
SPaC: A Segment-based Parallel Compression for
Backup Acceleration in Nonvolatile Processors

Xiao Sheng Yiqun Wang Yongpan Liu Huazhong Yang

{ypliu,yanghz}@tsinghua.edu.cn

Tsinghua National Laboratory for Information Science and Technology

Dept. of EE Tsinghua Univ. Beijing, 100084, China

Abstract—Nonvolatile processor (NVP) has become an emerg-
ing topic in recent years. The conventional NV processor equips
each flip-flop with a nonvolatile storage for data backup, which
results in much faster backup speed with significant area over-
heads. A compression based architecture (PRLC) solved the area
problem but with a nontrivial increasing on backup time. This
paper provides a segment-based parallel compression (SPaC)
architecture to achieve tradeoffs between area and backup speed.
Furthermore, we use an off-line and online hybrid method to
balance the workloads of different compression modules in SPaC.
Experimental results show that SPaC can achieve 76% speed up
against PRLC and meanwhile reduces the area by 16% against
conventional NV processors.

I. INTRODUCTION

Nonvolatile memory based computing system has become

a hot topic in recent years[1–6]. Nonvolatile processor (NVP),

which can instantly retain system state under power inter-

ruptions, has created new applications for low power sys-

tem consisting of energy harvesting and fine-grained power

management[7, 8]. Different from conventional processor,

NVP backs up the states in local nonvolatile flip-flops[9]

instead of external nonvolatile memory when sleep[7]. The

distributed architecture provides NVP instant and ultra low-

power sleep/wakeup features [10]. Therefore, many works

have concentrated on the NVP implementations[11–13] with

various nonvolatile materials in recent years.

The normal NVP replaces all the registers with nonvolatile

ones for fully parallel data backup (full replacement architec-

ture). However, it leads to more than 40% area overheads[13,

14]. An area efficient architecture (PRLC)[14] was proposed

to reduce the area by using compression before storing. It

can reduce the number of nonvolatile registers by 4 times.

However, the compressing and decompressing operations are

time consuming and deteriorate the sleep and wake-up speed.

In order to guarantee both the sleep/wakeup speed and area

efficiency, we propose a segment-based parallel compression

(SPaC) architecture. It is a tradeoff between the full replace-

ment architecture and the centralized compressing architecture

(PRLC). Our contributions are listed as the followings:

This work was supported in part by the NSFC under grant 60976032,
High-Tech Research and Development (863) Program under contract
2013AA013201 and National Science and Technology Major Project under
contract 2010ZX03006-003-01.

DATE’13, March 18-22, 2013, Grenoble, France.
Copyright 978-3-9815370-0-0/DATE13/©2013 EDAA

1) This paper proposes an SPaC architecture to tradeoff the

area overheads and the backup speed. It partitions the data

stream into several segments and compresses them in parallel.

2) We proposed a hybrid off-line/online method to balance

the workload of each segment to reduce the compressing time.

An off-line algorithm is used to cluster the registers to achieve

similar compressing time for each compression module, while

an online method balances the dynamic variations during

program execution.

3) We evaluate the SPaC and hybrid method in a nonvolatile

8051 processor. Several real programs are used to validate the

effectiveness. Experimental results show that the SPaC im-

proves the backup speed by up to 83% compared with PRLC

and reduces the area by 16% against the full replacement

architecture.

II. MOTIVATION

In this segment we first introduce the proposed SPaC archi-

tecture by comparing it with PRLC and the full replacement

architecture. We then evaluate SPaC and give out its design

challenges.

II.A. Architecture Comparison

The conventional NVP uses the full replacement architec-

ture to backup the system states. As Fig. 1 (a) has shown, each

register is connected to a nonvolatile cell. The backup process

is parallel and fast but leads to nontrivial area overheads due

to a large number of nonvolatile cells. An area efficient NVP

architecture (PRLC) in Fig. 1 (b)) uses a compression module

(CM) to reduce the number of nonvolatile cells as well as the

area. However, the CM compresses the data stream bit-by-bit

causing longer backup time.

In order to achieve tradeoffs between area efficiency and

backup speed, we proposed a Segment-based Parallel Com-

pression (SPaC) architecture in Fig. 1 (c). We divide the

system states into several segments and equip each segment

with an individual CM. In SPaC, all segments are compressed

in parallel to achieve a faster backup speed against PRLC.

