
Biconditional BDD: A Novel Canonical BDD for
Logic Synthesis targeting XOR-rich Circuits

Luca Amarú, Pierre-Emmanuel Gaillardon, Giovanni De Micheli
Integrated Systems Laboratory (LSI), EPFL, Switzerland

Abstract—We present a novel class of decision diagrams, called Bicon-
ditional Binary Decision Diagrams (BBDDs), that enable efficient logic
synthesis for XOR-rich circuits. BBDDs are binary decision diagrams
where the Shannon’s expansion is replaced by the biconditional expansion.
Since the biconditional expansion is based on the XOR/XNOR operations,
XOR-rich logic circuits are efficiently represented and manipulated
with canonical Reduced and Ordered BBDDs (ROBBDDs). Experimental
results show that ROBBDDs have 37% fewer nodes on average compared
to traditional ROBDDs. To exploit this opportunity in logic synthesis for
XOR-rich circuits, we developed a BBDD-based One-Pass Synthesis (OPS)
methodology. The BBDD-based OPS is capable to harness the potential of
novel XOR-efficient devices, such as ambipolar transistors. Experimental
results show that our logic synthesis methodology reduces the number
of ambipolar transistors by 49.7% on average with respect to state-
of-art commercial logic synthesis tool. Considering CMOS technology,
the BBBD-based OPS reduces the device count by 31.5% on average
compared to commercial synthesis tool.

I. INTRODUCTION

In logic synthesis, the choice of the logic representation form is a
crucial point to achieve small and fast circuits. Traditionally, functions
are represented using the Sum Of Products (SOP) representation [1].
However, the SOP form is not efficient for XOR-rich circuits that are
heavily used in arithmetic, error correcting and telecommunication
circuits. Indeed, considering XOR-dominated applications, a XOR-
based representation form is preferable to achieve better circuit
realizations. Motivated by this fact, we investigate data structures
having the XOR/XNOR functions as primitive elements.

Reduced and Ordered Binary Decision Diagrams (ROBDDs) [4]
are canonical logic representation forms that are easy to manipulate
and also compact for most functions. The compactness of ROBDDs
inspired several works on One-Pass Synthesis (OPS) [5], i.e., a
synthesis methodology where logic optimization and technology map-
ping tasks are carried out directly on the ROBDD structure. To further
increase the ROBDDs compactness, and consequently enhance the
efficiency of the corresponding OPS, several BDD extensions have
been proposed [6]–[9]. Among them, EQuational BDDs (EQ-BDDs)
[7] natively support the XNOR operation and therefore are well suited
to directly synthesize XOR-rich logic circuits. Unfortunately, EQ-
BDDs as proposed in [7] are not canonical and therefore lose some
of the desirable properties of BDDs for logic synthesis.

In this paper, we present Biconditional BDDs (BBDDs): a new
canonical BDD extension for efficient logic synthesis targeting XOR-
intensive circuits. Inspired by the EQ-BDDs concept in [7], we
construct BBDDs using a different logic expansion, the biconditional
expansion, rather than the standard Shannon’s expansion used in
BDDs [4]. Novel reduction and ordering rules make Reduced and
Ordered BBDDs (ROBBDDs) canonical and very compact. Exper-
imental results show that ROBBDDs have 37% fewer nodes on
average as compared to traditional ROBDDs.

Emerging XOR-efficient devices, such as ambipolar transistors
[10]–[12], can take advantage of the representation compactness
thanks to direct mapping onto BBDD structures. To exploit this op-
portunity, we present in this paper a BBDD-based One Pass Synthesis
method. While we focus on the application of the BBDD-based
OPS to ambipolar technology, the proposed synthesis method also
supports standard CMOS technology. Experimental results show that

the BBDD-based OPS produces logic circuits, based on ambipolar
transistors, with 49.7% fewer devices on average compared to state-
of-art commercial synthesis tool. Considering CMOS technology, the
average transistor count reduction of the proposed synthesis method
with respect to commercial synthesis tool is 31.5%.

The remainder of this paper is organized as follows. Section
II provides a background on ambipolar technology and BDDs. In
Section III, Biconditional BDDs are introduced with corresponding
variable ordering and reduction rules. Section IV presents a One-
Pass Synthesis methodology based on ROBBDDs targeting XOR-rich
functions. Then, in Section V, experimental results for the proposed
synthesis methodology are presented and compared to state-of-art
commercial synthesis tool. The paper is concluded in Section VI.

