Cache Coherence Enabled Adaptive Refresh for
Volatile STT-RAM

Jianhua Lil2, Liang Shil-2, Qing’an Li'3, Chun Jason Xue!, Yiran Chen?, Yinlong Xu?
! Department of Computer Science, City University of Hong Kong, Hong Kong.
2 College of Computer Science & Technology, University of Science & Technology of China, China.
3 College of Computer Science, Wuhan University, Wuhan, China.
4 Department of Electrical and Computer Engineering, University of Pittsburgh.
{jianhual,shil0704 } @mail.ustc.edu.cn, ww345ww @ gmail.com, jasonxue @cityu.edu.hk, yic52@pitt.edu, ylxu@ustc.edu.cn

Abstract—Spin-Transfer Torque RAM (STT-RAM) is exten-
sively studied in recent years. Recent work proposed to im-
prove the write performance of STT-RAM through relaxing
the retention time of STT-RAM cell, magnetic tunnel junction
(MT)J). Unfortunately, frequent refresh operations of volatile
STT-RAM could dissipate significantly extra energy. In addition,
refresh operations can severely conflict with normal read/write
operations and results in degraded cache performance. This
paper proposes Cache Coherence Enabled Adaptive Refresh
(CCear) to minimize refresh operations for volatile STT-RAM.
Through novel modifications to cache coherence protocol, CCear
can effectively minimize the number of refresh operations on
volatile STT-RAM. Full-system simulation results show that
CCear approaches the performance of the ideal refresh policy
with negligible overhead.

I. INTRODUCTION

STT-RAM [3], [15] is a promising candidate for conven-
tional SRAM caches given its attractive features, negligible
leakage power, high storage density and fast access speed.
However, the high power consumption and long latency write
operations [4], [7], [12] impede the widespread adoption of
STT-RAM. To tackle this issue, recent work [10] proposed
to design high write performance STT-RAM caches through
reducing the retention time of STT-RAM cell. Under 10 F?
MT]J size, a 56 ps retention time STT-RAM with optimal
read and write performance can be obtained [2]. To prevent
potential data loss due to the reduced retention time, a simple
DRAM-style refresh policy [10] was utilized to periodically
refresh the cache blocks.

The requirement of cache block refresh will impede the
adoption of volatile STT-RAM as the large last-level cache
(LLC) for multicore systems. Figure 1 shows the performance
comparison for a 16-core system with 8MB volatile STT-RAM
LLC !, configured with DRAM-style refresh policy [10] and
an ideal refresh policy when running several LLC-intensive
PARSEC workloads [1]. Ideal refresh assumes the refresh
operation does not conflict with normal accesses and the
refresh operations does not consume extra power. As shown
in Figure 1, due to the conflict between refreshes and normal
accesses, the average IPC of facesim is reduced by 9.4%. In

The detailed system setup is presented in Section IV-A.

978-3-9815370-0-0/DATE13/(©2013 EDAA

1.2
1.1 e
1.0 —

0.8 4—
0.74—
0.6 +—
0.54—
0.44—
0.34—

Performance normalized to Ideal

0.0

facesim X264 facesim x264

[Ideal
IPC [DRAM-style

bodytrack bodytrack

Power

Fig. 1. Comparison of DRAM style refresh and Ideal refresh

addition, the refresh operation also induces extra power dis-
sipation, for instance, the LLC power dissipation is increased
by 17.4% for facesim.

In this work, we propose Cache Coherence Enabled Adap-
tive Refresh (CCear) to minimize the number of refresh
operations in volatile STT-RAM LLC. Specifically, CCear
interacts with a modified cache coherence protocol to reduce
the number of refresh operations. The main contribution of
this paper is as follows:

o Presents an analysis of the performance impact caused

by the refresh operations on volatile STT-RAM LLC.

e Proposes Cache Coherence Enabled Adaptive Refresh
(CCear) policy to minimize the number of refresh op-
erations for shared LLC blocks.

o Through full-system simulation, we show that volatile
STT-RAM with CCear yields comparable performance
with an ideal refresh-off volatile STT-RAM.

