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Abstract—In this work we advocate the adoption of Binary Decision
Diagrams (BDDs) for storing and manipulating Time-Series datasets. We
first propose a generic BDD transformation which identifies and removes
50% of all BDD edges without any loss of information. Following,
we optimize the core operation for adding samples to a dataset and
characterize its complexity. We identify time-range queries as one of the
core operations executed on time-series datasets, and describe explicit
Boolean function constructions that aid in efficiently executing them
directly on BDDs. We exhibit significant space and performance gains
when applying our algorithms on synthetic and real-life biosensor time-
series datasets collected from field trials.

I. INTRODUCTION
A. Motivation

Improvements in processor energy efficiency have brought sig-
nificant computation resources closer to the human body. At the
same time, on-body sensors are becoming increasingly less intrusive,
thus leading to their more widespread adoption. This has spurred the
creation of new markets for continuous monitoring and processing
of biomarkers for wellness and health applications. While compu-
tational power has grown to sufficient levels to enable real-time
computation, mobile storage and communication resources have not
scaled appropriately to support the data creation rates of biosensors,
which can can be on the order of hundreds of megabytes per day.
Time-series datasets obtained from biosensors can be noisy, out
of sync, and have connectivity drop issues, but they do exhibit
significant regularity as they represent signals such as cardiographs
or breathing waveforms that are (at large) repeating. The potential of
compressibility is therefore apparent. However, traditional compres-
sion techniques such as Lempel-Ziv-Welch or LZMA do not appear
to be suitable replacements for data representation structures because
of relatively low compression rates and, most importantly, because
the data become inaccessible until they are decompressed. Binary
Decision Diagrams [1], one of the cornerstone creations of the EDA
community, were designed specifically for compactly representing
large, highly regular bit-vectors, while at the same time allowing
for random access and efficient manipulation. As such, they are
potentially an attractive fit for the target application.

B. Contributions

In the context of this work, BDDs are mainly used for representing
sets of integers S by means of their Characteristic Function (CF),
a Boolean function f°(Z) that evaluates to T iff [#] € S, where
[Z] denotes the integer that is formed by the boolean assignments
of the variables on Z. Following, we informally enumerate our
contributions.

1) Trace Based BDD Compaction: We propose a transformation
that discards half of the edges present on any BDD. Let us assume
that the nodes of a BDD are stored consecutively in memory in a
pre-specified order, for example, as obtained by performing a depth-
first traversal of the BDD following zero edges first. We make the
following crucial observation: When a node d is visited for the
first time during the traversal via an edge e = (s,d), then the
exact position of d relative to the position of s can be deduced
independently of e. On a BDD of n nodes, n — 1 nodes will be
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discovered for the first time via an edge during the traversal and
therefore n — 1 edges out of a total of 2n edges can be discarded
without any loss of information.

2) Efficient Disjunctions with Cubes: We then proceed to optimize
the core operation for adding data points to a BDD. Let f5¢(%)
denote the characteristic function of all samples until time instance ¢
and g®*+! (&) denote the characteristic function of singleton {s;41}.
Then f5+1(%) = f5(&) Vv g%+ (Z). The BDD of g is a path.
It is constructed for performing the disjunction and is discarded
immediately thereafter. While the BDD of g is straightforward to
construct, it is inefficient to do so for each new sample point, and
garbage collect its nodes afterwards. We propose a new algorithm for
executing binary operations directly between BDDs and minterms,
without ever explicitly constructing a BDD for the latter, thus
significantly speeding up the core operation of adding a new sample.

3) Range Queries: One of the most elementary operations for
accessing data is the range query, whereby all data points collected
within a particular time range [¢1, t2] are returned. We propose a new
algorithm for constructing BDDs of threshold functions T H A(f},
which evaluate to T iff [f] > A. We show that such BDDs are paths
and are efficient to construct. We then use threshold functions to
construct range functions as R, ;] (t) = THy, () N =THy, 41 (t).