II. BACKGROUND AND MOTIVATION

This section provides relevant background on ambipolar transistors
and binary decision diagrams.

A. Ambipolar Transistors
Ambipolar transistors are Double-Independent Gate (DIG) Field

Effect Transistors (FETs) having one gate controlling on-line the
device polarity (Fig. 1(a)). Ambipolar transistors have been exper-
imentally fabricated in several novel technologies, such as carbon
nanotubes [10], graphene [11] and Silicon NanoWires (SiNWs) [12].
The on-line configuration of DIG ambipolar FETs polarity is enabled
by the regulation of Schottky Barriers on source/drain junctions
through the additional gate. Logic gates based on ambipolar devices
can implement XOR-based functions with low physical resources. In
Fig. 1(b), the full-swing XNOR-2 (A�B) ambipolar gate proposed
in [13] is reported. The XNOR ambipolar implementation requires 4
transistors while the traditional full-swing static CMOS implementa-
tion uses 8 transistors [14]. Note that by swapping Vcc ⌦ B/A and
Vss ⌦ C in the XNOR-2 in Fig. 1(b), it is possible to obtain the
majority function MAJ3(A,B,C) as depicted in Fig. 1(c). The CMOS
counterpart of the majority function requires 2.5x more transistors
than in the proposed implementation. Thanks to their improved
expressive power, ambipolar transistors can be directly mapped in
XOR-based logic representation forms enabling compact realizations
for XOR-dominated circuits.

PG
CG

PG=0

PG=1

B’
A’ A

B

A
B’ B

A’

a) B

C

c)

B’
A’ A

B

A
B’ B

A’

b)

A!B

n

p

Maj(A,B,C)

Fig. 1: Polarity control in double-gate ambipolar transistors (a),
XNOR-2 gate (b), 3-input majority gate (c).

B. Binary Decision Diagrams
BDDs were first introduced by Lee [2] and Akers [3]. The notions

of ordering and reduction of BDDs were introduced by Bryant in [4],
where it was shown that, with these restrictions, BDDs are a canonical

978-3-9815370-0-0/DATE13/©2013 EDAA

logic representation form. Canonical Reduced and Ordered BDDs are
often compact1 and easy to manipulate, and are therefore widely
used in electronic design automation and in other fields. Several
BDD extensions have been proposed in literature to enhance the
representation compactness [6]–[9]. Among them, we describe here
only Transformation BDDs (TBDDs) [8], [9] and Equational BDDs
(EQ-BDDs) [7] as they are the closest to our BDD extension and
useful to understand the following material.

The core idea of TBDDs is the transformation of a function into
another function in a new domain using an injective mapping (e.g.,
linear XNOR transformation), and then represent the new function
with a standard ROBDD. TBDDs are canonical since the injective
mapping operation maintains the unique representation of objects
with ROBDD. Despite TBDDs preserve canonicity and potentially
improve compactness, other operations on BDD become more com-
plex due to the domain transformation, e.g., variable ordering. EQ-
BDD proposed in [7], are a BDD extension where the If-Then-Else
(ITE) formula of a non-terminal node contains an equation in place
of a single variable. EQ-BDDs considered in [7] have a branching
condition with equation x = y, where x and y are input variables.
Unfortunately, the ordering conditions proposed in [7] leads to a non-
canonical representation of reduced and ordered EQ-BDDs. The input
variable ordering represents a major limitation regarding canonicity
for EQ-BDDs and dynamic reordering for TBDDs.

To address the aforementioned issues, we propose a new BDD
extension that intrinsically embeds the XNOR operation while main-
taining canonicity and simple ordering conditions.

III. BICONDITIONAL BINARY DECISION DIAGRAMS

This section introduces Biconditional Binary Decision Diagrams
(BBDDs). First, it presents the core logic expansion that drives
BBDDs. Then, it gives ordering and reduction rules that makes
Reduced and Ordered BBDDs (ROBBDDs) canonical.

A. Biconditional Expansion
In standard Binary Decision Diagrams (BDDs), each non-terminal

node represents a Shannon’s expansion:

f(x, y, .., z) = x· f(1, y, .., z) + x

0· f(0, y, .., z) (1)

In BBDDs, the Shannon’s expansion is replaced by the biconditional
expansion:

f(x, y, .., z) = (x� y)· f(y0
, y, .., z) + (x� y)· f(y, y, .., z) (2)

with � and � representing the XOR and XNOR operations, respec-
tively. Note that the biconditional expansion is a special case of the
(xi,p)-decomposition in [15] that extends the Shannon’s expansion.
As per the biconditional expansion in Equation 2, only functions
that have two or more variables can be decomposed. Indeed, in
single variable functions, the terms (x � y) and (x � y) cannot be
computed. In such a condition, the biconditional expansion of a single
variable function can reduce to a Shannon’s expansion by fixing
the second variable y to logic 1. With this boundary condition, any
Boolean function can be fully represented in terms of biconditional
expansions.

