
Fast and Accurate TLM Simulations using Temporal
Decoupling for FIFO-based Communications

Claude Helmstetter∗‡, Jérôme Cornet†, Bruno Galilée†, Matthieu Moy‡ and Pascal Vivet∗
∗CEA-Leti, Minatec Campus, Grenoble, France, Email: firstname.lastname@cea.fr
†STMicroelectronics, Grenoble, France, Email: firstname.lastname@st.com

‡Verimag (UMR CNRS 5104), Grenoble INP, France, Email: firstname.lastname@imag.fr

ABSTRACT

A known approach to improve the timing accuracy of
an untimed or loosely timed TLM model is to add tim-
ing annotations into the code and to reduce the number of
costly context switches using temporal decoupling, meaning
that a process can go ahead of the simulation time before
synchronizing again. Our current goal is to apply temporal
decoupling to the TLM platform of a heterogeneous many-core
SoC dedicated to high performance computing. Part of this
SoC communicates using classic memory-mapped buses, but
it can be extended with hardware accelerators communicating
using FIFOs. Whereas temporal decoupling for memory-based
transactions has been widely studied, FIFO-based communica-
tions raise issues that have not been addressed before. In this
paper, we provide an efficient solution to combine temporal
decoupling and FIFO-based communications.

I. INTRODUCTION

When designing a new complex SoC, it is now usual
to develop an abstract and executable model of the SoC
hardware. This model, called transaction-level (TLM) model
, represents the behavior of the hardware; it may ignore its
micro-architecture details (e.g., pipelines, caches, etc) but must
be accurate enough to simulate the real embedded software.
Such models are generally based on the IEEE SystemC and
TLM libraries [1], and, from a software point of view, are
collaborative multi-thread programs with a discrete simulated
time.

The transactional abstraction level can be subdivided into
many coding styles according to their timing accuracy, ranging
from untimed to cycle-accurate [1]. Obviously, a better timing
accuracy allows the use of the TLM model for early perfor-
mance evaluations, but unfortunately a better accuracy induces
longer development time and slower simulation speed. Thus,
a trade-off has to be found according to the use case [2].

We are interested in improving the timing accuracy of
loosely-timed TLM models while minimizing simulation speed
loss and development overhead. To this goal, timing annota-
tions must be integrated into the model. The basic and usual
way to add a timing annotation is to insert an instruction
telling the simulation kernel to suspend the current process
for a given duration (expressed in simulated time). By default,
this instruction (e.g., SystemC wait) creates a context switch,
so other processes having a task planned during this given
duration can execute before the first process is resumed, thus
keeping all processes synchronized together.

Context switches are costly in terms of simulation speed,
even with optimized thread libraries. For a finely annotated
TLM model, if there is one context switch per timing an-
notation, then the context switches would become the bot-
tleneck of the simulation speed. The basic idea of temporal
decoupling is to let process advance their local time in the
future, until a synchronization is required [3]. The difficulty is
to synchronize only when needed: removing synchronizations
always improves simulation speed but may introduce timing
inaccuracies or even functional errors.

Temporal decoupling is described in the TLM reference
manual [1], and is already used in industrial models. However,
the description made in this manual focuses only on memory-
mapped communications. Some modern SoCs for high per-
formance computing, such as the industrial case study we
will present, are based on a heterogeneous architecture mixing
memory-mapped buses and stream-based subsystems based on
FIFO protocols. In this work, we have developed and evaluated
modeling techniques for applying temporal decoupling to
FIFO-based communications. The key idea is to make the
model of the hardware FIFO aware of the process local time,
in a way that allows to remove most of the context switches
without disrupting the timing.

Temporal decoupling is detailed in Section II. Then, Sec-
tion III describes our solution for applying temporal decou-
pling to FIFO-based communications. Section IV is dedicated
to functional validation and performance evaluation. Finally,
section V concludes the paper.

II. TEMPORAL DECOUPLING

A. Principles

In a temporally decoupled model, each process has its local
date, which is greater or equal than the global date managed by
the simulation kernel. In SystemC, this global date is provided
by the function sc_time_stamp(). In the sequel, we call
local_time_stamp() the function that returns the date of
the current process. A process is said to be synchronized if its
local date is equal to the global date.

