
Hybrid Interconnect Design for Heterogeneous
Hardware Accelerators

Cuong Pham-Quoc ?, Jan Heisswolf �, Stephan Werner �, Zaid Al-Ars ?, Jürgen Becker �, Koen Bertels ?

? Delft University of Technology, Netherlands, {P.PhamQuocCuong, Z.Al-Ars, K.L.M.Bertels}@tudelft.nl
� Karlsruhe Institute of Technology, Germany, {heisswolf, stephan.werner, becker}@kit.edu

Abstract—The communication infrastructure is one of the
important components of a multicore system along with the
computing cores and memories. A good interconnect design plays
a key role in improving the performance of such systems. In
this paper, we introduce a hybrid communication infrastruc-
ture using both the standard bus and our area-efficient and
delay-optimized network on chip for heterogeneous multicore
systems, especially hardware accelerator systems. An adaptive
data communication-based mapping for reconfigurable hardware
accelerators is proposed to obtain a low overhead and latency
interconnect. Experimental results show that the proposed com-
munication infrastructure and the adaptive data communication-
based mapping achieves a speed-up of 2.4× with respect to a
similar system using only a bus as interconnect. Moreover, our
proposed system achieves a reduction of energy consumption of
56% compared to the original system.

I. INTRODUCTION

The rapid progress in technology enables to integrate more
and more transistors on a single chip. Homogeneous multi-
and many-core architectures and heterogeneous Systems-on-
Chip (SoC) were introduced to utilize such large numbers of
transistors efficiently.

In the past years, a trend towards heterogeneous on chip
platforms can be observed. Intel’s Atom E6x5C Processor [1]
uses multiple RISC cores in combination with an FPGA fabric
provided by Altera. Modern mobile devices are also based on
heterogeneous SoCs combining CPUs, GPUs and specialized
accelerators on a single chip.

Bus based interconnects are very area efficient for systems
with a small number of cores. Once the number of cores rises,
bus communication becomes inefficient due to the arbitration
between all bus participants. Networks on Chips (NoC) [2]
have been proposed as efficient communication infrastructure
in large systems. NoCs allow parallel communication, increas-
ing the scalability compared to buses.

In this work, we introduce a hybrid communication infras-
tructure containing a standard bus and a light weight NoC.
The communication infrastructure can be used to accelerate
heterogeneous bus-based architectures. The proposed NoC was
designed with focus on low delay and low implementation
costs, reducing the drawbacks of network interconnects. A
communication aware mapping of the hardware accelerators
to the proposed communication infrastructure is introduced.
The Molen architecture extended with the NoC is used for
our experiments.

The rest of this paper is organized as follows: Section
II gives an overview on heterogeneous systems. Section III
describes our general concept. Section IV explains the used
communication infrastructure. Section V introduces the adap-
tive communication aware mapping of accelerator functions.
Experimental results are presented in Section VI. A conclusion

is given in Section VII.

II. RELATED WORK

In this section, an overview on existing heterogeneous
multicore architectures, addressed by the proposed intercon-
nect concept, is introduced. The Molen architecture [3] is a
heterogeneous, shared memory system for software/hardware
co-design. It combines one General Purpose Processor (GPP)
with one or more dynamically reconfigurable Custom Com-
puting Unit(s) (CCUs), so that the GPP can use them as
a reconfigurable coprocessor. Each CCU has its own local
memory which stores the data to be processed by the CCU.
Data can be exchanged directly between the GPP and a CCU
by using exchange registers through an on-chip standard bus.
Alternatively the CCU can exchange data with the external
memory using a centralized DMA controller. So the limitation
of this architecture is that all CCUs and the GPP share one
bus for accessing the external memory.

The MORPHEUS architecture [4] has an ARM9 embedded
RISC processor taking care for the control flow and syn-
chronization, and three heterogeneous reconfigurable engines
(HREs) for accelerating application kernels. The control in-
frastructure is done via an AMBA AHB bus which connects
HREs and the ARM9 processor. The control flow is also
performed via exchange registers. An exotic Spidergon NoC is
used to transfer data among HREs, main memory and off-chip
memory. The data transfers via the NoC may be triggered by
a Direct Network Access (DNA) hardware module.

A Warp processor [5] consists of a GPP, an on-chip profiler,
an on-chip computer aid design module (CAD) and a warp-
oriented FPGA (w-FPGA). The GPP executes the software
part of an application while the critical software regions are
synthesized and mapped onto the w-FPGA. The selection,
synthesis and mapping are done automatically by the profiler
and the CAD module. The w-FPGA and the processor share
the main data cache by using a mutually exclusive execution
model. The main process, CAD module and the w-FPGA are
connected together through an on-chip standard bus.

LegUp [6] is an open source high-level synthesis tool
for FPGA-based processor/accelerators systems. The target
system contains a processor connecting with custom hardware
accelerators through a standard on-chip bus interface. In the
current version a shared memory architecture is used for ex-
changing variables between the processor and the accelerators.
The shared memory uses an on-FPGA data cache and off-chip
memory.