B. BBDD Structure and Ordering
A Biconditional Binary Decision Diagram (BBDD) is a BDD

driven by the biconditional expansion in place of Shannon’s ex-
pansion. Each non-terminal node in a BBDD has the branching
condition biconditional on two variables. We call these two variables
the Primary Variable (PV) and the Secondary Variable (SV).

1Note that some logic circuits have not a compact representation with
ROBDDs, e.g., for multipliers, the ROBDD size depends exponentially on
the number of inputs.

PV=x

SV=y

PV=SV PV≠SV

Non-terminal
BBDD node

f(x,y,..,z)

f(y’,y,..,z) f(y,y,..,z)
Fig. 2: BBDD non-terminal node.

An example of a BBDD non-terminal node is provided by Fig. 2.
We refer hereafter to PV 6= SV and PV = SV edges in a BBDD
node simply as 6=-edges and =-edges, respectively.

To achieve Ordered BBDDs (OBBDDs), a variable order must be
imposed for PVs and a rule for the other variables assignment must
be provided. We propose the following Chain Variable Order (CVO)
to address this task. Given a Boolean function f and an order ⇡ =
(⇡0,⇡1, ..,⇡n�1) for the support variables of f , the CVO assigns
PVs and SVs as:
⇢

PVi = ⇡i

SVi = ⇡i+1
with i = 0, 1, .., n� 2;

⇢
PVn�1 = ⇡n�1

SVn�1 = 1
(3)

Note that if we swap ⇡i ⌦ ⇡j in the initial order ⇡, due to
some reordering operation, this simply translates through the CVO
as PVi ⌦PVj and SVi�1 ⌦SVj�1.

CVO Example: From ⇡ = (⇡0,⇡1,⇡2), the corresponding CVO
ordering is obtained by the following method. First, PV0 = ⇡0,
PV1 = ⇡1 and SV0 = ⇡1, SV1 = ⇡2 are assigned. Then, the final
boundary conditions of Equation 3 are applied as PV2 = ⇡2 and
SV2 = 1. The consecutive ordering by couples (PVi, SVi) is thus
((⇡0,⇡1), (⇡1,⇡2), (⇡2, 1)).

The Chain Variable Order (CVO) is a key factor enabling unique
representation of ordered biconditional decision structures. For the
sake of clarity, we first consider the effect of the CVO on complete2

Binary Biconditional Decision Trees (BBDTs) (i.e. with no sharing
between nodes and thus an exponential size) and then we move to
generic reduced BBDDs.

Lemma 1: For a given Boolean function f and a variable order ⇡,
there exists only one complete BBDT ordered with the CVO.
Proof: Each couple (PVi ⇡i, SVi ⇡i+1) assigned by the CVO
to a BBDT node can be seen as a single variable µi = ⇡i � ⇡i+1

of a corresponding Binary Decision Tree (BDT) node. Note that ⇡ 2
Bn ! µ 2 Bn is a bijective transformation since (i) ⇡ 6= ⇡

0)
µ 6= µ

0 and (ii) ⇡ and µ have the same number of elements. Then,
a complete Ordered BBDT (OBBDT) is equivalent to a Bijective
Transformation complete Ordered BDT (OBDT) [9]. Since complete
OBDTs are unique for a given function, it follows that also complete
OBBDTs are a unique logic representation form. Q.E.D.

We refer hereafter to ordered binary biconditional decision struc-
tures as BBDDs ordered by the CVO.

C. BBDD Reduction
In order to improve the representation efficiency, OBBDDs should

be reduced according to a set of rules. The straightforward extension
of OBDD reduction rules [4] to OBBDDs, leads to weak Reduced
OBBDDs (ROBBDDs). This kind of reduction is called weak due to
the partial exploitation of OBBDD reduction opportunities. A weak
ROBBDD is an OBBDD respecting the two following rules:

R1) It contains no isomorphic subgraphs.
R2) It contains no nodes with isomorphic children.

2We refer to a complete tree as a full binary tree in which all leaves are at
the same level, and in which every parent has two children.