Any core library for temporal decoupling provides two
basic functions: a low-cost inc(duration) that increases
the local time, and a costly sync() that generally requires
a context switch. The sync() function ensures that other
processes have executed up to the caller process local time.
The usual implementation of sync() executes a SystemC wait
of the duration local date - global date. Other implementations

978-3-9815370-0-0/DATE13/ c©2013 EDAA

are possible: [4] shows that sync() can be implemented in a
distributed way without relying on a global date.

Beyond reducing the number of context switches, temporal
decoupling is also useful for SystemC parallelization [4], [5],
and interaction with other simulation engines [6].

The TLM reference manual suggests to synchronize the
processes according to a global quantum, defining the maxi-
mum amount of time before a process must synchronize. For
example, with of quantum of Q = 1µs, there will be one
context switch per simulated µs and per process. Let consider
a model where a process simulates a computation, and a second
process sends a cancellation message to the first at the date T ;
the first process may receive the cancellation message when
its local date is already T +Q, thus introducing a timing error
of Q compared to a non-decoupled system. So we see that a
large quantum is bad for accuracy, but good for speed. This
quantum is generally a runtime parameter, and so temporal
decoupling can be disabled by setting it to zero. Using a very
large quantum is generally useless with respect to simulation
speed, because once the time spent in context switches is small
compared to the total simulation time, any further gain in
context switches has a negligible effect on the total.

Relying on a global quantum is often insufficient. Consider
for example the following code that set a flag for 10ns:
flag=1; inc(10,SC_NS); flag=0;. Unless the quantum is
smaller than 10ns, it is impossible for another process to see
that this flag has been set. The solution to keep the expected
model behavior is to add an explicit sync() before resetting
the flag. More generally, all synchronization points, as defined
in [7], requires a sync() statement.

B. FIFO issue

Fig. 1 presents a small model where two processes com-
municate using a FIFO. The process code is fully annotated
with inc statements. Implementing a regular FIFO in SystemC
without temporal decoupling is relatively easy, and several
implementations already exist, like the sc_fifo provided with
SystemC, or HetSC’s KPN model of computation [8]. When
temporal decoupling is used, a solution is to take a regular
FIFO and to add a sync() at the beginning of each public
method. Because there will be one context switch per access,
this solution is inefficient in term of simulation speed but we
consider that it represents the behavior and the timing of the
real system as faithfully as possible. Fig. 2 provides a graphical
representation of this model execution. Because executing
inc(d); sync() is equivalent to wait(d), we consider that
this model execution does not use temporal decoupling.

FIFO
writer process reader process

fifo.write(1);
inc(20,SC_NS);
fifo.write(2);
inc(20,SC_NS);
fifo.write(3);

inc(20,SC_NS); inc(15,SC_NS);
x = fifo.read();
inc(15,SC_NS);
y = fifo.read();
inc(15,SC_NS);
z = fifo.read();

Fig. 1. Basic example using a FIFO and temporal decoupling.

On the contrary, Fig. 3 represents what happens if the
sync() are all removed. Because the writer changes the state
of the FIFO at the global date t = 0, the reader executes as if

wr: write rd: read

common key for diagrams

context switch
function call

→: return value
wait d: inc(d); sync()wait 15 wait 15wait 15

wait 20 wait 20 wait 20
t=0ns

t=55ns

writer

reader

FIFO

t=20ns t=40ns t=60ns

t=35nst=15ns

rd

w
r 2

→
2 rd

→
3rd

w
r 1

→
1

w
r 3

Fig. 2. Execution trace without temporal decoupling.

data were already available (instead of waiting data for 5 ns
as in Fig. 2), and so the timing is incorrect. On an example as
simple as this one, it looks simple to add a single sync() at
the right place that could suppress the timing error (e.g., just
before the third write). However, any real size model where
many processes may be blocked by an empty or full FIFO
requires an automatic solution.

all FIFO accesses taken into account at t=0!

writer

reader

FIFO

inc 20 inc 20 inc 20

inc 15 inc 15 inc 15 t=45ns

t=60nst=0ns

wr 1 wr 2 wr 3

rdrdrd
→ 3

→
1
→ 2

Fig. 3. Execution trace with temporal decoupling but no synchronizations.

