
Sufficient Real-Time Analysis for an Engine Control
Unit with Constant Angular Velocities

Victor Pollex∗, Timo Feld∗, Frank Slomka∗, Ulrich Margull†, Ralph Mader‡, Gerhard Wirrer‡
∗Institute of Embedded Systems/Real-Time Systeme

Ulm University, 89069 Ulm, Germany
firstname.lastname@uni-ulm.de

†Faculty of Electrical Engineering and Computer Science
Ingolstadt University of Applied Sciences
Esplanade 10, 85049 Ingolstadt, Germany

firstname.lastname@haw-ingolstadt.de
‡Continental AG

Siemensstr. 12, 93055 Regensburg, Germany
firstname.lastname@continental-corporation.com

Abstract—Engine control units in the automotive industry are
particular challenging real-time systems regarding their real-time
analysis. Some of the tasks of such an engine control unit are
triggered by the engine, i.e. the faster the angular velocity of the
engine, the more frequent the tasks are executed. Furthermore,
the execution time of a task may vary with the angular velocity
of the engine. As a result the worst case does not necessarily
occur when all tasks are activated simultaneously. Hence this
behavior cannot be addressed appropriately with the currently
available real-time analysis methods. In this paper we make a first
step towards a real-time analysis for an engine control unit. We
present a sufficient real-time analysis assuming that the angular
velocity of the engine is arbitrary but fixed.

I. INTRODUCTION

Embedded systems are increasingly used in electronic de-
vices. Especially in the automotive area these are deployed on a
large scale. The addition of applications, like driver assistance
systems, increases the demand of resources, but cost pressure
dictates to refrain from unnecessarily increasing the number
of embedded systems. Therefore the available resources have
to be utilized efficiently. Furthermore many of these systems
are hard real-time systems. This real-time capability can be
verified by means of a real-time analysis.

An engine control unit (ECU) is a hard real-time system on
which many parameters are calculated, including the quantity
that is injected and the timing of the ignition. These calcu-
lations increase the performance of the engine, however if a
calculation does not finish on time, then the performance of
the engine degrades. Therefore the real-time capability of the
ECU must be verified.

The duration of the work cycle of a piston correlates with
the speed of the engine. Therefore the frequency with which
the ECU calculates the timing of the ignition correlates equally
with the speed of the engine. Furthermore the corresponding
deadline as well as the execution time can also depend on the
speed of the engine.

In this paper we present a sufficient real-time analysis that

takes the aforementioned properties of an ECU into account.
This analysis assumes that the speed of the engine is arbitrary
but fixed, which on the one hand reduces the complexity of
the analysis. On the other hand however, the analysis can only
be regarded as a first step.

This paper is organized as follows: In section II a short
overview of the related work is given, followed by the com-
putational model used in this paper which is described in
section III. In section IV we present the real-time analysis
for the ECU, which is then applied on an existing ECU
provided by Continental. The ECU and the results are shown in
section V. A summary and future work are given in section VI.

II. RELATED WORK

In the past fifteen years various task models have been
researched. Among them are the multiframe task model [1],
its generalized form [2], the recurring real-time task model [3],
and the currently most general model, the digraph task model
[4]. The digraph task model describes a task with a directed
graph. Each node represents a type of job the task can release
and has a execution time and deadline assigned to it. An edge
is labeled with the minimum time between the activation of
the jobs that the edge connects.

A task whose frequency of activation depends on the engine
speed, like calculating the ignition timing, cannot be properly
modeled by the digraph task model. For a single engine speed
however it would be possible to model such a task. The range
of the engine speed is limited, but the number of different
engine speeds is infinite. Even though we assume an arbitrary
but fixed engine speed for our analysis, we would require an
infinite amount of graphs to correctly model and engine-speed
dependent task. The reason is that the ECU has to be real-time
capable at all possible engine speeds.

Stoimenov et al. present in [5] a real-time analysis for
systems that can change their mode of operation. Each mode
is represented by a set of tasks, where each task is associated
with an activation pattern, a best-case and worst-case execution

978-3-9815370-0-0/DATE13/ c©2013 EDAA



time, and a deadline. Even though a task whose execution time
depends on the engine speed can only have a finite amount of
different execution times, once the deadline or its activation
depends on the engine speed, again an infinite amount of
modes would be required to appropriately model the behavior.

III. COMPUTATIONAL MODEL

In this section we present the model used for the analysis
of the ECU. The ECU executes different types of tasks. These
tasks are event-triggered. Whenever a certain event occurs, an
instance of the corresponding task is created and made ready
to be executed. Hereafter this will be referred to as activation
of a task. The tasks are coarsely categorized based on the
source of the event. On the one hand we have time-triggered
tasks. The events of these tasks occur after a certain amount of
time has elapsed. On the other hand we have engine-triggered
tasks. Here the events occur when the engine has reached a
certain angular position. As the engine revolves, this angular
position is reached with every revolution, hence these events
recur. Furthermore not only the occurrences of the event of the
engine-triggered tasks depend on the angular velocity of the
engine, but also some parameters of the tasks themselves.