In addition, the OBBDD representation exhibits supplementary
interesting features enabling further reduction opportunities. First,
levels with no nodes may occur in OBBDDs for XOR-intensive
functions. Such levels must be removed to compact the original
OBBDD. Second, subgraphs that represent functions of a single
variable must be collapsed into a single BDD node. These two
additional reductions lead to strong ROBBDDs. Formally, a strong
ROBBDD is an OBBDD respecting R1 and R2 rules and in addition:

R3) It contains no empty levels.
R4) Subgraphs representing functions of a single variable are

collapsed into a single BDD node.

Weak and strong reduced OBBDDs are canonical, as per:

Lemma 2: For a given Boolean function f and a variable order ⇡,
there exists only one weak ROBBDD.
Proof: Weak ROBBDDs share the same reduction rules than ROB-
DDs. The proof of Lemma 1 is valid using Bijective Transformation
ROBDDs that are equivalent to weak ROBBDDs. Q.E.D.

Theorem 1: A strong ROBBDD is a canonical representation for
any Boolean function f .
Proof: Strong ROBBDDs can be derived by weak ROBBDDs ap-
plying reduction rules R3 and R4. Reduction rules R3 and R4
are injective operations as they produce unique and distinct results.
Strong ROBBDDs are canonical since they can be obtained applying
injective operations to canonical weak ROBBDDs. Q.E.D.

Unless specified otherwise, we refer hereafter to ROBBDDs as
strong ROBBDDs.

IV. ONE-PASS LOGIC SYNTHESIS

One Pass Synthesis (OPS) [5] is a logic synthesis methodology
where logic optimization and technology mapping phases are com-
bined in a single step carried out through a common data structure,
e.g., BDDs. In this work, we use Biconditional BDDs (BBDDs) as
data structure supporting OPS targeting XOR-rich functions.

In BBDD-based OPS, logic optimization corresponds to the strong
ROBBDD construction. Note that most of the algorithms for ROB-
DDs construction, e.g., BUILD, APPLY [4] etc., can be adapted to
ROBBDD, hence to support the biconditional expansion in place
of Shannon’s expansion. Standard dynamic variable reordering al-
gorithms can be applied also with the Chain Variable Order (CVO).

PV=A%
SV=B%

PV=SV%PV≠SV%

Non,terminal%%
BBDD%node%

f(A,B,..,Z,..)=F"

f(B’,B,..,Z,..)=G%% f(B,B,..,Z,..)=H"

A!B%0% 1%

f(A,B,..,Z,..)=F"

f(B’,B,..,Z,..)=G%% f(B,B,..,Z,..)=H"

Ambipolar%realizaBon% CMOS%realizaBon%

BBDD%node% MUX%driven%by%a%XNOR%

Transistor)level)

Logic)level)

B%A’%

A% B’% A% B%

B’%A’%

F%

G% H%

A!B%

A!B%⊕A% B%

⊕A% B%

H%G%

F%

Fig. 3: BBDD node corresponding logic gate and realization in
ambipolar and CMOS technologies.

Reduced OBBDDs are a compact logic representation structure.
Such compactness can be preserved in the implemented logic cir-
cuit by directly mapping ROBBDDs components onto basic logic

elements. In particular, a BBDD node is efficiently implemented by
a TG-based MUX having the selection signal driven by a XNOR
(MUX-�). In Fig. 3, the MUX-� structures for ambipolar and
CMOS technologies are depicted.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results for the proposed
BBDD-based One-Pass Synthesis (OPS) methodology. Ambipolar
and standard CMOS are considered as target technologies. Area
results, in terms of device count, are compared with Synopsys Design
Compiler synthesis tool fed with a reference library.

A. Methodology

Implementation details for the OPS flow and settings for the
reference Design Compiler flow are presented.

1) BBDD-based OPS: The proposed OPS methodology consists
of logic optimization and technology mapping operations both carried
out on a reduced and ordered BBDD.

Logic Optimization: Logic optimization in BBDD-based OPS is
equivalent to ROBBDD construction. In this work, weak and strong
ROBBDDs are considered for this purpose. We showcase strong
ROBBDD potential compactness for majority and adder functions
via custom construction algorithms written in C language. Since
an integrated decision diagram package for generic function strong
ROBBDD construction is not available at the current time, we use
weak ROBBDDs to have a first insight about automated BBDD-based
OPS potential. Indeed, we automatically generate weak ROBBDDs
through the procedure described in the proof of Lemma 2 that is
implemented on top of ABC [16] software.