II. PRELIMINARIES

A Reduced Ordered Binary Decision Diagram is a directed acyclic
graph. Its nodes are either internal or terminal. Internal nodes are
labeled by a boolean variable identifier and have two outgoing edges,
labeled one and zero. Terminal nodes have no outgoing edges and
are either labeled T or F. The graph is free of nodes whose edges
point to the same node and nodes that have the same variable id,
one edge and zero edge. At most two uniquely labeled terminal
nodes are present. There exists a single node with no incoming edges,
named root. All paths from the root to a terminal node visit nodes
whose variable identifiers are ordered in the same way. Each path
includes at most one node labeled with the same variable identifier.
Each ROBDD node represents a boolean function. Terminal node T
(respectively F) corresponds to function 1 (respectively 0.) Internal
node (id, one, zero) corresponds to f(Z) = x4 - one + Tiq - zero.
Layer ¢ of an ROBDD comprises all nodes labeled with variable id 3.
ROBDDs are a canonical data structure in the sense that there exists
a unique BDD for every Boolean function under the assumption of a
fixed variable ordering. BDD libraries typically implement operations
between ROBDDs in a depth-first manner [2]. They are based on the
following recursive decomposition (where ¢ is any 2-input function.)

fog=ai(fle;=109lai=1) + Ti(flai=0 © glz,~0) (D

We adopt NanoDDs [3], an implementation of ROBDDs whereby
the node structure is adjusted dynamically based on the size of
the BDDs, providing significant speedups and space savings over
traditional BDD libraries with no loss in operation efficiency.

III. TRACE BASED BDD COMPACTION

In this section we describe the transformation for compactly
maintaining BDDs. Given a BDD, the goal is to remove as much
information as is possible without losing any information. The BDD



Fig. 1. Example BDD for trace based transformation. Nodes are labeled with the
associated variable id. Letters denote the order of a depth-first traversal starting from
the root node, following zero (dashed) edges first.

is typically stored as a sequence of nodes, each of which is repre-
sented by its associated variable id and two node ids corresponding to
its two outgoing edges. We begin by breaking this logical separation
into node structures, by storing the BDD as a sequence of variable
and node ids, and proceed by discarding all redundant information.

We label nodes as they would be discovered by a depth-first
traversal starting from the root node, following zero edges first. For
example, let us examine the BDD on Fig. 1. Its nodes would be
stored in memory as follows:

| OBH ICF 2tD 3tE 4tf 2DG 3tf 1FG |

Let us consider an edge e = (X,Y’), where node Y has not been
reached at a previous point during the traversal. Let as assume that e
is a zero-edge. Then the node structure of Y will be stored in memory
immediately after that of X. In the example, node B, described
by "1CF" is stored immediately after node A ("OBH"). Let us now
assume that e is a one-edge. Then the node structure of Y will be
stored immediately after the memory footprint used to completely
describe the BDD rooted by the target of the zero-edge of node
X. In the example, the information for node H ("1FG") is stored
immediately after the information that describes the BDD rooted at B
("1CF 2tD 3tE 4tf 2DG 3tf"). In both cases, the node id information
provided by edge e can be deduced without prior knowledge of e
and thus, e can be discarded without loss of information.

Continuing our example, we mark the edges that can be discarded
in bold:

| OBH ICF 2tD 3tE 4tf 2DG 3tf 1FG |

The optimized memory footprint is:

| 01263t4tf2D3tf1FG |

Lemma 3.1: A BDD of n nodes is uniquely described by n
variable ids and n + 1 node ids.

Proof: As a BDD with n nodes has 2n edges and all nodes
except the root will be discovered via one of those edges, exactly
n — 1 edges can be discarded. O

We note that if the identity variable order is used on the BDD (for
example by maintaining the actual order separately) then we can
additionally delta-encode the variable ids, as it suffices to maintain
the difference of the variable id of a node from the variable id
of the parent node that first discovered it. Moreover, since a node
structure no longer exists, the BDD manager needs to know whether
a particular field is a variable or a node id. This can be performed
either by merging the address spaces of the two fields, or using the
most significant bit to discriminate between the two. In the first case
for example, if the field is in the range id € [0..max_var) then it
denotes a variable, otherwise ¢d — maxz_var denotes a node id.