Meanwhile, SPaC can reduce the area against the full re-

placement approach. We will evaluate SPaC’s area and speed

behaviors as below.

II.B. Area and Backup Speed Behavior

Two key metrics of SPaC are area and backup speed. We

will evaluate those metrics under different number of segments



M to show the motivation. The evaluation is based on an actual

NVP platform[10] and we find some meaningful results in

Fig. 2.

Fig. 2(a) shows the normalized chip area under different

segment number M . It represents the PRLC architecture when

M = 1. The area is approximately linear to the number of

segments, as more segments bring more additional CMs. In

our experiments, the area savings from compression cannot

compensate the area increasing of CMs when M > 7.

Moreover, we adopt the run-length encoding (RLE) algorithm

in SPaC and its compression ratio decreases when M increases

due to shorter 0/1 continuous sequence. Therefore, M in SPaC

is limited by those factors.

Fig. 2(b) shows the compression speed under different M .

Generally speaking, larger M leads to deeper parallelism and

fewer clock cycles. However, when M > 6, the speedup is

trivial. We use three curves to indicate the average value and

Fig. 1. Architecture Comparison

Fig. 2. Area and speed performance vs M

Fig. 3. SPaC structure

the upper/lower bound in Fig. 2(b). The variations come from

the input changes at different backup points. If the variation

is large, it can significantly degrade the backup speed.

In sum, SPaC will achieve a considerable promotion in the

backup speed with reasonable area increasing compared with

PRLC. We should find a good compromise point considering

both area efficiency and backup speed.

II.C. Design Challenges

The overall backup speed is determined by the slowest

segment and strongly depends on the speed difference among

all CMs. Intuitively, if we equalize the speed of all CMs,

we can achieve the fastest compressing speed. However, the

compressing speed of every CM varies at different backup

points and it is difficult to realize the optimal case. Therefore,

the key challenges of SPaC come from the speed differences

among all CMs and the workload variations. It contains two

major aspects: i) to find a partition strategy to equalize the

average compressing speed of each CM, ii) to dynamically

adjust the workload variations at different backup points.

III. SPAC DESIGN

We first illustrate the SPaC diagram in this section. Later

we proposed an offline and online hybrid method to deal with

the speed difference of all CMs in SPaC.

III.A. SPaC Architecture

Fig. 3 shows the detailed diagram of SPaC with M seg-

ments. The registers are clustered into M segments denoted as

{S1, S2, ...Sk, Bk+1, ..., BM} and each segment is connected

to a CM module for parallel compression. To support online

workload adjustment, we design a specific structure to allow

a part of segments to allocate their data to CMs from other

segments. We denotes such segments as Bi and other seg-

ments as Si. Segments Si usually have relative small speed

variations and do not support data reallocation. To dynamically

reduce the workload variations in segments Bi, we use a

set of MUXs to allocate their input data to CMs from other

segments. An online controller provides the selecting signals

for MUXs based on the following algorithm. In real cases, the

multiplexing usually leads to trivial area overheads because of

relative small number of segments Bi. Besides, we have to

add some prefix flags to record the data flow of each segment

for data recovering operations.



III.B. Offline Partition Algorithm
The offline algorithm tries to determine the length of each

segment so as to balance the compressing time in each

corresponding CM. Supposing that we partition the system

state vector V into M segments, the offline algorithm uses

an iterative way to approach equal compressing speed in each

segment. The offline algorithm is described in Algorithm 1.

Algorithm 1 Offline Algorithm

Input: V,M,Varth, loopth
Output: S = (S1, S2, . . . , SM )
Variable: std, time, step, loop
1: Si = length(V)/M for i = 1, 2, . . . ,M; std = Sth;
2: while std ≥ Sth and loop ≤ loopth do
3: time = CM(V, S)
4: std = STD(time);
5: step = ceil(std);
6: S(Indexof(max(time))) = S(Indexof(max(time)))− step
7: S(Indexof(min(time))) = S(Indexof(min(time)))− step
8: loop = loop+ 1
9: end while

The input of offline algorithm includes the system state

vector V , the number of segments M , the threshold of the stan-

dard deviation Sth and the loop limitation loopth. The output

S = (S1, S2, . . . ,SM ) represents the length of each segment.