III. OVERVIEW AND CONCEPT

Bus and NoC are two interconnect architectures for System on
Chip. Compared to the NoC architecture, the bus architecture has

978-3-9815370-0-0/DATE13/ c© 2013 EDAA



TABLE I
COMPARISON OF A liteNOC ROUTER, A HERMES ROUTER AND A LIPAR ROUTER

PARAMETER HERMES liteNoC liteNoC Freq. LiPaR liteNoC liteNoC Freq.
Latency (1Flit,1Hop) / (4Flit,2Hop) 12 / 28 cycles 3 / 8 cycles 3 / 8 cycles 10 / 28 cycles 3 / 8 cycles 3 / 8 cycles
Used FPGA Device Xilinx XC2V1000 Xilinx XC2VP30
Clock Freq. (MHz) 25 80 135 33.33 65 115
Throughput (Mbits/s) 500 3200 5400 1333 2600 4600
Slices / LUTs 278 / 555 275 / 459 330 / 547 352 / 772 583 / 957 706 / 1283
Flip Flops / BRAMs 172 / 0 134 / 0 197 / 0 478 / 10 240 / 0 358 / 0

some certain advantages such as being directly compatible with
most available IPs including GPP [7]. However, the competition
of the connected modules to access the bus introduces arbitrary
latencies. Meanwhile, the NoC architecture is emerging as a high
level interconnect solution ensuring parallelism and high perfor-
mance while issues such as latency and high area cost need to be
addressed.

Most heterogeneous architectures introduced in Section II use
only a bus as interconnect (as depicted in Figure 1(a)). In this
work, we use both the NoC and the bus as interconnect between
computing cores to make use of the advantages both types provide.
The NoC is used to transfer data from one hardware accelerator
to another while the bus is used to exchange control parameters
as well as data between the GPP and the hardware accelerators.
Figure 1(b) depicts the concept system. In this architecture, we
assume each hardware accelerator has its own local memory to
improve the performance. Using only the NoC as interconnect is
an alternative solution. However, this solution will be incurred a
higher hardware overhead for the network interface at the GPP and
higher delay in the communication between the GPP and the local
memory compared to the bus.

A Warp processor [7] consists of a main general purpose
processor, an efficient on chip profiler, an on-chip computer
aid design module (CAD) and a warp-oriented FPGA (w-
FPGA). The main processor executes the software part of an
application while the critical software regions are synthesized
and mapped onto the w-FPGA. The selection, synthesis and
mapping the critical software kernels are done automatically
by the profiler and the CAD module. The w-FPGA and the
processor share the main data cache by using a mutually
exclusive execution model. The main process, CAD module
and the w-FPGA are connected together through an on-chip
standard bus to configure the w-FGPA as well as to provide a
mechanism for communication and synchronization between
the main processor and the w-FPGA.

LegUp [5] is an open source high-level synthesis tool
for FPGA-based processor/accelerators systems. The target
system contains a processor connecting with custom hardware
accelerators through a standard on-chip bus interface. The
current version is implemented on Altera Cyclone II FPGA
with Altera Avalon Bus as the interface for processor and
accelerators communication. In this version, shared memory
architecture is used for exchanging variables between the
processor and the accelerators. The shared memory uses
an on-FPGA data cache and off-chip memory. The authors
indicate that limitations of the bus system need to be further
investigated.

III. OVERVIEW AND CONCEPT

Bus and NoC are two interconnect architectures for System
on Chip. Compared to the NoC architecture, the bus archi-
tecture has some certain advantages such as being directly
compatible with most available IPs including GPP [8]. The
main disadvantage of the bus architecture is the competition of
the connected modules to access the bus introducing arbitrary
latencies. Meanwhile, the NoC architecture is emerging as a
high level interconnect solution ensuring parallelism and high
performance. However in a NoC design, issues such as latency
and high area cost need to be addressed.

In hardware accelerator systems such as Molen, MOR-
PHEUS, and LegUp, besides the main memory (on-chip or
off-chip memory), each hardware accelerator has its own local
memory to improve the performance. Hence, we assume that
each hardware accelerator has its local memory to store data
input. Most heterogeneous architectures introduced in Section
II, use only a bus as interconnect. In this work, we use both of
them as interconnect between computing cores to make use of
the advantages both types provide. The NoC is used to transfer
data from one hardware accelerator to another while the bus is
used to exchange control parameters as well as data between
the GPP and the hardware accelerators. Figure 1 depicts the
concept system. Using only the NoC as interconnect is an
alternative solution. However, this solution will be incurred a
higher hardware overhead for the network interface at the GPP
and higher delay in the communication between the GPP and
the local memory compared to the bus.

The performance and the hardware overhead of a heteroge-
neous multicore systems depend on the way the hardware ac-
celerators are connected to the communication infrastructure.
There are two ways to map the connections: static and adaptive
mapping. In the simple static mapping strategy, all hardware
accelerators are connected to the NoC routers. All the local
memories are also connected to the bus to communicate

Main MemGPP

LMi

BUS

LM: Local Memory
HW: Hardware

LM0

HW0

LMk

HWkNoC

HWi

Main MemoryGPP

BUS

Reconfigurable area
CCU0

LM

CCU1

LM

CCUn

LM

...

...

Fig. 1: Overview of the proposed hybrid design

Main MemGPP

LMi

BUS

LM: Local Memory
HW: Hardware

LM0

HW0

LMk

HWkNoC

HWi

Main MemoryGPP

BUS

Reconfigurable area
CCU0

LM

CCU1

LM

CCUn

LM

...

...

(a)

Main MemGPP

LMi

BUS

LM: Local Memory
HW: Hardware

LM0

HW0

LMk

HWkNoC

HWi

Main MemoryGPP

BUS

Reconfigurable area
CCU0

LM

CCU1

LM

CCUn

LM

...

...

(b)

Fig. 2: Shared hardware accelerator local memory

with the GPP. However, the more hardware accelerators are
connected to the NoC, the more routers and network interfaces
(NIs) are needed. This way of connecting will cause high
area overhead. Therefore, an adaptive low area overhead and
low latency strategy for mapping hardware accelerators and
local memories to the NoC routers and the bus is an essential
demand.

