘1’ for the entry in the requested 
checkpoint then the corresponding entry in the next checkpoint 
would not be compared. This ‘1’ indicates that there was a 
rename between these two neighbor checkpoints. If same bit is 
‘0’ these two entries are CEs.  There are 3 possible situations. 
First, there are no CEs in the neighborhood of the current entry. 
It is not possible to detect any errors just by comparison. In the 
second case, there is one CE and comparison reveals error if 
exist. If any error is detected this could be flagged to a 
recovery mechanism. For the last case there are 2 CEs and 
error can be detected and corrected by comparing these three 
consecutive copies. If any error is corrected and there is no 
other detected error then it is safe to recover with the 
corresponding checkpoint. The circuit is given in Fig. 5.  

Hardware Implementation: We full custom designed RAT 
and checkpointed tables as random access buffer scheme 
proposed in [2] design for UMC 90nm technology library with 
Cadence Virtuoso. RAT cell has eight read and four write ports 
as required in a 4-way machine. Checkpoint cells each have 
one port for read and write as only one checkpoint can be taken 
or rolled-back at a time. Each entry in RAT cell has seven bits 
for mapping 128 physical registers. Checkpointed table cells 
each have one read/write port. Each entry in checkpoint cell is 
eight bits where one same bit is added to indicate that current 
cell and the next cell are comparable entries at the 
corresponding rows. Roll-back and branch resolution events 



 

 
Fig. 7.  One CE and Two CEs in Neighborhood Percentage for On-demand Scheme             Fig. 8. Total AVF Reduction by Proposed Techniques 

indicating that current cell has a valid copy of the RAT for an 
unresolved conditional branch.  

The area of the 64x7 RAT checkpoint SRAM with one 
read/write port is 24,023 µm

2
 and 25,492 µm

2
 for a 64x8 

checkpoint table. Adding a same bit to each entry in table for 
error analysis purpose brings 6% area overhead. Adding 
comparison circuit for on-the-fly scheme brings 5857,95 µm

2
 

and for on-demand scheme brings 10406.4 µm
2
 extra area. 

Critical path delay is 208 ps for the baseline checkpoint table 
whereas it is 217 ps with the same bit added. Adding one bit 
makes critical path longer and brings 4% delay overhead. 
Adding an extra bit for error analysis will not alter precharge, 
decoder, sense amplifier, and write drive energy consumptions. 
Only word select energy will slightly increases since getting 
longer. Word select energy for the baseline table is 95.56 fJ 
and for the proposed table is 96.91fJ. 

VI. RESULTS AND DISCUSSIONS & CONCLUSION 

The percentage of the CEs in on-the-fly checking scheme 

is given in Fig. 6. The number of CEs is almost constant with 

the number of checkpoints for each benchmark since it 

depends on only the program flow. Percentage is found by 

averaging on the number of total checkpoints. The percentages 

of one CE and two CEs for on-demand scheme are given in 

Fig. 7 respectively. Benchmark simulation results reveal that 

minimum 30.22%, maximum 53.41%, and average 44.82% of 

the errors can be detected for the on-demand scheme. 

Moreover, minimum 0.42% (excluding 2 checkpoints since 

not applicable), maximum 49.55%, and average 33.38% of the 

errors can be corrected for on-demand scheme. Percentages 

are found by averaging on the number of total roll-backs. The 

AVF reduction results achieved by using the proposed 

techniques are illustrated in the Fig 8. As the figure reveal, on 

the average across all benchmarks AVF is reduced by more 

than 32% while individual benchmarks, such as the hmmer, 

show benefits of as high as 42%.  
As a conlusion in this paper, we analyzed the simulation 

results for the vulnerability of the RAT against soft errors and 
investigated the vulnerability of the RAT checkpoints for RAM 
array structure accessed as in RAB. Cycle accurate simulations 
revealed that average RAT vulnerability is 25% and average 
RAT checkpoint vulnerability is 5.66% for aforementioned 
SPEC 2006 benchmarks. Then, we proposed two techniques 
for error detection and correction utilizing the redundant 
information in sequential checkpoints. On the average on-the-
fly check is capable of detecting 41.5% of the errors by 
checking the current checkpoint with the previous. On-demand 
check is capable of detecting almost half of the errors on a roll-
back and of correcting one third of the errors occurred in one of 

the checkpoint in neighborhood of the rolled-back checkpoint. 
We have full custom designed the RAT table and checkpoint 
table and comparators for proposed techniques. Adding an 
extra control bit for error check brings little area and delay 
overhead and small energy consumption. 
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