A. Engine

The engine is a four-cycle engine. Each cycle requires half
a revolution, hence the complete work cycle of four cycles
requires two revolutions. We denote the number of cylinders
of the engine with ζ. The engine can only operate within a
fixed range of angular velocities. The lower and upper bound
of this range are denoted by ω− and ω+ respectively.

B. Tasks

A task τ is described by a 5-tuple

τ := (π, ρ, η, γ, δ) (1)

the priority π, the scheduling type ρ, the event function η, the
execution time function γ, and the deadline function δ. A set
of tasks is denoted by Γ.

Every task τ has a priority πτ assigned which is used
in the priority-based scheduling policy of the ECU. If tasks
have identical priorities then the instances of these tasks are
processed according to the first come first serve policy. The
scheduling type ρ of a task can either be fully preemptive
or deferred preemptive. A fully preemptive task can preempt
at any given time any other task with a priority lower than
its own and the task can be preempted at any given time
by a task with a higher priority than its own. Whereas the
execution of a deferred preemptive task is divided into a
series of non-preemptive segments sτ,i,ω and hence can only
be preempted between two non-preemptive segments. sτ,i,ω
denotes the length of the i-th non-preemptive segment of task
τ for the angular velocity ω.

As previously mentioned, the tasks executed on the ECU
are event-triggered and the events that activate the tasks occur
repeatedly. With the event function ητ,ω we describe an upper
bound on the number of events activating task τ that can occur
in any interval of time of non-negative length when the angular
velocity is ω.

ητ,ω : R+
0 → N0 (2)

We also mentioned that some parameters of the tasks depend
on the angular velocity of the engine. In particular these are
the execution time and the relative deadline of the task. Hence
both are described as a function of the angular velocity:

γτ : [ω−, ω+]→ R+ (3)

δτ : [ω−, ω+]→ R+ (4)

The execution time function γτ (ω) of a task τ describes the
required amount of processing time for its execution if the
angular velocity was ω at the time of the activation. Whereas
the deadline function δτ (ω) describes the amount of time that
a task may require at most from the time the corresponding
event activated it until it finishes its execution.

The reason that the execution time varies over the angular
velocity of the engine is that for different ranges of angular
velocities different algorithms are used. On the one hand this is
done to consider the reduced amount of time available at higher
angular velocities. On the other hand parts of calculations
done at lower angular velocities are omitted at higher angular
velocities. For example at lower angular velocities the fuel is
injected with several pulses. At higher angular velocities the
number of pulses is reduced due to technical limitations. Hence
part of the calculations are omitted as they are not required.
However in general it cannot be assumed that with increasing
angular velocity the execution time decreases.

Time-triggered tasks are repeatedly activated after a spec-
ified amount of time has elapsed. Hereafter referred to as
period of a task τ and denoted by pτ . Furthermore the relative
deadline of time-triggered tasks are considered to be arbitrary
but constant, i.e. they do not depend on the angular velocity
of the engine.

C. Interrupts

Besides the execution of tasks on the ECU, also interrupts
have to be processed. Interrupts can preempt any currently
running task on the ECU. To take the interrupts in the analysis
into account we require a function

ι : R+
0 → R+

0 (5)

which describes the maximum amount of processing time
required to serve the interrupts that occur within any interval
of time of a given length. How to obtain such a function is
described more in detail in section V.

IV. REAL-TIME ANALYSIS

The analysis we present is based on the response-time
analysis of Lehoczky [6]. As the tasks on the ECU are either
fully preemptive or deferred preemptive, we combine the
analysis of Lehoczky with the approach presented by Haid
and Thiele [7] and part of the analysis presented by Bril et al.
[8].

The condition for schedulability is modified to:

∀τ ∈ Γ ∀ω ∈ [ω−, ω+] : r+
τ,ω ≤ δτ (ω) (6)

If the worst-case response time r+
τ,ω of each task τ in the set

of tasks Γ is no larger than the corresponding deadline δτ (ω)
for each possible angular velocity ω between the minimum ω−

and the maximum ω+, then the system is schedulable.



r+
τ,ω = max

k∈[1,mω]
{βτ,ω(k)− ατ,ω(k)} (7)

mω = min {k ∈ N : βτ,ω(k) ≤ ατ,ω(k + 1)} (8)

The worst-case response time r+
τ,ω is the maximum of any

response time of an instance in a level-i busy period. The
level-i busy period ends with the m-th instance which is
the first instance that finishes its execution no later than the
activation of its succeeding instance. The response time of the
k-th instance is the difference of the time when its execution
finishes βτ,ω(k) and the time it was activated ατ,ω(k).