In the literature, most mapping research focuses on map-
ping heterogeneous computing cores to a NoC only [9]. We
introduce a new adaptive data communication-based mapping
to map the hardware accelerators to our hybrid communication
infrastructure. Another difference of our approach compared to
other work is that we take the actual data transferred between
cores into account instead of using static information such as
task graphs.

IV. COMMUNICATIONS INFRASTRUCTURE

The proposed hybrid interconnect consists of a low overhead
NoC and a on chip bus. Both communication infrastructures
are discussed in the following A Network on Chip (NoC)
typically comprises routers, which are connected to each other,
as well as network interfaces (NIs) which represent interface
components attached to the NoC. In the following sections
our area-efficient, delay-optimized NoC called liteNoC and its
network interface are explained.
A. Router

liteNoC is a packet switching meshed NoC using wormhole
flow control [10] and XY-routing. Packets are divided into a
header, body and a tail flits of equal size. The buffers are
located at the input ports. A header flit arriving at the input
port triggers a routing and reservation of the output port.
After reservation is finished, the flits of the packet can be
transmitted, if a buffer slot is available in the neighboring
router. A credit based flow control mechanism is implemented
for buffer management.

Fig. 1. (a) The Molen architecture; (b) Overview of the proposed hybrid design
There are two ways to map the connections: static and adaptive

mapping. In the simple static mapping strategy, all hardware accel-
erators are connected to the NoC routers. All the local memories
are also connected to the bus to communicate with the GPP.
However, this way of connecting will cause high area overhead
due to more routers are required. In the literature, most mapping
research focuses on mapping heterogeneous computing cores to a
NoC only [8]. We introduce a new adaptive data communication-
based mapping to map the hardware accelerators to our hybrid
communication infrastructure. Another difference of our approach
compared to other work is that we take the actual data transferred
between cores into account instead of using static information such
as task graphs.

IV. COMMUNICATIONS INFRASTRUCTURE

The proposed hybrid interconnect consists of a low overhead
NoC and a on chip bus. A NoC typically comprises routers, which
are connected to each other, as well as network interfaces (NIs)
which represent interface components attached to the NoC. In
the following sections our area-efficient, delay-optimized NoC is
called liteNoC and its infrastructure is explained.

A. Router
liteNoC is a packet switching meshed NoC using wormhole flow

control [9] and XY-routing. Packets are divided into a header, body
and a tail flit of equal size. The buffers are located at the input
ports. A header flit arriving at the input port triggers a routing

and reservation of the output port. After reservation is finished, the
flits of the packet can be transmitted, if a buffer slot is available in
the neighboring router. A credit based flow control mechanism is
implemented for buffer management.

The liteNoC router is optimized to decrease transmission delay,
reducing the disadvantage of NoCs compared to buses. When a
header flit arrives at the input buffer, the reservation of the output
port can be performed in only one cycle. Once the reservation is
performed, a flit available in the buffer is forwarded in one cycle
to the buffer of the next router. Due to the used credit based flow
control, no wait cycles are required between transmission of flits of
the same packet. The minimum latency in clock cycles to transfer
a packet is calculated by:

latency = (2 ∗H) + S (1)
where H is the number of hops and S the packet size.

Since we claimed to have a light weight NoC FPGA implemen-
tation with low delay, we compared the performance and resource
utilization of liteNoC to two other packet switching router designs
with XY-routing which claim to be light weight for FPGA imple-
mentation: HERMES [10] and LiPaR [11]. For a fair comparison
we synthesized different versions of the NoCs using the FPGA
devices and parameters of the results presented for HERMES and
LiPaR in [10] and [11].

Table I shows the comparison to the HERMES NoC. A 2x2
meshed NoC with flit size of 8bit and a buffer size of 8 slots
was used. For a moderate clock frequency of 80MHz liteNoC
outperforms HERMES in all aspects. Once the clock frequency
is tuned to 135MHz, liteNoC resource utilization is slightly higher
compared to HERMES.

LiPaR is another NoC which is optimized for an efficient FPGA
implementation. In [11] synthesis results of a standalone LiPaR
router are presented. These results are also summarized in Table I
as well as the results of a liteNoC router with equal parameters
(flit size 8bit, buffer size 16 slots) synthesized for the same Xilinx
XC2VP30 device. For a standalone router LiPaR outnumbers the
liteNoC router resource utilization. liteNoC outperforms LiPaR
regarding latency as well as clock frequency an has thus a much
better performance and throughput. Additional synthesis results
presented in [11] show that liteNoC outnumbers LiPaR in terms
of slice utilization for a 2x2 NoC.

B. Network interface
Depending on the communication topology between hardware

accelerators of a specific application, the output of one hardware
accelerator can be sent to the local memory of another hardware
accelerator through the NoC or be written back to its local memory.
The NI attaching the hardware accelerator to the NoC can decide
by analyzing the memory addresses of incoming requests, weather
data are forwarded to the local memory or transmitted to another
node via the NoC. Therefore, the local memory of each accelerator
is also connected to the NoC. This NI connecting the memory
decodes the flits from the NoC into a data part and an address part
used as input signals for the memory.

C. Bus-based interconnect
The second part of the hybrid interconnect is an on chip bus

used for the communication between the GPP and the hardware



accelerators. The communication intends to send controls from the
GPP to the hardware accelerators and exchange data. The GPP uses
the bus to transfer data between the main memory and the local
memory of the hardware accelerators. It is also used to connect
peripherals using standard bus interfaces. Data exchange between
the GPP and the hardware accelerators use the bus, while data
exchange among the hardware accelerators is performed by the
NoC.