We use the standard deviation of average compressing clock

cycles in each segment to measure the variation. In Algorithm

1, std is the temporary standard deviation under the current

partition S; time = (t1, t2, , tM ) gives out the average clock

cycles of all segments; step is the max step value to change

the vector length and loop is the iterating number.
We use the equal partition as the initial S and set std to

Sth. In each loop, we calculate the compressing time of each

segment to get time and its variation std. We find the segment

with the maximum average clock cycles in time and reduce

its vector length by one step. Similarly, the opposite operation

is performed to the segment with the minimum average clock

cycles. We keep changing S until std is smaller than Sth,

otherwise it will return an error message. In case of failure,

we either reduce Sth or set a larger loopth.

III.C. Online Balancing Algorithm
In order to decrease the dynamic workload variations, we

proposed an online strategy for segments Bi. Fig.4 shows the

structure of the multiplexing among the segments with large

variations. Each Bi is divided into two parts. The lower L
bits are denoted as BTi), and they are connected to MUXs.

The remaining parts are denoted as BHi, and they are directly

connected to CMi. During the compression, the online con-

troller monitors the complete state of each segment. Supposing

Bs completes its compression and BTi are not processed, the

online controller switches the BTi of the slowest segment to

CMs. The online algorithm is described in Algorithm 2.
The input of online algorithm is the process signal PEN

and the CM completion status vector C = [C1, C2, . . . , CK ].
The output SL = (SL1, SL2, . . . , SLK) is the select signals

of the MUXs.
During the compressing operation, the PEN signal is set

to high to enable the online controller. When one of Ci is

Fig. 4. Online multiplex structure

set to 1, it means the CM i has completed the compression.

The controller sets SLi as the index of the slowest segment

to multiplex its lower part to CM i. This operation is repeated

until the completion of all compression. In practice, we can

partition the lower bits of these blocks into more parts and

increase the multiplex degree for better performance.

Algorithm 2 Online Algorithm

Input: PEN ,C = C1,C2, . . . ,CK
Output: SL = SL1, SL2, . . . , SLK
1: Compressstart,PEN = 1
2: while PEN == 1 do
3: if Ci == 1 then
4: SLi = indexof(min(C)),Ci = 2
5: end if
6: end while

IV. EXPERIMENTS

In the experiments, we evaluated the SPaC architecture

based on an actual NVP[10] with four real benchmarks.

The timing information is extracted from Modelsim and the

area values are from Synopsys Design Compiler under SMIC

0.13um CMOS process.

Fig. 5. Performance comparison between equally partition and offline strategy

We compare metrics of an NVP using equal partition,

offline only partition and hybrid method under different M
in Fig. 5 and table I. In Fig. 5, each bar represents a segment.

The dark bar represent the average compressing clock cycles,

while the light one shows its variation. We can see that the

offline algorithm balances the workload of different segments



TABLE I
SPEED PERFORMANCE COMPARISON BETWEEN EQUALLY PARTITION,OFFLINE ONLY AND OFFLINE ONLINE HYBRID

M Equally partition Offline only Offline Online hybrid

Average 3*Std Sum Avg Var Sum Reduction/% Avg 3*Std Sum Var Reduction/% Overall Reduction/%

2 288.9 31.8 320.7 199.2 22.5 221.7 30.8 203.8 15.6 219.4 30.6 1

3 211.1 24.9 236 130.6 25.4 156 33.8 130.2 17.7 147.9 30.3 5.1

4 155.4 25 180.4 97.2 24.9 122.1 32.3 100.2 17 117.2 31.7 4

5 124.4 28 152.4 80.2 23.1 103.3 32.2 82.3 16.1 98.4 30.3 4.7

6 101.8 18.4 120.2 67.7 22.7 90.4 24.7 67.5 13.6 81.1 40 10.2

7 96.1 24 120.1 58.1 15.9 74 38.3 59.5 11.5 71 27.6 4

effectively while the online algorithm further decreases the

variations. As table I shows, the offline only partition can

improve the speed performance by 32% compared to the equal

partition. The online strategy further reduces the variations by

average 31.7% and improves the overall speed performance

by up to 10%.

TABLE II
OVERALL PERFORMANCE COMPARISON

Architecture Area Reduction/% Speed Up/%

Conventional 0 -

PRLC 30.4 0

SPaC

M=2 25.8 42.2

M=3 21 63.1

M=4 16.3 71.6

M=5 11.6 76.6

M=6 7.0 80.8

M=7 2.2 83.1

Table II shows the overall area reduction and speed improve-

ment of the SPaC architecture. It makes a tradeoff between

the full replacement architecture and PRLC. By choosing an

optimal M, we can satisfy the need of different applications

or systems. When M = 4, SPaC can achieve up to 71%

speed improvement against the PRLC and remains 16% area

reduction against the full replacement architecture at the same

time.