III. SMART FIFO FOR TEMPORAL DECOUPLING

The Smart FIFO implements three interfaces, as described
by Fig. 4. The read-side and write-side interfaces provide
blocking read and write accesses, with additional methods and
events for simulating non-blocking accesses. The Smart FIFO
assumes that each side is always accessed by the same process;
if it is not the case in the design, then an arbiter must be added
to ensure that two successive accesses on the same side cannot
have decreasing local dates (i.e., time must go forward on each
side, but no ordering with the other side is required). Note that
we use a map to associate SystemC process handles with their
local date, thus avoiding to communicate this date explicitly.

Smart FIFO

monitor interface
int get_size();

− low−rate accesses

writer−side interface

void write(data);

bool is_full();

sc_event not_full;

− requires ordered dates
− high−rate accesses

reader−side interface

data read();

bool is_empty();

sc_event not_empty;

− requires ordered dates
− high−rate accesses

Fig. 4. The Smart FIFO interfaces.

Our main case study is a SoC with hardware acceler-
ators communicating through FIFOs. These accelerators are
controlled by some embedded software that must be able to
monitor the accelerators and their FIFO; knowing the FIFO
filling levels can be used for debug and dynamic performance
tuning. That is the rationale for the third monitor interface.

The goal is to obtain exactly the same timing with the
Smart FIFO compared to an execution without temporal de-
coupling; all events must happen at the same date, but the
schedule and the number of delta-cycle may change.

A. The Smart FIFO: blocking interfaces

Intuitively, the Smart FIFO associates a time stamp with
each data item, and uses this time stamp to update the local
date of the reader process. That is very similar to how an
interconnect manages transactions, and that idea is already
implemented in the TLM peq_with_get utility class of [1].
However because we model hardware FIFOs that are bounded,
writing may be blocking too, so the Smart FIFO associates a
time stamp with each free cells too, which is used to update
the writer local date. The time stamps are also used to compute
accurately non-Kahn accesses (is_full, get_size, etc).

Internally, the Smart FIFO contains as many cells as the
hardware FIFO it models. Each cell is either free or busy, and
in addition to the data, we store both the last data insertion
date and the last freeing date for each cell. One index points
to the first free cell and another to the first busy cell.

Here is how the write method works:

1) if all cells are busy, synchronize the writer process and
wait until a cell is available (1 context switch)

2) if the first free cell freeing date is in the future, then
increase the writer process local time up to this date

3) update the cell: fill the data and set the insertion date;
advance the first free cell index

4) wake up a blocked reader process, if any.

The read method is symmetrical: wait until a cell is busy,
next increase the reader process local time up to the insertion
date of the first busy cell (if needed), update this cell state and
the busy index, notify an event to the write side, and finally
return the data.

B. The Smart FIFO: non-blocking interfaces

Modeling some hardware components, such as arbiters,
cannot be done efficiently with decoupled threads because the
synchronization points are too frequent. Another way to avoid
the context switch cost is to use lightweight processes that
always execute up to completion (SystemC SC METHOD),
and so have no context to store. Because SC METHODs
cannot use wait, the Smart FIFO must provide non-blocking
interfaces. Obviously, we are only interested in cases where at
least one side is accessed by a decoupled thread; otherwise,
the user shall use a regular FIFO.

Typical read code for a SC METHOD is:

if (fifo.is_empty()) {
next_trigger(fifo.not_empty_event); return;}

x = fifo.read(); ...

Because the read is protected by the call to the is_empty
method, the blocking method read can be reused as is, except
that some code must be added to provide not_empty_event
and not_full_event. Here empty and full refer to the ex-
ternal view of the FIFO, which differs of its internal state.
Assuming the caller is synchronized, the method is_empty
returns true if and only if: 1. either all cells are (internally)
free, 2. or the insertion date of the first busy cell is the future.
Thus, this method executes in constant time, but with two tests
instead of one for a regular FIFO.