V. ADAPTIVE DATA COMMUNICATION-BASED MAPPING

In this section, an adaptive data communication-based mapping
strategy for the hybrid communication infrastructure is proposed.
The communication topology among functions in the application
decides whether a hardware accelerator and its local memory is
connected to the bus only or the NoC only or to both. We use the
QUAD [12] open source toolset to analyze the data exchange inside
the application and generate the data communication graph.

There are three different cases in which the hardware accelerator
receives data: 1) from other hardware accelerators only (C1);
2) from the GPP only (C2); and 3) from both (C3). Similarly, there
are three different cases in which the hardware accelerator sends
data: 1) to other hardware accelerators only (P1); 2) to the GPP
only (P2); and 3) to both (P3).

There are two options for the connection between the hardware
accelerator and the NoC: 1) either the hardware accelerator is not
connected with the NoC (H1) or 2) it is connected with the NoC
(H2). Similarly, there are three options for the connection of the
local memory with the bus and the NoC: 1) the local memory is
connected only to the bus (M1); 2) or to the NoC (M2); or 3) it is
connected to both (M3).

The proposed adaptive data communication-based mapping is
shown in Equation 2 which decides the interconnect for a hardware
accelerator and its local memory based on the communication of
the hardware accelerator and other components (the GPP and other
hardware accelerators).

f : Communication→ Interconnect (2)

where the Communication = {C1, C2, C3} × {P1, P2, P3} and
the Interconnect = {H1, H2} × {M1,M2,M3}.

Table II shows the mapping of the communication topology
to the interconnect topology. The interconnect value {H1,M2}
is not feasible as the result of the hardware accelerator will be
inaccessible by any other function.

TABLE II
ADAPTIVE MAPPING FUNCTION

Communication Interconnect
{C1, P1} {H2,M2}

{C1, P2}, {C3, P2} {H1,M3}
{C1, P3}, {C3, P1}, {C3, P3} {H2,M3}

{C2, P1}, {C2, P3} {H2,M1}
{C2, P2} {H1,M1}

VI. EXPERIMENTS

A. Setup
A Xilinx ML510 [13] board containing a XC5VFX130T-

FF1738 FPGA device is used to setup our experiments. First the ex-
perimental applications are executed on the hardwired PowerPC at
400MHz to get the software execution time. We then implement the
applications with the Molen platform (depicted in Figure 1(a)) in
which the hardware accelerators (executed at 100MHz) are mapped
onto reconfigurable area and the PowerPC is used as the GPP.
Due to the hardware limitation, at most 5 CCUs are accelerated
with the Molen. Finally, the applications are implemented with the
Molen platform using the proposed communication infrastructure
with both the bus and the NoC (called Molen with NoC). A Xilinx

PLB bus and the 3 × 2 liteNoC (run at 100MHz) are used as the
hybrid communication infrastructure as shown in Figure 1(b).

Four applications are used for the experiments. Here, we present
the detail of the Canny edge detection application [14]. The 4
most computationally intensive functions of the Canny application
are chosen to be accelerated on the hardware accelerators. The
application is analyzed by the QUAD tool to extract the data com-
munication graph (as depicted in Figure 2). Accelerated functions
have a “hw ” prefix. All other functions are executed on the GPP.

According to the graph, hw gaussian smooth consumes data
from the GPP and sends data to another hardware accelerator; it is
classified to {C2, P1}. Following Table II, the communication case
{C2, P1} is mapped onto the interconnect case {H2,M1}; i.e. the
corresponding hardware accelerator for this function is connected
to the NoC via the NI while its local memory is connected with
the bus. The connections of the hardware accelerators of other
functions are deduced in a similar way (see Figure 2).

We performed the experiment with the BRAM as the local
memories of the hardware accelerators. Each BRAM has only two
ports while local memories of the hardware accelerators for func-
tions hw magnitude x y and hw non max supp are accessed by
three different components (the bus, the NoC and the accelerator).
Therefore, a simple multiplexer is used.

Router
1

Router
2

Router
3

Router
4

Router
5

Router
6

Router
7

Router
8

Router
9

Router
11

Router
12

CCU1

PLB-Bus

BRAM1

NI
1

CCU5 BRAM5

NI
5

CCU2 BRAM2NI
2

CCU3 BRAM3NI
3

Router
10

CCU4 BRAM4NI
4

DATA_ADDR1 1 0 Router
ADDR

Other parts of
Head flit 0 WRITE_DATA 1 TAIL

NI
2

NI
3

NI
4

Router
1

Router
2

Router
3

Router
4

Router
5

Router
6

Router
7

Router
8

Router
9

Router
11

Router
12

CCU1

PLB-Bus

BRAM1 CCU5 BRAM5

CCU2 BRAM2NI
2

CCU3 BRAM3NI
3

Router
10

CCU4 BRAM4NI
4

NI
2

NI
3

NI
4

NI
2

NI
2

NI
2

NI
2

Router
1

Router
2

Router
3

Router
4

Router
5

Router
6

Router
7

Router
8

Router
9

Router
11

Router
12

CCU1

PLB-Bus

BRAM1 CCU5 BRAM5

BRAM2

BRAM3

Router
10

CCU4BRAM4
NI
4

NI
2

NI
3

NI
4

NI
2

NI
2

NI
2

NI
2

CCU2 NI
2

CCU3 NI
3

Router
0 (000)

Router
1 (010)

Router
2 (100)

Router
3 (001)

Router
4 (011)

Router 5
(101)

CCU0

PLB-Bus

BRAM0 CCU2 BRAM2

BRAM1

CCU3

NI
1

NI
0

NI
2

CCU1 NI
1

BRAM3
NI
3iNoC from KIT

Y-coordinator

X-coordinator

CCU4

CCU3

CCU2

CCU1

CCU0

70 111

40

80

120

160

80

199

200

CCU
NoC

NA_4

CCU
NoC

NA_3

CCU
NoC

NA_2

CCU
NoC

NA_1

CCU
NoC

NA_0

64

62

60

N
O
C

Router
0 (000)