More crucially, we observe that the complexity of arbitrary BDD
operations is not altered when the BDDs are stored in the proposed
trace-based format. Therefore, the transformation is useful in a
more general context. Nevertheless, detecting whether a particular
variable assignment evaluates to 7' becomes an O(n) (as opposed to
O(depth)) operation.

BDD binary<OP>(BDD f, INT mt, INT var)
if var < O then
return traditional_binary<OP>(f, T);
one = zero = f;
if f is nonterminal then
if f.var == var then
one = f.one; zero = f.zero;
if mt & 2Y" then
return bdd_node( var, binary<OP>(one, mt, var-1),
traditional_binary<OP>(zero, F) );
10: else
11:  return bdd_node( var, traditional_binary<OP>(one, F),
binary<OP>(zero, mt, var-1) );
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Fig. 2. TImplicit Minterm Algorithm.

1: BDD result = T;

2: INT bits = size of vector t_:
3: while bits do

4:  bits--;

5. if value % 2 then
6 result &= bdd_node(bits, T, F);
7 else

8 result |= bdd_node(bits, T, F);
9 value »= 1;

Fig. 3. Threshold Algorithm.

IV. IMPLICIT MINTERM OPERATIONS

In this section we formalize our approach to storing time-series
datasets as BDDs and optimize the core operation for adding data
points to the BDD. Let D% (t) : N — N denote a time-series
dataset of ¢;-bit time and ¢-bit sample quantization. Let ¥/ be a vector
of boolean variables. Let [0] denote the integer represented by the
binary representation on ¢. For example [(0,1,1,0,1)] = 13. Let the
CF of D be defined as fP(t; 5) = T iff D9 ([t]) = [5]. £ comprises
g: boolean variables while 5§ comprises ¢; boolean variables. Initially
fP(£;5) is set to F. Each new data sample (t;,s;) is added to
fP by performing a disjunction with the CF that represents the
new sample. The time variables precede the sample variables in the
ordering, while the most significant time bit is first in the order.
The BDD of the sample CF is a path BDD. While the particular
disjunction is an efficient operation both theoretically and practically,
it is worth optimizing it further as this operation is repeatedly applied
for each new data point. Let us identify the points of inefficiency
with this core operation. First, the path BDD is created for each data
point, and is subsequently discarded after the disjunction has been
completed. For large datasets this imposes a significant overhead
on the garbage collector. More concretely, for ¢;-bit time and g,-
bit samples, adding P points will require creating and garbage
collecting up to P - (¢; + ¢s) nodes. Second, cache and node hash
tables are “polluted” by the additional nodes. We propose instead
to perform disjunctions with path BDDs implicitly. Specifically, we
modify the traditional recursive execution of BDD ops such that
one of the parameters is not a BDD but rather a minterm. As the
second parameter represents a path BDD that includes a node for
every variable, the minterm’s topmost variable will always be the
topmost during the recursion. If the i-th bit of the minterm is 1 (resp
0) then the implied node is (i,%,0) (resp (,0,*).) This approach
circumvents the creation and removal of all path BDD nodes while
additionally avoids polluting the cache and node hash tables with
them. The algorithm is depicted on Fig. 2.

V. RANGE QUERIES

In this section we describe our approach to querying time-series
datasets modelled as BDDs. Data stored as BDDs can be queried in
multiple ways. If the goal is to detect the presence of a particular
(t,s) data point, we simply traverse the corresponding path on the
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Fig. 4. Construction of range BDD for [5..37] that depends on 6 variables. (a)
THs(#), (b) =T Hag(t), (¢) R[5..37)(t) = T Hs(t) A—T Hzg(t). Solid edges denote
one edges. Dashed edges denote zero edges. Dotted edges denote negated zero edges.

BDD, following the one edge when the related bit is one and zero
otherwise. If terminal 7 is reached then the point exists in the dataset.
If terminal F' is reached at any point during the traversal, the point is
not part of the dataset. If the goal is to detect the data point possibly
present at a particular time instance, we traverse the corresponding
path until we either reach terminal F' or a sample point variable.
At this point, we have detected that a data point is present and can
decode its value. If the goal is to access all datapoints in the dataset
sequentially, we perform a depth-first traversal starting from the root
following zero edges first.