V. CONCLUSIONS

In this paper, we proposed an SPaC architecture to achieve

both area efficiency and fast backup speed in an NVP. It

consists of an off-line partition and an online adjustment algo-

rithm. The off-line partition algorithm accelerates the backup

speed by 32% and the online algorithm provides additional

10% speed gain. Experimental results show that the SPaC

improves the backup speed by up to 83% compared to PRLC

and reduces the area by 16% against the full replacement

architecture. Our future work will focus on the hardware

implementation of SPaC and its potential applications.

REFERENCES

[1] X. Wang, Y. Chen, H. Li, D. Dimitrov, and H. Liu, “Spin torque
random access memory down to 22 nm technology,” Magnetics, IEEE
Transactions on, vol. 44, 11 2008.

[2] Y. Chen, X. Wang, H. Li, H. Liu, and D. Dimitrov, “Design margin
exploration of spin-torque transfer ram (spram),” in Quality Electronic
Design, 2008. ISQED 2008. 9th International Symposium on. IEEE,
2008.

[3] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and
C. R. Das, “Architecting on-chip interconnects for stacked 3d stt-ram
caches in cmps,” in Computer Architecture (ISCA), 2011 38th Annual
International Symposium on. IEEE, 2011.

[4] W. Zhang, N. K. Jha, and L. Shang, “Design space exploration and data
memory architecture design for a hybrid nano/cmos dynamically recon-
figurable architecture,” ACM J. Emerging Technologies in Computing
Systems, vol. 5, no. 4, pp. 17.1–17.27, Nov. 2009.

[5] C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li, “Emerging
non-volatile memories: opportunities and challenges,” in Proceedings
of the seventh IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, ser. CODES+ISSS ’11,
2011, pp. 325–334.

[6] D. Liu, T. Wang, Y. Wang, Z. Qin, and Z. Shao, “Pcm-ftl: A write-
activity-aware nand flash memory management scheme for pcm-based
embedded systems,” in Real-Time Systems Symposium (RTSS), 2011
IEEE 32nd, 29 2011-dec. 2 2011, pp. 357 –366.

[7] M. Zwerg, A. Baumann, and R. e. Kuhn, “An 82ua/mhz microcontroller
with embedded feram for energy-harvesting applications,” in ISSCC
2011, feb. 2011, pp. 334 –336.

[8] Y. Liu, Y. Wang, H. Long, and H. Yang, “Lifetime-aware battery
allocation for wireless sensor network under cost constraints,” IEICE
Transactions, vol. 95-B, no. 5, pp. 1651–1660, 2012.

[9] J. Wang, Y. Liu, H. Yang, and H. Wang, “A compare-and-write
ferroelectric nonvolatile flip-flop for energy-harvesting applications,” in
Green Circuits and Systems (ICGCS), 2010 International Conference
on. IEEE, pp. 646–650.

[10] Y. Wang, Y. Liu, S. Li, and X. Sheng, “A 3us wake-up time nonvolatile
processor based on ferroelectric flip-flops,” in ESSCIRC 2012, 2012.

[11] Rohm Co., Ltd., “Rohm Demonstrates Nonvolatile CPU,” Web-
site:http://techon.nikkeibp.co.jp/english/NEWS EN/20071004/140206/.

[12] W. Yu, S. Rajwade, S. Wang, B. Lian, G. Suh, and E. Kan, “a non-
volatile microcontroller with integrated floating-gate transistors,” in
Proceedings of the 5th Workshop on Dependable and Secure Nanocom-
puting. ACM Press, 2011, pp. 1–4.

[13] X. Guo, E. Ipek, and T. Soyata, “Resistive computation: avoiding the
power wall with low-leakage, stt-mram based computing,” in 2010
Proceedings of the 37th annual international symposium on Computer
architecture. ACM Press, 2010.

[14] Y. Wang, Y. Liu, and Y. Liu, “A compression-based area-efficient
recovery architecture for nonvolatile processors,” in Design,Automation
and Test in Europe (DATE 2012), 2012.