The remainder of this paper is organized as follows. The
related work is presented in Section II. The proposed CCear
Policy is presented in Section III, while the experiments and
performance analysis are demonstrated in Section IV. Finally,
Section V concludes the paper.

II. RELATED WORK

Recent work [10] proposed to relax the retention time
of STT-RAM cells through shrinking the MTJ planar area.

The resultant STT-RAM has significant write performance
improvement compared with its non-volatile counterpart. In
addition, a DRAM-style refresh policy was integrated in the
relaxed volatile STT-RAM [10] to refresh the cells before the
ending of retention time.

Sun et al. [13] proposed to further relax the retention time of
STT-RAM cells and evaluated the performance of the resultant
STT-RAM as L1 caches. For ultra-low retention time STT-
RAM caches, the cells have to be frequently refreshed wherein
the refresh can conflict with normal read and write accesses
and consume extra power. To tackle this issue, a counter based
refresh scheme is proposed in [13] to mitigate the overhead
of refresh. Each cache block needs a counter to indicate the
lifetime of the block and the counter should be frequently
updated by a global clock.

Jog et al. [5] found that the average interval between two
successive writes to the same L2 cache block is around 10 ms.
Based on this observation, a 10 ms retention time STT-RAM
is designed and evaluated as the L2 cache. Different from [10],
[13], the expiring blocks are dynamically written to a small
buffer.

Different from the previous work, CCear is the first work to
exploit the coherence information of cache blocks to mitigate
the refresh overhead of volatile STT-RAM. The implementa-
tion of CCear is simple and the storage overhead is negligible.
Moreover, CCear can be applied to volatile STT-RAM with
ultra low retention time.

III. ADAPTIVE REFRESH POLICY

In this section, we first illustrate the architecture of multi-
core systems which integrates volatile STT-RAM as the LLC.
Subsequently, the proposed CCear policy is presented.

A. System Architecture

Tiled architecture [14] is preferred for future multicore
systems because its simplicity and scalability, wherein each
tile consists of a core, private L1 I/D caches and a shared
L2 slice. In this work, we assume that the metadata of
L2 cache including tag and directory information are stored
in SRAM wherein the L2 data array is implemented using
volatile STT-RAM [10]. Differ from data array, the tag array
and the directory are rarely written even for write-intensive
workloads. Therefore, utilizing SRAM to store the tag and
directory information can eliminate the refresh operations
which are power-consuming. More important is that SRAM
based tag and directory information are beneficial to the
proposed Adaptive Refresh Policy which will be introduced
in the following sections.

B. Cache Coherence Enabled Adaptive Refresh

In CCear, the coherence state of L2 blocks is exploited to
minimize the number of refresh operations of the volatile STT-
RAM. Figure 2 depicts the refresh policy in CCear. Under
CCear, each shared block will be refreshed for IV times after
loading from main memory or writing back from L1 cache.
Specifically, each cache block is associated with a counter,

1: if block(addr) is shared
2 if block(addr).valid_bit =
3 if block(addr).ref counter > 1
4 refresh(block(addr));
5 block(addr).ref counter--;
6: else
7 block(addr).valid_bit = 0;
8 return;
9 else
10: return;
// end if block(addr) is shared

Fig. 2. CCear Refresh Policy

ref_counter, to indicate that how many times this block has
been refreshed. Initially, the ref counter counter for each
shared LLC block is set to N. N is a user defined parameter
and larger N indicates more data request will directly obtain
the target block at L2 cache. How to obtain the optimal N is
workload-specific and out of the scope of this paper.

As shown in Figure 2, when a refresh operation is activated
on a shared block, the valid_bit of the block is first checked as
indicated by line 2. If the block is valid, then the ref_counter
is checked to see whether the value is bigger than 1. If the
block has not been refreshed by IV times, CCear will refresh
the block and reduce the counter by one (line 3~5). Otherwise,
CCear will set the valid_bit to 0 which indicates that the block
is not refreshed and the data in the block will be lost soon.
CCear will do nothing if the block is not valid which signifies
that the block is not refreshed previously and the data in the
block has vanished.