If we wish to access all data points within a particular time
range, or collect all time stamps of data points that have values in a
particular value range, our approach is to construct a boolean function
that represents the corresponding range and perform a conjunction
with the dataset CF. Let T'H 4(¥) be a boolean function defined as
TH(U) = T iff [0] > A. Let Ry p)(¥) be a boolean function
defined as R4 p(¥) = T iff A < [v] < B. The BDD of TH4
is constructed by the algorithm on Fig. 3. Following, we prove the
correctness of this algorithm.

Theorem 5.1: Algorithm 3 constructs the BDD of T Hy g1y ().

Proof: Let q, denote the number of bits of threshold integer
value. We proceed inductively on g,,.

Terminal Case: For ¢, = 1: If value = 0 then BDD T correctly
represents {0,1}. If value = 1 then BDD (z,1,0) correctly
represents {1}.

Induction: Let ¢, = k£ > 1 and BDD THi;vlw&@k—l) has been
properly constructed.
(@) If value & 2¥ = 0, the following holds: If x; = 1
then THfalue&(%H—l) is always true. If x; = 0 then
THk TH:1 In both cases, it holds:

value&(2F+1-1) — value&(2k—1)"

k _ k—1
THvalue&(2k+1—1) =Tk + THvalue&(2k—l)'

(b) If value & 2F = 2F, the following holds: If z;, = 0

then THfalue&(%H—l) is always false. If z = 1 the
THfaZue&(zkH—l) = TH’fu;}Ae&(Qkfl)' In both cases, it holds:
THE egeorir 1y = Tk - THyp

value&( value&(2k—1)"
0

The range function is constructed by utilizing threshold functions
as follows: Ry p) (V) = THA(V) - TH py1(7).

It is known than in general the complexity of a binary operation
between two BDDs of sizes s; and s is O(sy - s2) [1]. In our
particular case however, the structure of one of the two BDDs
(representing CFs of sample points or threshold functions) is very
restricted. Specifically, such BDDs are path BDDs with the additional
property that each node has at least one edge pointing to a terminal
node. We refer to such BDDs as restricted path BDDs. Following we
show that the complexity of a binary operation between a BDD and
a restricted path BDD is O(s1 + s2) even when complemented edges
are allowed. This validates our intuition related to the predictability
and efficiency of such operations. On Fig. 4 we show the two
threshold functions and the range function for range [5..37].
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Fig. 5. Compaction Results for Synthetic Datasets

Theorem 5.2: A Boolean operation between an unrestricted BDD
f and a restricted path BDD g of size s; and s respectively is
O(s1 + s2) in time and space.

Proof: Let us consider the decomposition of (1). Since g is a
restricted path BDD, at least one of g|y,—1, g|s;—0 is T or F. Let
us assume that g|;,—1 is 7" or F'. Subsequently, f|z,=1 ¢ g|z;=1 Will
either be T, F, f|;,=1 or f|.,—1, depending on the nature of the ¢
operation, and the recursion will terminate on that branch, possibly
generating a single node in the case of f|,,—; when complemented
edges are not utilized. The recursion will follow the path of the non-
terminal edges of g. Examining the decompositions bottom-up, we
observe that the size of the subBDD will only increase by a single
node if f does not depend on z;. O

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed algorithms on synthetic
and real-life datasets. We are adopting two synthetic dataset gener-
ators, for blood oxygenation and electrocardiograph signals respec-
tively. We selected these signals since their corresponding biosensors
are the least intrusive while at the same time providing significant
information. The first generator, SPO2SYN, was developed for the
purposes of this work, while the second, ECGSYN [4] is employed
to assess biomedical signal processing techniques which are used to
compute clinical statistics from the ECG. Additionally, we deployed
our biosensor data collection and processing platform on a small
number of 8 participants for approximately 1-hour intervals per
day over a period of 2 weeks, in a medically supervised hospital
setting, in order to collect real-life datasets. Following, we present
compaction and query execution experimental results, as well as
the speedups obtained when adopting our implicit minterm BDD
operations.