Router
1 (010)

Router
2 (100)

Router
3 (001)

Router
4 (011)

Router 5
(101)

CCU0

PLB-Bus

BRAM0 CCU2 BRAM2

BRAM1

CCU3

NI
1

NI
0

NI
2

CCU1 NI
1

BRAM3NI
3iNoC from KIT

(1854/81920 LUTs)

BRAM4

CCU4

CROSSBAR

PPC
Memroy

DMA

378 LUTs378 LUTs

60 LUTs

309 LUTs

201 LUTs

700 LUTs

Router
0 (000)

Router
1 (010)

Router
2 (100)

Router
3 (001)

Router
4 (011)

Router 5
(101)

CCU0

PLB-Bus

BRAM0

BRAM1

CCU3

NI
1

NI
0

CCU1 NI
1

BRAM3NI
3iNoC from KIT

(1854/81920 LUTs)

BRAM4

CCU4

CROSSBAR

PPC
Memroy

DMA

378 LUTs378 LUTs

60 LUTs

309 LUTs

201 LUTs

700 LUTs

Router
0 (000)

Router
1 (010)

Router
2 (100)

Router
3 (001)

Router
4 (011)

Router 5
(101)

PLB-Bus

Local 
Memory 0

Local 
Memory 1

NI
1

NI
0

NI
1

Local 
Memory 2

NI
2

Local 
Memory 3

PPC
Main Memroy

NI
2

NI
3

hw_non_max_supp
(CCU3)

hw_gaussian_smooth
(CCU0)

hw_derrivative_x_y
(CCU1)

hw_magnitude_x_y
(CCU2)

Router
0 (000)

Router
1 (010)

Router
2 (100)

Router
3 (001)

Router
4 (011)

Router 5
(101)

PLB-Bus

Local 
Memory 0

Local 
Memory 1

NI
1

NI
0

NI
1

Local 
Memory 2

NI
2

Local 
Memory 3

PPC
Main Memroy

NI
2

NI
3

hw_non_max_supp
(CCU3)

hw_gaussian_smooth
(CCU0)

hw_derrivative_x_y
(CCU1)

hw_magnitude_x_y
(CCU2)

Router 0 Router
1 (010)

Router
2 (100)

Router 1 Router
4 (011)

Router 5
(101)

CCU0

PLB-Bus

BRAM0

BRAM1

CCU3

NI
1

NI
0

CCU1 NI
1

BRAM3NI
3 BRAM4

CCU4

CROSSBAR

PPC
Memroy

DMA

378 LUTs378 LUTs

60 LUTs

309 LUTs

201 LUTs

700 LUTs

hw_gaussian_smooth

hw_derrivative_x_y

hw_magnitude_x_y

hw_non_max_supp

Out of monitor list

569240 bytes (53200 UMA)

106400 bytes (26600 UMA)

64112 bytes (50440 UMA)

106400 bytes (53200 UMA)

126100 bytes (26072 UMA)

232 bytes (232 UMA)

Out of monitor list

R0 R1 R2

R3 R4 R5

PLB-Bus

Local 
Memory 0

Local 
Memory 1

NI
1

NI
0

NI
1

Local 
Memory 2

NI
2

Local 
Memory 3

Main Memroy

NI
2

NI
3

hw_non_max_supp
(CCU3)

hw_gaussian_smooth
(CCU0)

hw_derrivative_x_y
(CCU1)

hw_magnitude_x_y
(CCU2)

PPC

Fig. 2. The data communication graph and the Molen with NoC system for the
Canny application

B. Results
Besides the Canny application, we performed the experiment

with three other applications: the jpeg decoder from PowerStone
benchmark [15], KLT feature tracker [16] and Fluid simulation
[17]. The computation time and the communication time were
measured for each hardware accelerator. In addition, the total
execution time of the applications on the software, the original
Molen, and the Molen with NoC were analyzed to compare the
overall speed-up.

Table III shows the computation and the communication time as
well as the speed-up of the Molen and Molen with NoC systems.
For Canny and Fluid, the computation time of hardware acceler-
ators (Column 8) in the Molen with NoC slightly increases com-
pared to the original Molen (Column 4) because some hardware
accelerators have to send their results to more than one local mem-
ories. However, the accompanied reduction in the communication
time results in a lower overall execution time. For all applications
the Molen with NoC extremely reduces the communication time
by a factor of at least 1.86× and up to 5.56×. When the proposed
communication infrastructure is exploited, it increases the speed-
up of the overall application and the hardware accelerators by
3.72× and 6.58×, respectively. Figure 3(a) compares the speed-
up between the two systems. This figure also shows the speed-
up of hardware accelerators in the Molen system with NoC with
respect to the original Molen system. Compared to the original
Molen architecture, speed-ups of up to 2.4× are obtained.

Table IV presents the hardware resource utilization for accelera-
tors and communication infrastructure in the Molen and the Molen
with NoC systems in terms of the number of LUTs and the number



TABLE III
EXECUTION TIME OF HARDWARE ACCELERATORS AND SPEED-UP

Application # acc. Software Molen Molen with NoC
comp. comm. acc. speedup app. speedup comp. comm. acc. speedup app. speedup

Canny 4 41.82ms 17.72ms 5.15ms 1.83× 1.70× 17.80ms 1.47ms 2.17× 1.97×
jpeg 4 7.79ms 2.07ms 7.52ms 0.81× 0.81× 2.07ms 1.93ms 1.95× 1.86×
KLT 3 1,812ms 99.38ms 328.24ms 4.23× 2.93× 99.38ms 175.80ms 6.58× 3.72×
Fluid 5 54.60ms 24.33ms 27.62ms 1.05× 1.04× 27.55ms 4.96ms 1.68× 1.66×

comm.: communication time; comp. computation time; acc.: accelerators; app.: application

of Registers. A 3×2 liteNoC taking 1854 LUTs and 2122 Registers
is used for all applications. Therefore we do not show these number
for each application. The maximum amount of resources used for
the communication infrastructure in the experiments takes only
5.8% of FPGA area.