βτ,ω(k) = min
∆∈R+

{∆ : ∆ = fτ,k,ω(∆)} (9)

ατ,ω(k) = inf
∆∈R+

0

{∆ : k ≤ ητ,ω(∆)} (10)

βτ,ω(k) is the smallest positive fix-point of the function fτ,k,ω .

fτ,k,ω(∆) = bτ,ω + k · γτ (ω) + ι(∆)

+
∑

τ ′∈hep(τ)

(ητ ′,ω(∆) · γτ ′(ω)) (11)

fτ,k,ω describes the maximum amount of execution time that
has been requested within an interval of time of length ∆.
This includes the blocking time bτ,ω due to the deferred
preemptable tasks, the execution time of all k instances of
task τ , the processing of the interrupts ι, and the interference
of all higher or equal priority tasks hep(τ). This is done to
take the possibility into account that different tasks can have
the same priority.

The blocking time of a fully preemptive task is zero as it
can preempt any task with a lower priority than itself. For a
deferred preemptive task it is the maximum length of a non-
preemptive segment of any task τ which has a lower priority
than τ .

bτ,ω =

{
0 if τ is fully preemptive

max
τ ′∈lp(τ)

{sτ ′,i,ω} if τ is deferred preemptive

(12)

The time when the k-th instance is activated ατ,ω(k) is the
pseudo-inverse of the event function. It is the smallest length
of an interval in which k events can occur.

The event function is defined for every type of task
executed on the ECU. As a time-triggered task is not affected
by the angular velocity of the engine, the event function is:

ητ,ω(∆) =

⌈
∆

pτ

⌉
(13)

However, for engine-triggered tasks the angular velocity of the
engine does affect the number of activations. The crankshaft
task is activated once per revolution. Given the angular velocity
ω in revolutions per time unit and a length of an interval ∆
in time units it follows that the event function is:

ητ,ω(∆) = dω ·∆e (14)

In the segment task the majority of the calculations for the
fuel injection and ignition timing is performed, therefore it can
be activated several times per revolution. The actual amount
depends on the number of cylinders used in the engine. The

Table I: Tasks executed on the ECU

Task δ(ω+) Task Type δ(ω+)

TT 1 0.2 ms ET 1 seg 1.3 ms
TT 2 5.0 ms ET 2 seg 0.7 ms
TT 3 10.0 ms ET 3 seg 4.5 ms
TT 4 5.0 ms ET 4 cam 1.0 ms
TT 5 10.0 ms ET 5 crk 9.0 ms
TT 6 20.0 ms
TT 7 20.0 ms
TT 8 40.0 ms
TT 9 100.0 ms
TT 10 50.0 ms
TT 11 500.0 ms

segment task is activated once per work cycle of a piston. As
the engine is a four-cycle engine, each piston in a cylinder has
a work cycle of two revolutions. The start of a work cycle of
a piston is distributed equiangular over the work cycle of the
engine. For example for a four cylinder engine the segment
task is activated every 180 degrees, hence for an engine with
ζ cylinders the event function is:

ητ,ω(∆) =

⌈
1

2
· ζ · ω ·∆

⌉
(15)

The camshaft task is similar to the segment task as it also
has a work cycle of two revolutions. But unlike the segment
task the activations of the camshaft task are not distributed
equiangular over the work cycle. Instead the camshaft task
is activated at arbitrary but fixed angular positions within the
work cycle. It is used for adjustable camshafts to regulate the
adjustment of the opening and closing time of the inlet and
outlet valve. This however is strongly dependent on the engine
geometry, thus the asymmetric distribution of the events over
the work cycle. Given the sequence of these angular positions,
a function λ : R+

0 → R+
0 can be obtained by means of a

deconvolution in the min-plus algebra. Details on the min-
plus deconvolution are found in [9]. λ describes the maximum
amount of events than can occur within a given number of
revolutions. With that the event function is:

ητ,ω(∆) = λ(ω ·∆) (16)

V. EXPERIMENTS

We applied the analysis presented in section IV on a ECU
in order to determine its schedulability. The ECU is that of
a gasoline engine car and its tasks and their parameters are
shown in table I. On the ECU 11 time-triggered tasks and 5
engine-triggered tasks are executed. 3 of the 5 engine-triggered
tasks are segment tasks. The other two are each a camshaft
task and a crankshaft task. All tasks are deferred preemptable
except for the first time-triggered task (TT 1). This one is
fully preemptive. The column of the table denoted with δ(ω+)
contains the value of each deadline function at the maximum
angular velocity. For time-triggered tasks the deadline function
is constant, thus it does not change with the angular velocity of
the engine. However, for engine-triggered tasks it does change
and the deadline function is defined as follows:

dτ (ω) =
ω+

ω
· dτ (ω+) (17)