A. Compaction Results

We show the compaction obtained on 7-day long outputs of
SPO2SYN and ECGSYN on Fig. 5. The uncompressed signals are
being stored in binary format, allocating 32-bits for time and 8-
bits (resp 10-bits) for SpO2 (resp. ECG) samples. We observe that
the compaction rate is in general monotonically increasing and is
approximately 45X for SpO2 and 10X for ECG. The discontinuity
on the ECG signal compaction graph exists since at that point the
size of the BDD nodes increased by 1 byte in order to support the
growth of the CF BDD. We show the compaction results on all
high-rate signals collected during the trial, specifically the SpO2, 3D
Accelerometer, Breathing and ECG signals for the 8 participants,
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Fig. 6. Compaction Results on Real-Life Datasets from 8 Participants
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Fig. 7. Speedup Results on Real-Life Datasets from 8 Participants
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Fig. 8. Speedup Results for Queries

on Fig. 6. We observe that the obtained compaction rates are
robust under minor signal variations and different participants. The
aggregate recording duration per sensor is approximately twenty
hours. Based on the results obtained from the synthetic datasets, we
expect the compaction rates to increase on longer data recordings.

B. Implicit Minterm Operations Speedup Results

We obtain the execution times for building the BDD for a particu-
lar dataset by (1) using our implicit minterm operations and (2) using
traditional BDD operations when adding new sample points. On the
SPO2SYN dataset we obtain approximately 7X speedup while for
the ECGSYN dataset we obtain approximately 1.7X speedup. We
observe that the relative benefit is reduced as more data are added
to the BDD. This is expected, since the implicit minterm operations
avoid the construction of the path BDDs but they do not essentially
affect the execution time of the disjunction operation, which becomes
relatively slower as the CF BDD grows in size. We also observe
speedups of 1.8X to 13X for the field-trial datasets, shown on Fig.
7. Similar to the synthetic datasets, the speedup on the ECG signals
from real-life data is smaller, as these datasets are relatively larger
because of higher sampling rate.

C. Query Results

We compare the execution times of range queries on BDDs and
uncompressed datasets. For each dataset, we execute a query with a
random starting point, whose range is approximately 20% of the size
of the dataset. On the case of BDDs, we construct the BDD of the
corresponding range function and perform the conjunction with the
dataset BDD. On the case of uncompressed datasets, we perform a
binary search in order to detect the starting point in the dataset and
sequentially read the datapoints until the ending point is reached. The
results are depicted on Fig. 8. The reader is cautioned not to interpret
the results as speedups on actual overall application execution times,
as the query times maybe a small percentage of the whole execution
of some calculation.

D. Trace Storage Compression Results

In this section we explore the increase in compressibility obtained
when runtime access to the dataset is not required. We first present re-
sults on the datasets from the 8 participants. We apply the trace-based
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Fig. 9. Trace-Based Compression Results on Real-Life Datasets from 8 Participants.
Trace-Based transformation is applied to each BDD after it has been constructed.
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Fig. 10. Compression Results on Synthetic Datasets.

transformation on the resulting BDDs and compare, as previously,
with the raw binary dataset. The results are depicted on Fig. 9. As
expected, we observe an 1.8X increase in compaction compared to
the results on Fig. 6. Subsequently, we present compression results
on the synthetic datasets on Fig. 10. For reference, we also show
the compression rates obtained by using LZMA (as implemented
in the open-source tool 7z), both on the raw binary dataset and
on the output of the trace-based transformation. In this scenario, it
may be appropriate to use traditional compression tools as random
accessibility to the dataset is not required. We observe that, in all
cases, the compression rates obtained when adopting BDDs are
superior to the ones obtained by traditional compression alone.

VII. CONCLUSION

In this work we proposed adopting BDDs for lossless storage
and manipulation of time-series datasets. We described an efficient
algorithm for optimizing the core operation performed when adding
new data points to a BDD. We analyzed efficient algorithms for
performing range queries directly on BDDs. We introduced a new
BDD transformation that allows for discarding half of the edges
present on a BDD. We benchmarked our algorithms on synthetic
datasets and real-life data collected on a field trial. We obtained
significant speedups (up to 12X for manipulation and 150X for range
queries) and compression rates (up to 120X.)
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