
Using Cubes of Non-state Variables With
Property Directed Reachability

John D. Backes and Marc D. Riedel

Department of Electrical and Computer Engineering
University of Minnesota

200 Union St. S.E., Minneapolis, MN 55455
{back0145, mriedel}@umn.edu

Abstract—A new SAT-Based algorithm for symbolic model
checking has been gaining popularity. This algorithm, referred
to as “Incremental Construction of Inductive Clauses for Indu-
bitable Correctness” (IC3) or “Property Directed Reachability”
(PDR), uses information learned from SAT instances of isolated
time frames to either prove that an invariant exists, or provide
a counter example. The information learned between each time
frame is recorded in the form of cubes of the state variables.
In this work, we study the effect of extending PDR to use
cubes of intermediate variables representing the logic gates in
the transition relation. We demonstrate that we can improve
the runtime for satisfiable benchmarks by up to 3.2X, with an
average speedup of 1.23X. Our approach also provides a speedup
of up to 3.84X for unsatisfiable benchmarks.

978-3-9815370-0-0/DATE13/ c©2013 EDAA

I. INTRODUCTION

Methods for symbolic model checking originally focused
on the use of Binary Decision Diagrams (BDDs) [3], [9],
[5]. These algorithms iteratively compute the image of a
current set of states until a fixed point is reached, or the
property is violated. While BDDs can very quickly verify
certain properties, often times the size of the BDD can explode
during image computation.

SAT-Based techniques based on induction have also been
proposed [12]. These techniques unroll a circuit across mul-
tiple time frames and prove that a property holds over the
longest loop-free path. Problems with long loop-free paths
become intractable because they require solving a very large
unrolling of the circuit. In 2003, McMillan proposed a SAT-
Based method for model checking based on Craig’s Interpo-
lation Theorem [10], [6]. In this algorithm, interpolants are
used to compute an over approximation of the set of reachable
states. If the over approximation converges to a fixed point,
the property is proved to hold. Interpolation can solve many
instances faster than induction because the maximum number
of transitions needed to prove a property is bounded by the
diameter of the state space. However, if a counter example is
discovered, it may be spurious. To block these spurious counter
examples, interpolants may need to be generated from large
unrollings of the circuit.

In 2011, Bradley proposed “Incremental Construction of
Inductive Clauses for Indubitable Correctness” (IC3), a new
SAT-Based method for symbolic model checking that does not
require solving large unrollings, or generating messy abstrac-
tions of the reachable state space [2]. The technique works
by iteratively solving a SAT-instance representing a single
time frame of the underlying circuit. States that violate the
property are recorded in the form of cubes of state variables.
These cubes then must be blocked recursively by previous time
frames. The process halts under two conditions; either a set

of cubes extending from the initial state are found to reach a
cube that violates the property, or the set of cubes blocked in
one frame are shown to be blocked inductively in every future
frame (proving the property to be invariant).

The IC3 algorithm works well when it is able to produce
very small cubes (covering many states). Others have proposed
an improved implementation of the algorithm referred to as
“Property Directed Reachability” (PDR) [8]. One of the main
improvements in PDR is the use of ternary valued simulation
to reduce the size of state cubes. Using ternary valued sim-
ulation allows cubes to be shortened quickly without putting
an unnecessary burden on the solver.

In this work, we extend the framework of PDR to allow
for cubes containing functions of state variables. This idea is
illustrated with an example in Figure 1. Figure 1 shows a truth
table for an incompletely specified Boolean function for next
state variable x′

4 and a circuit level implementation of x′

4.
Assume that x4 must be blocked in the next frame. There are
four cubes of state variables in the current frame that need to
be blocked to make this so: x̄0∧x̄1∧x̄2∧x̄3, x̄0∧x̄1∧x2∧x3,
x̄0∧x1∧x2∧x̄3, and x0∧x1∧x̄2∧x̄3. In this example, none of
these cubes can be simplified to smaller cubes. However, there
are only two cubes in terms of variables g0 and g1 that must
be blocked to prevent the justification of x4 in the next frame:
ḡ0 ∧ g1 and g0 ∧ ḡ1. In this example, only half as many cubes
in terms of intermediate logic variables need to be added to
the current frame in order to block x′

4.

g0

g1

x
0
x
1
x
2
x
3

x
0
x
1

x
2
x
3

x
0
x
1
x
0
x
1
x
2
x
3

x
4 '

x0, x1, x2, x3 g0, g1 x
′

4

0 0 0 0 0 1 1
0 0 1 1 0 1 1
0 1 1 0 1 0 1
1 1 0 0 0 1 1

Fig. 1. An example netlist where fewer cubes in terms of intermediate
variables need to be blocked than cubes in terms of state variables

We study the affect of extending PDR to allow cubes of
intermediate logic variables. We then present the results of
our implementation on the HWMCC ’11 benchmarks [1].

II. BACKGROUND AND DEFINITIONS

A. Definitions and Notation

This paper adopts the same definitions and notations orig-
inally adopted by Bradley in [2]. However, we use the fol-
lowing convention for defining a finite state machine (FSM).
A FSM M = {Z,X, I, T} consists of a set of primary input
variables Z, a set of state variables X , a set of initial states
I ⊆ {0, 1}

X
, and a transition relation T ⊆ {0, 1}

X
×{0, 1}

X
.