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1000 2000 3000 4000 5000 6000

R
at

io
(r

+ τ
,ω
/δ
τ
(ω

))

Angular velocity (ω) [rpm]

ET 1
ET 2

ET 3
ET 4

ET 5

(a) Engine-triggered tasks

0

0.05

0.1

0.15

0.2

0.25

1000 2000 3000 4000 5000 6000

R
at

io
(r

+ τ
,ω
/δ
τ
(ω

))

Angular velocity (ω) [rpm]

TT 1
TT 2
TT 3
TT 4

TT 5
TT 6
TT 7
TT 8

TT 9
TT 10
TT 11

(b) Time-triggered tasks

Figure 1: Ratio worst-case response times to deadlines of the tasks executed on the ECU

The execution times of every task executed on the ECU
was measured for every 500 rpm starting at 1000 rpm up to
6000 rpm and at 6700 rpm.

To obtain the function ι to consider the processing of
the interrupts several steps were performed. First the amount
of time that the processing of the interrupts required was
measured over the course of 30 ms. These values are then
transformed into an accumulative function. Given a point in
time relative to the start of the measurement, this accumulative
function describes the sum of the processing time that was
required by all the interrupts that occurred up to the given point
in time. By means of a deconvolution in the min-plus algebra
with itself ι is obtained. Details on the min-plus deconvolution
are found in [9].

The results of the analysis for this ECU are shown in
Fig. 1. On the x-axis we have the angular velocity ranging
from 1000 rpm up to 6700 rpm. On the y-axis we have the
ratio worst-case response time to deadline for the correspond-
ing angular velocity. The schedulability condition (6) can be
restated as follows:

r+
τ,ω ≤ δτ (ω) ⇔

r+
τ,ω

δτ (ω)
≤ 1 (18)

Therefore a ratio no greater than 1 means that the ECU is
real-time capable for that specific angular velocity. However
if the ratio for an angular velocity is greater than 1 then no
statement can be made regarding the real-time capability of the
ECU, because the condition used in the analysis is sufficient.
The results show that the ratio for the engine-triggered task is
clearly affected by the angular velocity. Whereas the ratio for
the time-triggered tasks remains roughly constant.

VI. SUMMARY AND FUTURE WORK

In this paper we presented a sufficient real-time analysis
for an engine control unit. On the engine control unit tasks

are executed which are either triggered by a timer or by the
engine itself. As a first step we assumed arbitrary but fixed
angular velocities of the engine. The analysis was applied on
an existing ECU provided by Continental.

For future work we intend to extend the presented analysis
to take offsets between tasks into account. As well as dropping
the assumption of arbitrary but fixed angular velocities.

REFERENCES

[1] A. K. Mok and D. Chen, “A Multiframe Model for Real-Time Tasks,”
IEEE Transactions on Software Engineering, vol. 23, no. 10, pp. 635–
645, October 1997.

[2] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized Multiframe
Tasks,” Real-Time Systems, vol. 17, pp. 5–22, 1999.

[3] S. K. Baruah, “Dynamic- and static-priority scheduling of recurring
real-time tasks,” Real-Time Systems, vol. 24, pp. 93–128, 2003. [Online].
Available: http://dx.doi.org/10.1023/A:1021711220939

[4] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The Digraph Real-Time
Task Model,” in Proceedings of the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 11-14 2011, pp.
71–80.

[5] N. Stoimenov, S. Perathoner, and L. Thiele, “Reliable Mode Changes
in Real-Time Systems with Fixed Priority or EDF Scheduling,” in
Proceedings of Design, Automation and Test in Europe, 2009 (DATE
09). Nice, France: IEEE, 2009, pp. 99–104.

[6] J. P. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets with
Arbitrary Deadlines,” in Proceedings of the 11th Real-Time Systems
Symposium (RTSS), Dec 1990, pp. 201–209.

[7] W. Haid and L. Thiele, “Complex Task Activation Schemes in System
Level Performance Analysis,” in CODES+ISSS, S. Ha, K. Choi, N. Dutt,
and J. Teich, Eds. New York, NY, USA: ACM, September 30 - October
5 2007, pp. 173–178.

[8] R. Bril, J. Lukkien, and W. Verhaegh, “Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption,” Real-Time Systems, vol. 42, pp. 63–119, 2009. [Online].
Available: http://dx.doi.org/10.1007/s11241-009-9071-z

[9] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Determin-
istic Queuing Systems for the Internet, ser. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer-Verlag, 2001, vol. 2050.