Technology Mapping: Technology mapping in BBDD-based OPS
consists of the direct assignment of MUX-� structures to BBDD
nodes. This is accomplished by a program written in C language.

2) Buffering in OPS: Circuits synthesized by OPS require buffer-
ing to avoid excessive series stacking of transistors. For this reason,
we insert a buffer every 4 cascaded MUX-� to limit the maximum
stack to 4, similarly to traditional standard-cell approach.

3) Reference Synthesis Flow: For comparison purposes, a ref-
erence library has been built for Design Compiler with INV,
XOR-{2,3}, XNOR-{2,3}, MAJ3, NAND-{2,3,4}, NOR-{2,3,4},
AOI/OAI and generalized AOI/OAI [13] standard cells. No timing
information is provided in the reference library to prevent area/timing
trade-off. The given area information is the transistors count for
the implementation of each cell in static complementary style. The
command used for logic synthesis is compile -area effort high.

B. Results and Discussion

Experimental results are shown in Table I. Adders and majority
benchmarks are manually created. Other benchmarks are arithmetic
based circuits selected from the MCNC suite. We first introduce
results about the ROBBDD representation compactness. Then, we
present synthesis results for the BBDD-based OPS considering am-
bipolar and CMOS technologies.

1) ROBBDD Compactness: The size of strong ROBBDDs for ma-
jority and adders functions is about 50% less than their corresponding
ROBDDs. On the other hand, weak ROBBDDs, automatically gen-
erated for the MCNC benchmarks, have 28% fewer nodes compared
to standard ROBDDs. On average, ROBBDDs reduce by 37% the
number of nodes with respect to their ROBDDs counterpart.

TABLE I: Experimental results for BBDD-based OPS and comparison with Synopsys DC
Input, Output and Node numbers Ambipolar Technology CMOS Technology

OPS no buff. OPS with buff. DC OPS no buff. OPS with buff. DC
OBBDD Reduction Benchmarks In Out |BBDD| |BDD| Transistors count Transistors count

Strong Adder 8 16 17 24 40 110 114 226 224 228 328
Strong Adder 16 32 33 48 80 222 230 498 450 456 674
Strong Adder 32 64 65 96 160 442 458 1042 898 914 1378
Strong Adder 64 128 129 192 320 894 926 2130 1802 1834 2786
Strong Adder 128 256 257 384 640 1790 1854 4306 3574 3638 5602

Strong Majority 11 11 1 25 38 98 122 234 248 272 306
Strong Majority 13 13 1 33 51 130 162 320 308 340 472
Strong Majority 15 15 1 42 66 166 198 302 372 436 378
Strong Majority 17 17 1 52 83 206 246 460 452 492 648
Strong Majority 19 19 1 63 102 250 290 534 536 576 662

Weak xor5 5 1 3 5 24 24 32 36 36 48
Weak rd53 5 3 14 18 64 72 70 96 108 96
Weak rd73 7 3 20 32 102 110 112 144 152 152
Weak parity 16 1 8 16 80 88 106 142 150 180
Weak 9symml 9 1 17 23 105 121 174 194 210 232
Weak misex1 8 7 28 36 163 179 240 220 236 240
Weak cordic 23 2 65 82 316 388 494 502 574 526
Weak f51m 8 8 36 56 186 226 510 256 296 514

Average - 32.2 29.7 65.7 104.3 303.1 329.0 602.9 580.7 608.2 847.1
Reduction - - - -37.0% 100% -49.7% -45.4% 100% -31.4% -28.2% 100%

2) Ambipolar Technology: Considering ambipolar technology, the
BBDD-based OPS reduces the average number of devices by 49.7%
compared to Design Compiler. With buffer insertion, the number
of devices increases by less than 5%, therefore maintaining a large
advantage over Design Compiler also in this condition. For adder
and majority benchmarks, the BBDD-based OPS produces the largest
improvements thanks to the strong reduction of OBBDDs.

3) CMOS Technology: With CMOS technology, the BBDD-based
OPS generates logic circuits having 31.5% fewer devices on average
compared to Design Compiler. The buffer insertion only increases by
3% the transistor count. This is because the area overhead associated
with the buffer insertion has less impact in CMOS circuits that have
larger transistor count.

4) Ambipolar vs. CMOS: The BBDD-based OPS is capable to
take the largest advantage of the tunable polarity opportunity offered
by ambipolar technology over standard CMOS. Indeed, the BBDD-
based OPS for ambipolar technology reduces by 46% the number of
devices with respect to its CMOS counterpart. On the other hand,
Design Compiler for ambipolar technology decreases the transistor
count by only 28% compared to its CMOS counterpart. This result
confirms that the BBDD-based OPS is well suited to take advantage
of XOR-efficient emerging devices at the logic synthesis level.