We use an apostrophe (x′) to indicate state variables in the next
state of a transition relation. When we apply an apostrophe to
a set (X ′) we are indicating that we are referring to the next
state variables of the set.

B. Review of the PDR Algorithm

In this section we briefly review the Property Directed
Reachability algorithm. The algorithm operates on sets of
clauses, denoted by Fi, called frames. The clauses in frame Fi

symbolically encode an over approximation of the states that
are reachable up to the ith time frame of an FSM. In other
words, if state s can be reached within i steps of the initial
states, then Fi∧s is satisfiable. The collection of these frames
is referred to as the trace. The trace maintains the following
properties.

1) The 0th frame only contains the initial states (F0 = I)
2) Every assignment that satisfies the current frame also

satisfies the next frame (Fi → Fi+1)
3) Every state that can be reached in one transition from a

state in the current frame, satisfies the next frame (Fi ∧
T → Fi+1)

4) The property is satisfied in every frame except the last
one (Fi → P for every Fi except Fn)

At the start of the algorithm, there exists just one frame
F0 = I . Each major iteration of the algorithm starts by
checking to see if the property can be violated in one transition
from the states in the highest frame. This is done by solving
the SAT instance: Fn ∧ T ∧ P̄ . If this query is satisfiable,
a satisfying state cube s |= Fn ∧ T ∧ P̄ is extracted. The
algorithm then proceeds to see if this cube can be blocked by
the previous frame. This is done by solving the SAT instance:
Fn−1∧T∧s′. If this query is satisfiable, a satisfying state cube
is extracted from this SAT instance. The algorithm continues
to try to block cubes in each previous frame. If, eventually,
a cube cannot be blocked by the initial frame, F0, a counter
example is provided.

Whenever a cube is successfully blocked in some frame
Fi, a clause blocking this cube is added to every frame Fk

where k ≤ i. This maintains property 2 of the trace. A clever
improvement to this algorithm, given in [2], is to a priori add
s̄ to the query: Fn−1∧ s̄∧T ∧s′. This improves the chances of
blocking s in Fi and is sound because F0 → s̄ and Fi → Fi+1.

Once the query: Fn ∧ T ∧ P̄ is unsatisfiable, a new frame
Fn+1 is created and the propagation phase begins. During this
part of the algorithm, cubes learned in previous frames are
attempted to be blocked in later frames. This is accomplished
by repeatedly solving Fi∧T ∧ c̄′ for each clause c ∈ Fi. If this
formula is unsatisfiable, then c can be added to frame Fi+1.

If at any point two frames become identical (contain the same
clauses), then an invariant is proved. Because Fi ≡ Fi+1 and
Fi → Fi+1, any clause present in Fi can be added to all future
frames, therefore the property will hold in all future frames
because Fi → P .

III. EXTENDING CUBES TO GATE VARIABLES

A. General Concept

In the previous implementations of the algorithm, states are
symbolically encoded as cubes of state variables [8], [2], [4].
However, as Figure 1 demonstrates, there may be a significant
advantage to allowing cubes in terms of intermediate variables.
This extension does not change the conceptual flow of the
algorithm greatly, but some care does need to be taken when
choosing which intermediate variables to allow.

Figure 2 shows the transition relation that is used in the
standard implementation of PDR. The logic in the transition
relation can be partitioned into two types of logic: logic that
only contains state variables in its transitive fanin (shown in
grey) and logic that contains both state variables and primary
input variables in its transitive fanin (shown in white). Because
the grey logic only contains state variables in its transitive
fanin, it is unaffected by valuations of the primary input vari-
ables. Consider the gates that are on the boundary between the
grey and white logic. We use the set G = {g0, g1, . . . , gk−1}
to denote these gate variables. Note that some state variables
may fanout directly into “white logic” shown in Figure 2. In
this case, we consider these state variables to be among the
set of variables G.

z
0
z
1
z
2
…
 z
m
-1

x
0
x
1
x
2
…
 x
n
-1

x
0 ' x

1 ' x
2 ' …

 x
n
-1 '

…
.

…
.

…
.

P

g
0
g
1
g
2
…
 g
k
-1

Fig. 2. A transition relation that is used in a frame for the standard PDR
implementation

Proposition 1

Let S be the set of all cubes of state variables that can reach

a cube m in one transition from frame i. Formally: S = {s ∈
{0, 1}

X
: s |= Fi ∧ T ∧ m′}. Let W be the set of all cubes

of the variables in G that can reach m in one transition from

frame i. Formally: W = {w ∈ {0, 1}
G

: w |= Fi ∧ T ∧m′}.

Then cube m can be blocked in Frame i + 1 if and only if all

cubes of S are blocked in frame i or all cubes of W are blocked

in frame i. Formally: (m′ 6|= (
∧

s∈S
s̄) ∧ Fi ∧ T) ↔ (m′ 6|=

(
∧

w∈W
w̄) ∧ Fi ∧ T).

Proof:

The proof has been omitted due to page number require-
ments.