Notification of not_empty_event may occur in two
places, corresponding to the two is_empty tests:

1) in the write method, when all cells were free
2) in the read method, when the next busy cell exists but

has an insertion date in the future

In both cases, the notification is delayed until the insertion date
of the new first busy cell.

C. The monitor interface

Contrary to regular FIFOs, getting the size of a Smart FIFO
is not straightforward. For example, consider that a write is
made at the global date g = 10ns with a local date l =
20ns: the internal state of the Smart FIFO changes at t =
10ns whereas the size of the real FIFO is incremented at
t = 20ns. Thus, get_size is a function that must depend
both on the internal Smart FIFO state and on the caller local
date. Concretely, the get_size function must: 1. synchronize
the caller, 2. iterate both over internal busy cells and internal
free cells.

An internal busy cell is interpreted as a real busy cell if either:

• the insertion date is in the past
• or the previous freeing date is in the future (meaning that

internally the cell has been freed and filled again since
the get_size access date)

An internal free cell is interpreted as a real busy cell if both:

• the freeing date is in the future
• and the previous insertion date is in the past

Clearly, the Smart FIFO is slower than a regular FIFO
for get_size accesses, but this function is rarely used in the
applications we looked at (at most few accesses per seconds).

IV. VALIDATION AND EVALUATION

A. Tests and Validation

For the validation of the Smart FIFO, we developed a test
suite that covers its features. Most of the tests are deterministic
but some are random. In those tests, the monitor interfaces are
used extensively to follow how the FIFO sizes evolve.

Each test is executed in two modes: 1. using regular FIFOs
and no temporal decoupling, 2. using the Smart FIFO and
temporal decoupling; random tests use twice the same seed.
Each test prints traces; each trace contains the local date of
the process that printed it. Because the schedule is changed,
the traces are not printed in the same order for the two
modes: using temporal decoupling, dates may decrease when
we switch from one process to the next. A test is considered
as correct if after reordering of traces, both trace files are
identical; meaning that the behavior and the timing are not
changed at all.

Special care has to be taken about scheduler dependencies:
indeed, it is well-known that because the SystemC scheduler is
not fully deterministic, some pathological programs may have
many valid behaviors depending on the scheduler choices [9].
Thus, we exclude such programs from the test suite.

To ensure that the test suite is complete enough, we have
done mutation testing by hand. That is to say, we select a line
in the Smart FIFO implementation, we modify something, we
run the test suite again and check that at least one test fails.

� � � � � �
 � � �� �� �� �� �� �� �� �
 �� �� �� �� �� �� ��

�

�

�

�

�

��

��

��
����

��
����

�������

����
����

�
�
!�
��"
�

#
�
�
$
"
�
�
�
%

Fig. 5. Execution durations depending on the FIFO depth.

B. Performance Evaluation

The benchmark used for performance evaluation is a simple
system with 3 modules (source, transmitter, and sink), con-
nected by 2 FIFOs. 1000 blocks of 1000 words are transferred,
with varying data rates. The FIFO depth is controlled by a
parameter. We compare 3 implementations: 1. untimed with
regular FIFO, 2. timed with no decoupling and regular FIFO
(TDless), 3. timed with temporal decoupling and Smart FIFO
(TDfull). Results are provided by Fig. 5.

The TDless model executes roughly at the same speed
for all FIFO depths; there is always one context switch per
access. On the contrary, untimed and TDfull models execute
a context switch only when the FIFO is (internally) full or
empty. Thus, larger is the FIFO, fewer are the context switches,
and faster are the simulations. The TDfull model is always
slower than the untimed model (about twice as slow), because
more computations have to be done; that is the cost of timing
accuracy. Compared to the TDless model that provides the
same accuracy, our solution is slower for 1-cell FIFOs due to
additional computations (same number of context switches),
but is already faster for 2-cell FIFOs, and twice as fast for
FIFO of depth 4. The gain factor reaches 6 for large FIFOs.