TABLE IV
HARDWARE RESOURCE UTILIZATION (#LUTS/#REGISTERS)

Application Original Molen with NoC
Accelerator Accelerator NI Total

Canny 8878/12519 8999/12938 1578/1581 12431/16641
jpeg 10707/11722 10707/11722 1140/1054 13701/14898
KLT 3673/5242 3673/5242 570/527 6097/7891
Fluid 18167/28605 19848/31353 2454/2635 24156/36110

Table V gives a comparison of hardware resource utilization
for the mapping using the proposed adaptive data communication-
based and the static mapping in which all hardware accelerators
and their local memories are connected to the NoC. The compari-
son takes the number of LUTs and registers used for the NIs and the
multiplexers into consideration. The adaptive data communication-
based mapping takes less resources than the static mapping. The
proposed adaptive mapping saved up to 66.7% LUTs and registers
compared to the static mapping.

TABLE V
HARDWARE RESOURCE UTILIZATION COMPARISON BETWEEN THE PROPOSED

MAPPING STRATEGY AND THE STATIC MAPPING

Application Proposed mapping Static mapping
(#LUTs/#registers) (#LUTs/#registers)

Canny 1578/1581 2280/2108
jpeg 1140/1054 2280/2108
KLT 570/527 1710/1581
Fluid 2454/2635 2850/2635

Figure 3(b) presents the comparison of the energy consumption
of the Molen and the Molen with NoC systems, normalized to
the consumption of the Molen system. We used Xilinx XPower
Analyzer to estimate the power consumption of each application.
The energy consumption is given by the product of power con-
sumption and execution time. As shown in the figure, the Molen
with NoC outperforms the Molen in all applications in terms of
energy consumption. The maximum energy saved is 56% for the
jpeg application.

TABLE IV: Execution time hardware accelerators
Application # Accelerators Software time Molen Molen with NoC

computation communication computation communication
Canny 4 41.82ms 17.72ms 5.15ms 17.80ms 1.47ms
jpeg 4 7.79ms 2.07ms 7.52ms 2.07ms 1.93ms
KLT 3 1,812ms 99.38ms 328.24ms 99.38ms 175.80ms
Fluid 5 54.60ms 24.33ms 27.62ms 27.55ms 4.96ms

Table VII gives a comparison of hardware resource uti-
lization for the mapping using proposed adaptive data
communication-based mapping and the static mapping in
which all hardware accelerators and their local memories are
connected to the NoC. As aforementioned, we use the 3 × 2
NoC for all applications. Therefore, the comparison takes the
number of LUTs and registers (Flip-Flops) used for the NIs
and the multiplexers into consideration only. The adaptive data
communication-based mapping takes less resources than the
static mapping.

TABLE VII: Hardware resource utilization comparison be-
tween the proposed mapping strategy and the static mapping

Application Proposed mapping Static mapping
(#LUTs/#registers) (#LUTs/#registers)

Canny 1578/1581 2280/2108
jpeg 1140/1054 2280/2108
KLT 570/527 1710/1581
Fluid 2454/2635 2850/2635

Figure 8b presents the comparison of the energy consump-
tion of the Molen and the Molen with NoC systems. The
energy consumption is normalized to the energy consumption
of the Molen system. We used Xilinx XPower Analyzer and
Xilinx XPower Estimation to estimate the power consumption
of each application in the two systems. The energy consump-
tion is estimated by the power consumption of the system
multiplied by the execution time. For both the system, the
power consumption is almost identical, with a sligtly increase
in the Molen with NoC system. As shown in the figure, the
Molen with NoC outperforms the Molen in all applications.
The maximum energy can be saved is 56% for the jpeg
application.

TABLE IV: Execution time hardware accelerators
Application # Accelerators Software time Molen Molen with NoC

computation communication computation communication
Canny 4 41.82ms 17.72ms 5.15ms 17.80ms 1.47ms
jpeg 4 7.79ms 2.07ms 7.52ms 2.07ms 1.93ms
KLT 3 1,812ms 99.38ms 328.24ms 99.38ms 175.80ms
Fluid 5 54.60ms 24.33ms 27.62ms 27.55ms 4.96ms

and total (sum of accelerators, network adapters and the NoC),
respectively. The maximum amount of resources used for the
communication infrastructure in the experiment takes only
5.8% of FPGA area. The results show that the Molen with
our proposed communication infrastructure outperforms the
original Molen system.

TABLE VI: Hardware resource utilization (#LUTs/#Registers)
Application Original Molen with NoC

Accelerator Accelerator NA Total
Canny 8878/12519 8999/12938 1578/1581 12431/16641
jpeg 10707/11722 10707/11722 1140/1054 13701/14898
KLT 3673/5242 3673/5242 570/527 6097/7891
Fluid 18167/28605 19848/31353 2454/2635 24156/36110

Table VII gives a comparison of hardware resource uti-
lization for the mapping using proposed adaptive data
communication-based mapping and the static mapping in
which all hardware accelerators and their local memories are
connected to the NoC. As aforementioned, we use the 3 × 2
NoC for all applications. Therefore, the comparison takes the
number of LUTs and registers (Flip-Flops) used for the NAs
and the multiplexers into consideration only. The adaptive data
communication-based mapping takes less resources than the
static mapping.