5) Discussion: Experimental results highlighted the effectiveness
of BBDDs employed in one-pass logic synthesis for XOR-rich
functions targeting both ambipolar and standard CMOS technolo-
gies. The strong ROBBDD construction algorithms employed for
majority and adder functions, fully exploit the BBDD advantage
in the corresponding OPS. On the other hand, results for general
MCNC benchmarks can be further improved by creating (or adapting)
a decision diagram package for BBDDs. In this way, the BBDD
construction leads to a strong reduced OBBDD rather than to a weak
reduced structure and dynamic variable re-ordering can be applied to
further reduce the representation size. Even though this work focuses
on area-minimal results, the number of logic levels, and the associated
timing, of an ambipolar circuit synthesized on a monolithic ROBBDD
is predictable. Indeed, given the number of inputs nI and a buffering
condition every k BBDD nodes, the number of logic levels nL is
bounded as: nI

2k  nL  nI
k . The lower bound happens if reduction

rule R3 apply for half inputs, e.g., parity functions. The upper bound
happens if reduction rule R3 never apply, e.g., majority functions.

VI. CONCLUSIONS
We proposed a new canonical BDD extension, the Biconditional

BDD (BBDD), capable to efficiently support One-Pass Synthesis
(OPS) for XOR-rich logic circuits. BBDDs are based on the bicondi-
tional expansion that natively embed the XOR/XNOR operations.
We directly synthesize XOR-intensive circuits on a Reduced and
Ordered BBDD (ROBBDD) using a one-pass synthesis methodology.
In this context, the quality of the synthesized circuit depends on
the ROBBDD compactness. Ordering and reduction rules make the
ROBBDD construction efficient and unique. Experimental results
show that ROBBDDs have on average 37% fewer nodes compared
to standard ROBDDs. CMOS circuits directly synthesized on ROBB-
DDs have 31.5% fewer transistors compared to the same circuits
synthesized by Design Compiler. Considering ambipolar devices, the
direct synthesis on ROBBDDs reduces by 49.7% the devices count
with respect to logic circuits synthesized by Design Compiler.

REFERENCES
[1] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-

Hill, New York, 1994.
[2] C.Y. Lee, Representation of Switching Circuits by Binary-Decision Pro-

grams, Bell Systems Technical Journal, 1959.
[3] S.B. Akers, Binary Decision Diagrams, IEEE Trans. Comp., C-27(6):509-

516, June 1978.
[4] R.E. Bryant, Graph-based algorithms for Boolean function manipulation,

IEEE Trans. Comput., C-35: 677-691, 1986.
[5] R. Drechsler, W. Gunther, Toward One-Pass Synthesis, Springer, 2002.
[6] I. Wegener, Branching Programs and Binary Decision Diagrams: Theory

and Applications, SIAM, 2000.
[7] J.F. Groote, J. Van de Pol, Equational Binary Decision Diagrams, Proc.

LPAR, pp.161-178, 2000.
[8] C. Meinel, F. Somenzi, T. Theobald, Linear Sifting of Decision Diagrams,

Proc. DAC, pp. 202-207, 1997.
[9] E.I. Goldberg, Y. Kukimoto, R.K. Brayton, Canonical TBDD’s and Their

Application to Combinational Verification, Proc. IWLS, 1997.
[10] Y. Lin et al., High-Performance Carbon Nanotube Field-Effect Transis-

tor with Tunable Polarities, IEEE Trans. Nanotech., 4(5): 481-489, 2005.
[11] N. Harada et al., A polarity-controllable graphene inverter, Applied

Physics Letters, 96(1): 012102 - 012102-3, 2010.
[12] M. De Marchi et al., Polarity control in Double-Gate, Gate-All-Around

Vertically Stacked Silicon Nanowire FETs, Proc. IEDM, 2012.
[13] M.H. Ben-Jamaa et al., An Efficient Gate Library for Ambipolar CNT-

FET Logic, IEEE Trans. CAD, 30(2): 242-255, February 2011.
[14] J.M. Rabaey et al., Digital Integrated Circuits, Prentice Hall, 2003
[15] A. Bernasconi et al., On Decomposing Boolean Functions via Extended

Cofactoring, Proc. DATE, pp. 1464-1469, 2009.
[16] ABC Logic Synthesis Tool [Avilable online].