C. Case study: heterogeneous many-core SoC

The case study is an industrial heterogeneous many-core
SoC for high performance computing [10]. Part of this SoC
is composed of cores sharing a shared memory, but the most
intensive computations, such as video decoding, are done by
application-specific hardware accelerators, which communi-
cates either directly with hardwired FIFOs or using a stream-
based NoC. All communications done by TLM transactions
(i.e., communication from cores to shared memory or to
accelerators control registers) are temporally decoupled using
existing methods. The remaining task was to apply temporal
decoupling to the hardware accelerators.

Each hardware accelerator is modeled by a temporally
decoupled thread. For each FIFO that connects directly two
accelerators, replacing the regular FIFO by a Smart FIFO was
straightforward. For the NoC itself, where a lot arbitration
has to be done, we decided to model the routers using only
non-decoupled SC METHODs; thus NoC routers continue to
use regular FIFOs. Accelerators and the NoC are connected
through network interfaces. A network interface is in charge of

packetizing data and arbitration among the incoming streams.
Thanks to the possibility to use inc() in a SC METHOD, we
succeeded to model this module without any SC THREAD.
This module is connected to the accelerators using one FIFO
per accelerator, and because accelerators are decoupled, we
have to use a Smart FIFO here, which had to be slightly
extended to manage efficiently the packetization.

After checking the new SoC model correctness using short
tests, we evaluated the simulation speed using a longer bench-
mark test, which involves many hardware accelerators and
one core for their control. The evaluation used an unmodified
OSCI/ASI SystemC 2.2 kernel. We compared two versions:
one using Smart FIFOs, and the other using FIFOs that calls
sync at each access; both versions provide the same timing
accuracy. The simulation duration changed from 38.0 to 21.9
seconds, giving a gain of 42.3% for this test.

V. CONCLUSION

Using the Smart FIFO that we introduced in this paper,
one can add timing annotations in an untimed TLM model,
without increasing the number of context switches. Compared
to a timed TLM model using regular FIFOs with a context
switch per access, we speed up simulations without any loss
in timing or functional accuracy, and without requiring the user
to set a time quantum.

The case study showed that the Smart FIFO is suitable for
real-size industrial TLM models. The simulations are always
faster, with a gain factor that depends on the relative cost of
FIFO-based communications compared to other parts of the
model. As of today, the final application developers continue
to use the Smart FIFO.

REFERENCES

[1] IEEE 1666 Standard: SystemC Language Reference Manual, Accellera
Systems Initiative, 2011. [Online]. Available: http://www.accellera.org/

[2] L. Lehtonen, E. Salminen, and T. Ha andma andla andinen, “Analysis
of modeling styles on network-on-chip simulation,” in NORCHIP 2010,
Nov. 2010, pp. 1–4.

[3] E. Viaud, F. Pêcheux, and A. Greiner, “An efficient TLM/T modeling
and simulation environment based on conservative parallel discrete
event principles,” in DATE’06, March 2006, pp. 94–99.

[4] A. Mello, I. Maia, A. Greiner, and F. Pecheux, “Parallel simulation
of SystemC TLM 2.0 compliant MPSoC on SMP workstations,” in
DATE’10, March 2010, pp. 606–609.

[5] R. Salimi Khaligh and M. Radetzki, “Efficient parallel transaction level
simulation by exploiting temporal decoupling,” in Analysis, Architec-
tures and Modelling of Embedded Systems. Springer, 2009.

[6] M. Damm, C. Grimm, J. Haas, A. Herrholz, and W. Nebel, “Connecting
SystemC-AMS models with OSCI TLM 2.0 models using temporal
decoupling,” in Forum on Specification, Verification and Design Lan-
guages. FDL 2008., Sept. 2008, pp. 25–30.

[7] J. Cornet, F. Maraninchi, and L. Maillet-Contoz, “A method for the
efficient development of timed and untimed transaction-level models of
systems-on-chip,” in DATE’08, March 2008.

[8] F. Herrera and E. Villar, “A framework for embedded system specifi-
cation under different models of computation in systemc,” in DAC’06.
ACM, 2006, pp. 911–914.

[9] C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and M. Moy, “Au-
tomatic generation of schedulings for improving the test coverage of
systems-on-a-chip,” in FMCAD’06. IEEE, nov 2006, pp. 171–178.

[10] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” in DATE’12, March 2012, pp. 988–993.