TABLE VII: Hardware resource utilization comparison be-
tween the proposed mapping strategy and the static mapping

Application Proposed mapping Static mapping
(#LUTs/#registers) (#LUTs/#registers)

Canny 1578/1581 2280/2108
jpeg 1140/1054 2280/2108
KLT 570/527 1710/1581
Fluid 2454/2635 2850/2635

Figure 9 presents the comparison of the energy consumption
of the Molen and the Molen with NoC systems. The energy
consumption is normalized to the energy consumption of the
Molen system. We used Xilinx XPower Analyzer and Xilinx
XPower Estimation to estimate the power consumption of each
application in the two systems. The energy consumption is
estimated by the power consumption of the system multiplied
by the execution time. For both the system, the power con-
sumption is almost identical, with a sligtly increase in the
Molen with NoC system. As shown in the figure, the Molen
with NoC outperforms the Molen in all applications. The
maximum energy can be saved is 56% for the jpeg application.

VII. CONCLUSION

In this paper, we presented a communication infrastructure
that includes a standard bus system and a newly proposed area
efficient, delay optimized NoC for accelerating heterogeneous
architectures, especially hardware/software co-design. The bus
is used for data exchange between the GPP and the hardware
accelerators while data exchange among the hardware accel-
erators is performed by the NoC. We also introduced a new
adaptive data communication-based mapping strategy to map
hardware accelerators to our communication infrastructure. We
did the experiment with the Molen architecture. The original

0

1

2

3

4

5

6

7

Canny jpeg KLT Fluid

App. Molen

HW Molen

App. Molen NoC

HW Molen NoC

HW Molen/Molen NoC

0

20

40

60

80

100

120

Canny jpeg KLT Fluid

Molen Molen with NoC

Fig. 9: Energy consumption of Molen and Molen with NoC
systems

0

1

2

3

4

5

6

7

Canny jpeg KLT Fluid

App. Molen

HW Molen

App. Molen NoC

HW Molen NoC

HW Molen/Molen NoC

0

20

40

60

80

100

120

Canny jpeg KLT Fluid

Molen Molen with NoC

(a)

0

1

2

3

4

5

6

7

Canny jpeg KLT Fluid

App. Molen

HW Molen

App. Molen NoC

HW Molen NoC

HW Molen/Molen NoC

0

20

40

60

80

100

120

Canny jpeg KLT Fluid

Molen Molen with NoC

(b)

Fig. 10: Energy consumption of Molen and Molen with NoC
systems

Molen is extended with our communication infrastructure. The
results show that the extended system achieves a speed-up of
a 2.4×, with respect to the original system. We also manage
to save up to 56% energy consumption in comparison with
the original system.

REFERENCES

[1] “NVIDIA Kepler GK110 Architecture Whitepaper,” 2012. [Online].
Available: http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf

[2] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts, “A fully integrated
multi-CPU, GPU and memory controller 32nm processor,” in ISSCC,
2011.

[3] “Intel R© atomTM processor E6x5C series-based plat-
form for embedded computing.” [Online]. Available:
http://download.intel.com/embedded/processors/prodbrief/324535.pdf

[4] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan, “Heterogeneous
chip multiprocessors,” Computer, 2005.

[5] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,”
Computer, 2002.

[6] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. Panainte, “The MOLEN polymorphic processor,” Computer, 2004.

[7] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. An-
derson, S. Brown, and T. Czajkowski, “LegUp: high-level synthesis
for FPGA-based processor/accelerator systems,” in Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate
arrays. ACM, pp. 33–36.

[8] M. Kuhnle, M. Hubner, J. Becker, A. Coppola, L. Pieralisi, R. Locatelli,
G. Maruccia, T. DeMarco, F. Campi, A. Deledda, C. Mucci, and F. Ries,
“An interconnect strategy for a heterogeneous, reconfigurable SoC,”
Design Test of Computers, 2008.

[9] R. Lysecky and F. Vahid, “Design and implementation of a microblaze-
based warp processor,” ACM Trans. Embed. Comput. Syst., 2009.

Fig. 8: (a) Overall application speed-up and hardware accel-
erators speed-up of Molen and Molen with NoC systems; (b)
Energy consumption of Molen and Molen with NoC systems

VII. CONCLUSION

In this paper, we presented a hybrid communication in-
frastructure that includes a standard bus system and a newly
proposed area efficient, delay optimized NoC for accelerating
heterogeneous architectures, especially hardware/software co-
design. The bus is used for data exchange between the GPP

App. Molen HW Molen HW Molen/Molen NoC
1.97 2.17 1.186819
1.86 1.95 2.3975
3.72 6.58 1.553965
1.66 1.68 1.59797

0

1

2

3

4

5

6

7

Canny jpeg KLT Fluid

Sp
ee

d-
up

 

App. Molen

HW Molen

App. Molen NoC

HW Molen NoC

HW Molen/Molen NoC

(a)

0

20

40

60

80

100

120

Canny jpeg KLT Fluid

En
er

gy
 re

du
ct

io
n 

Molen Molen with NoC

(b)

Fig. 9: Energy consumption of Molen and Molen with NoC
systems

and the hardware accelerators while data exchange among
the hardware accelerators is performed by the NoC. We also
introduced a new adaptive data communication-based mapping
strategy to map hardware accelerators to our communication
infrastructure. We did the experiment with the Molen archi-
tecture. The original Molen is extended with our commu-
nication infrastructure. The results show that the extended
system achieves a speed-up of a 2.4×, with respect to the
original system. We also manage to save up to 56% energy
consumption in comparison with the original system.