In the proposed refresh scheme, the data in LLC could be
vanished because each block will be only refreshed for fixed
times. The vanished data will make the normal coherence
protocol unable to ensure the consistency in cache hierarchies.
In other words, subsequent requests to the vanished STT-RAM
block can not get the correct data using the conventional
cache coherence protocol. For the purpose of maintain the
cache consistency in CCear, the following modifications to
conventional MESI coherence protocol are proposed.

o A novel coherence state W is added to the L1 cache
blocks. An L1 block with W state indicates that one or
multiple replicas of the block is also present in other L1
caches. L1 block in W state is not allowed to be silently
evicted. Upon replacing one L1 block in W state, the
block is explicitly written back to allow the L2 cache to
obtain the correct copy in case the data has vanished.

e On account of the addition of W state, additional co-
herence state transitions are added between W state and
other states as indicated by the solid arrows in Figure 3.

o The state transitions, M — S and £ — S, are removed
from conventional M EST protocol [11]. In addition, the
L1 block in [state will be translated to S state only if the

—_———

e
\%
Y

=)
10¢g!
| \z?ml
5! 154
By !
| . \ |\' /
| Vo
\ &4 |' /
\ Iy 7

\ /

~ . Other-GetM - of
—_— e —— =
Own-PutM

Fig. 3. Coherence state transition for L1 cache

block has one or multiple replicas in other L1 caches as
depicted in Figure 3. If there are no replica in L1 caches
(privately owned by L2 cache), the state will be translated
to W state.

e The L1 data request will be served with three hop
coherence mechanism based on the directory information
stored in SRAM if the target L2 data has vanished. Note
that the tag and directory information stored in SRAM
will ensure the correct cache coherence operations even
though the data disappears.

The dash arrows in Figure 3 represent the state transitions in
conventional M EST protocol while the solid arrows indicate
the state transitions between W state and other states. Note
that the added W state is different from O state in conventional
MOESI protocol. For an L1 block in W state, the shared
block in low level memory is clean while for an L1 block
in O state the corresponding shared block could be dirty.
Under CCear, each write back from L1 cache will reset the
valid_bit of the corresponding L2 block to 1 in addition to
the coherence state transition. Through such write back reset
operation, the subsequent requests to this block before the next
refresh operation to it can be directly obtained from the L2
cache without three-hop operations. Note that the W state is
different from the O state in MOESI protocol which indicates
the target block is modified.

The objective of adding the W state is to make sure that
the L2 block with vanished data will eventually receive the
correct data through writing back the L1 replica in W state.
In conventional M EST protocol, the L1 block in S state is
allowed to be silently evicted without noticing L2 cache. If all
the replicas in L1 caches are evicted silently, the L2 cache will
not receive the correct data permanently and the corresponding
L2 block will be in a fault state. CCear only allows one L1
block in W state. When an L1 block in W state is written
back to L2, the L2 cache controller will forward a control
message (indicated with LLC — FwdW) to the nearest L1
replica if there still exists replica of this block in L1 caches.

TABLE I
MAIN SIMULATION PARAMETERS

Value
16 UltraSPARC III+ in-order cores
2GHz, Operating System: Solaris 10
Private, 32/32KB, 2-way, 2-cycle latency
64 bytes block size, write-back
8MB STT-RAM, 16 banks
32-way, 64B block, write-back
MESI directory protocol
200 cycles
4x4 mesh, 128-bit links, 1-cycle link latency
2-cycle router latency.

Parameter

Processor

L1 I/D Cache

Last-Level Cache

Coherence mechanism
Main memory latency

Interconnect

TABLE II
CHARACTERISTICS OF LLC BANK

Read latency | Write latency | Read energy | Write energy | Leakage power | Area
073ns [22lns | 03n] [165n] [78mW [12mm?