REFERENCES

[1] “NVIDIA Kepler GK110 Architecture Whitepaper,” 2012. [Online].
Available: http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf

[2] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts, “A fully integrated
multi-CPU, GPU and memory controller 32nm processor,” in ISSCC,
2011.

[3] “Intel R© atomTM processor E6x5C series-based platform
for embedded computing,” 2010. [Online]. Available:
http://download.intel.com/embedded/processors/prodbrief/324535.pdf

[4] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan, “Heterogeneous
chip multiprocessors,” Computer, 2005.

[5] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,”
Computer, 2002.

[6] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. Panainte, “The MOLEN polymorphic processor,” Computer, 2004.

[7] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. An-
derson, S. Brown, and T. Czajkowski, “LegUp: high-level synthesis
for FPGA-based processor/accelerator systems,” in Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate
arrays. ACM, pp. 33–36.

[8] M. Kuhnle, M. Hubner, J. Becker, A. Coppola, L. Pieralisi, R. Locatelli,
G. Maruccia, T. DeMarco, F. Campi, A. Deledda, C. Mucci, and F. Ries,
“An interconnect strategy for a heterogeneous, reconfigurable SoC,”
Design Test of Computers, 2008.

[9] R. Lysecky and F. Vahid, “Design and implementation of a microblaze-
based warp processor,” ACM Trans. Embed. Comput. Syst., 2009.

[10] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-
switched interconnections,” in DATE, 2000.

[11] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-
aware heuristics for run-time task mapping on NoC-based MPSoC
platforms,” J. Syst. Archit., vol. 56, no. 7, pp. 242–255, Jul. 2010.

[12] L. Ni and P. McKinley, “A survey of wormhole routing techniques in
direct networks,” Computer, 1993.

[13] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “Hermes: an
infrastructure for low area overhead packet-switching networks on chip,”
Integr. VLSI J., 2004.

Fig. 3. (a) Overall application speed-up and hardware accelerators speed-up of
Molen and Molen with NoC systems; (b) Energy consumption of Molen and Molen
with NoC systems

VII. CONCLUSION

In this paper, we presented a hybrid communication infrastruc-
ture that includes a standard bus system and a newly proposed area-
efficient, delay-optimized NoC for accelerating heterogeneous ar-
chitectures, especially for hardware accelerator systems. The bus
is used for data exchange between the GPP and the hardware
accelerators while data exchange among the hardware accelerators
is performed by the NoC. According to the proposed hybrid com-
munication infrastructure, a new adaptive data communication-
based mapping strategy is introduced to map the reconfigurable
hardware accelerators to the communication infrastructure. We
investigated the proposed approach using the Molen architecture.
The original Molen was extended with the hybrid communication
infrastructure. The results show that the proposed system achieves
a speed-up of the overall application by 3.72× and of the hardware
accelerators by 6.58× with respect to software. The speed-up of
hardware accelerators with respect to the original system goes up
by 2.4× while only 5.8% additional FPGA resources are required
in the worst case. Due to the reduced execution time, energy
reduction of up to 56% compared to the original systems, was
obtained.

ACKNOWLEDGMENT

This work has been funded by the projects Smecy 100230, iFEST
100203, REFLECT 248976, the DFG TCRC ”‘Invasive Computing”
(SFB/TR 89) and Vietnam Ministry of Education and Training.

REFERENCES

[1] “Intel R© atomTM processor E6x5C series-based plat-
form for embedded computing,” 2010. [Online]. Available:
http://download.intel.com/embedded/processors/prodbrief/324535.pdf

[2] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,”
Computer, 2002.

[3] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. Panainte, “The MOLEN polymorphic processor,” Computer, 2004.

[4] M. Kuhnle, M. Hubner, J. Becker, A. Coppola, L. Pieralisi, R. Locatelli,
G. Maruccia, T. DeMarco, F. Campi, A. Deledda, C. Mucci, and F. Ries, “An
interconnect strategy for a heterogeneous, reconfigurable SoC,” Design Test of
Computers, 2008.

[5] R. Lysecky and F. Vahid, “Design and implementation of a microblaze-based
warp processor,” ACM Trans. Embed. Comput. Syst., 2009.

[6] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: high-level synthesis for FPGA-based
processor/accelerator systems,” in FPGA, 2011, pp. 33–36.

[7] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched
interconnections,” in DATE, 2000.

[8] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-aware
heuristics for run-time task mapping on NoC-based MPSoC platforms,” J. Syst.
Archit., vol. 56, no. 7, pp. 242–255, Jul. 2010.

[9] L. Ni and P. McKinley, “A survey of wormhole routing techniques in direct
networks,” Computer, 1993.

[10] F. Moraes et al., “Hermes: an infrastructure for low area overhead packet-
switching networks on chip,” Integr. VLSI J., 2004.

[11] B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri, “Lipar: A light-
weight parallel router for fpga-based networks-on-chip,” in GLSVLSI, 2005.

[12] S. A. Ostadzadeh, R. J. Meeuws, C. Galuzzi, and K. Bertels, “QUAD: a
memory access pattern analyser,” in ARC, 2010.

[13] Xilinx, “Ml510 reference design,” 2009.
[14] J. Canny, “A computational approach to edge detection,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 1986.
[15] J. Scott et al., “Designing the low-power M•CORE architecture,” in IEEE

Power Driven Microarchitecture Workshop, 1998.
[16] J. Shi and C. Tomasi, “Good Features to Track,” in IEEE Conference on

Computer Vision and Pattern Recognition, 1994.
[17] J. Stam, “Real-time fluid dynamics for games,” in the Game Developer

Conference, 2003.