Upon receiving the control message, the corresponding L1
cache controller will switch the state of the replica to W state
as shown in Figure 3.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first present the experimental setup.
Subsequently, the experimental results and the corresponding
analysis will be presented. Finally, we present the implemen-
tation overhead of CCear.

A. Experimental Setup

We model a 2GHz chip multicore processor with 16 in-order
cores using Simics [8]. Each core is configured with 32KB
private instruction/data cache and a shared 512KB L2 slice. We
modified the MESI directory protocol in GEMS framework [9]
to support CCear. We assume the main memory has a fixed
latency of 200 cycles. The L2 data array is implemented
with the 56us retention time STT-RAM [10]. The memory
subsystem is simulated with GEMS [9] and the on-chip
network power dissipation is calculated with Orion [6]. The
details of our simulator parameters are shown in Table I and
I

We compared the proposed CCear scheme with the DRAM-
style refresh policy used in [10]. We utilize energy dissipation
and instruction per cycle (IPC) as the performance metrics for
the evaluated schemes. For CCear, the refresh times is set to
four. We simulated a set of PARSEC applications [1] with
different intensity of read/write operations. All the workloads
are executed with simmedium input sets. We evaluated the
whole parallel region, known as region of interest (ROI), of
the selected applications.

B. Results and Analysis

1) Power: Figure 4 presents the power dissipation for the
evaluated schemes including the on-chip network power. The
always refresh mechanism makes DRAM-style refresh policy
consume much more power compared with the ideal policy.
For swaption, the actual power dissipation of the volatile STT-
RAM LLC is significantly lower than the power consumed
in other workload due to the fewer accesses to LLC which

S
1 m 1.216 1412

0.9

081 = 1deal

[DRAM-style

77 . CCear

Normalized Power

0.6

0.5

T T T T T T T T
black~ bodytrack canneal facesim raytrace stream~ swaptions X264

Fig. 4. Impact on power dissipation

1.00

0.95 +—
0.90 +—
0.85 4+—
0.80 4+—
0.75 4+—

[Ideal
[DRAM-style
I CCear

0.70 +—
0.65 +—

Normalized [PC

0.60 +—
0.55 4+

0.50 +

black~ bodytrack canneal facesim raytrace stream~ swaptions x264

Fig. 5. Impact on instruction per cycle (IPC)

also represents little on-chip routing power. As a result, the
DRAM-style refresh policy increases the power consumption
by 41.2% compared with the baseline ideal policy as indicated
in Figure 4.

By comparison, CCear outperforms the DRAM-style refresh
policy for all of the evaluated workloads. CCear reduces the
power dissipation by 10.1% on average and up to 29.6%
compared with the DRAM-style refresh policy taking the ideal
refresh policy as the baseline. The main contributor to the
power yield of CCear is the reduced number of refreshes to
the shared blocks.

2) IPC: Figure 5 shows the normalized IPC for the eval-
vated schemes. As indicated in Figure 5, CCear outperforms
the DRAM-style refresh policy for all workloads. Taking the
ideal refresh policy for reference, CCear improves the IPC
metric by 2.8% to 6.9% compared with DRAM-style refresh
policy. The main contribution to the performance improvement
comes from the reduced conflicts between refresh operations
and normal cache accesses. This can be confirmed through
checking the performance of memory intensive workloads.
Due to the conflicts, the IPC of DRAM-style policy is reduced
by 6.8% on average compared with the ideal policy.

C. CCear Overhead Analysis

For CCear, each LLC block needs to be associated with
an extra bit to indicate whether the block is expired or not.
For 64B block size, the storage overhead is less than 0.2%.
In addition, each LLC block needs a counter to indicate
the number of block refresh times. For the simulated 16-tile
multicore system setup, the total storage overhead including
the valid bit is less than 1%, wherein each counter needs 4 bits.
Compared to the large capacity LLC, the storage overhead of
CCear can be assumed to be negligible.

V. CONCLUSION

In this paper, we propose an adaptive refresh policy
called Cache Coherence Enable Adaptive Refresh (CCear) for
volatile STT-RAM last-level caches. Through novel modifi-
cations to cache coherence protocol, CCear can adaptively
and effectively minimize the number of refresh operations of
volatile STT-RAM LLC. Our results of full-system simulation
show that CCear can effectively reduce the refresh operations
to improve the performance of volatile STT-RAM caches.
Specifically, CCear outperforms the DRAM-style refresh pol-
icy for all the studied workloads.

VI. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable feedback and improvements to this paper.
This work is supported by grants from the Research Grants
Council of the Hong Kong Special Administrative Region,
China [Project No. CityU 123811].

REFERENCES

[1]1 C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Prince-
ton University, January 2011.

[2] E. Chen, D. Apalkov, et al. Advances and Future Prospects of Spin-
Transfer Torque Random Access Memory. [EEE Transactions on
Magnetics, 46(6):1873-1878, 2010.

[3] M. Hosomi, H. Yamagishi, et al. A Novel Nonvolatile Memory with Spin
Torque Transfer Magnetization Switching: Spin-RAM. In International
Electron Devices Meeting (IEDM ’05), pages 459462, 2005.

[4] J. Hu, C. J. Xue, et al. Reducing Write Activities on Non-Volatile
Memories in Embedded CMPs via Data Migration and Recomputation.
In Annual Design Automation Conference (DAC ’10), pages 350-355,
2010.

[51 A. Jog, A. K. Mishra, et al. Cache Revive: Architecting Volatile STT-
RAM Caches for Enhanced Performance in CMPs. In Annual Design
Automation Conference (DAC ’12), pages 243-252, 2012.

[6] A. Kahng, B. Li, et al. Orion 2.0: A Fast and Accurate NoC Power
and Area Model for Early-Stage Design Space Exploration. In Design,
Automation Test in Europe (DATE '09), pages 423-428, 2009.

[71 J. Li, C. Xue, and Y. Xu. STT-RAM based Energy-Efficiency Hybrid
Cache for CMPs. In International Conference on Very Large Scale
Integration (VLSI-SoC ’11), pages 31-36, 2011.

[8] P. Magnusson, M. Christensson, et al. Simics: A Full System Simulation
Platform. Computer, 35(2):50-58, feb 2002.

[9] M. M. K. Martin, D. J. Sorin, et al. Alameldeen, K. E. Moore, M. D. Hill,

and D. A. Wood. Multifacet’s General Execution-Driven Multiprocessor

Simulator (GEMS) toolset. SIGARCH Computer Architecture News,

33:92-99, 2005.

C. Smullen, V. Mohan, et al. Relaxing Non-Volatility for Fast and

Energy-Efficient STT-RAM Caches. In International Symposium on

High Performance Computer Architecture (HPCA ’11), pages 50-61,

2011.

D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory

Consistency and Cache Coherence. Synthesis Lectures on Computer

Architecture. Morgan and Claypool Publishers, May 2011.

[12] J. Li, L. Shi, C. Xue, C. Yang and Y. Xu. Exploiting Set-Level

Write Non-Uniformity for Energy-Efficient NVM-based Hybrid Cache.
In IEEE Symposium on Embedded Systems for Real-Time Multimedia
(ESTIMedia ’11), pages 19-28, 2011.

[13] Z. Sun, X. Bi, et al. Multi Retention Level STT-RAM Cache Designs

with A Dynamic Refresh Scheme. In IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO ’11), pages 329-338, 2011.

M. B. Taylor, J. Kim, et al. The RAW Microprocessor: A Computational

Fabric for Software Circuits and General-Purpose Programs. [EEE

Micro, 22(2):25-35, Mar. 2002.

C. J. Xue, Y. Zhang, et al. Emerging Non-Volatile Memories: Opportuni-

ties and Challenges. In International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS ’11), pages 325-334,

2011.

[10]

(11]

[14]

[15]