Proposition 1 allows us to pick a restricted set of gate
variables to be used as state cubes. However, in order to block
cubes of state variables, we must modify the transition relation
shown in Figure 2 to be of the form shown in Figure 3. The
transition relation in Figure 3 is a sort of half unrolling of
the standard transition relation. The current state variables
(x0, x1, . . . , xn−1) are replaced by outputs of the gate vari-
ables G in the current frame (g0, g1, . . . , gk−1). Also, the next
state variables (x′

0, x
′

1, . . . , x
′

n−1) extend to the outputs of the
gate variables G in the next frame (g′0, g

′

1, . . . , g
′

k−1
).

In the standard transition relation, cubes of variables of X
are always extracted from the satisfying assignment. However,
in our implementation we allow for cubes of variables of G.
in order to block these cubes in the next time frame, the
transition relation must be able to justify cubes of variables
G′. As Figure 3 suggests, this does not increase the amount of
logic in the transition relation, it only changes the placement
of the logic.

z
0
z
1
z
2
…
 z
m
-1

…
.

P

g
0
g
1
g
2
…
 g
k
-1

g
0 ' g

1 ' g
2 ' …

 g
k
-1 '

Fig. 3. A transition relation that is used for blocking cubes of gate variables

B. Details for Ternary Valued Simulation

The use of ternary valued simulation to reduce state cubes
increases the performance of the algorithm tremendously [8].
The reduction of these state cubes is accomplished by first

finding a satisfying assignment a ∈ {0, 1}
X∪Z

to the query
Fi ∧T ∧m′. The transition relation shown in Figure 2 is then
simulated with the values of a. A cube s of state variables in
the transitive fanin of the variables of m′ is chosen from this
assignment. Then, one by one, the value of each state variable
x ∈ s is replaced by the unknown value ⊥. Each time the
value is replaced, the transition relation is re-simulated. If the
values of m′ remain the same through this simulation of the
transition relation, then x is removed from the cube s, and
the value of x remains at ⊥ in the transition relation. If some
value in m′ changes, then x is restored to its original value,
and x remains in s.

Ternary valued simulation can also be applied to cubes
containing gate variables, but some care must be taken. The
order in which the cube variables are set to ⊥ can greatly
affect the number of variables removed from the cube. To

solve this problem we propose the following ternary simulation
algorithm.

1) Sort the variables in s in ascending order by the
variable’s logic level (the maximum distance of the
variable’s corresponding gate from a primary input or
latch output) in the transition relation and set i = 0.

2) If i = |s|, then return s. Otherwise, for the ith variable
vi in s do the following: If vi is a state variable, proceed
to step 4. Otherwise, proceed to step 3.

3) If the value of vi can be determined to be 1 or 0 (not
⊥) by its fanins, then remove vi from s and go back to
step 2. Otherwise proceed to step 4.

4) Set vi to ⊥ and simulate the transition relation. If no
variable in m′ evaluates to ⊥, then remove vi from s and
proceed to step 2. Otherwise, set vi back to its original
value, re-simulate the transition relation, increment i,
and proceed to step 2.

When only cubes of state variables are used, the value
of each cube variable is independent of each other. In other
words, the value of one state variable is never a function of
another state variable. However, with cubes of gate variables
this is not necessarily the case. By enumerating the cube
variables in order by logic level, we can eliminate variables
whose value is determined by other cube variables.

IV. EXPERIMENT AND RESULTS

A. Experiment Setup

To test our approach, we modified the version of PDR
implemented in Berkeley ABC [8], [11]. We changed the
ternary valued simulation portion of the implementation in the
following way:

• The ternary valued simulation algorithm was run twice,
once allowing cubes of gate variables in the cone-of-
influence (COI) of the next state variables and once only
allowing cubes of state variables in the COI of the next
state variables.

• In the first pass, the cube containing gate variables was
reduced. The order in which cube variables were set to ⊥
was determined by the logic level of the gate variable (as
discussed in Section III-B) and by a priority assigned
to each variable. A variable’s priority increased if it
was unable to be removed from the cube; otherwise, it
decreased. Variables with higher priority were given a
greater chance of being removed in later rounds of ternary
valued simulation.

• In the second pass, a cube containing only state variables
was reduced. In this case, the order in which cube vari-
ables were set to ⊥ was determined by a fixed ordering.

• At the end of both passes, whichever cube was smaller
(containing fewer literals) was returned.

To compare the performance of allowing gate cubes, rather
than just state cubes, we ran this version of the algo-
rithm (which we refer to as the gate cube version) on
the HWMCC ’11 benchmarks [1]. We compared the results
against a second implementation, which was the same, except
only state cubes were allowed in both passes of the ternary
valued simulation. We refer to this version of the implementa-
tion as the state cube version. This way both implementations
were given two chances to reduce cubes during ternary valued
simulation, but only one was allowed to return cubes of gate

variables. The runtime differences between the two versions
should then have been more heavily influenced by types of
cubes, rather than by the priority scheme that we introduced.
The transition relation was converted into a CNF formula
using the standard Tseitin transformation [13] (as opposed to a
transformation using variable elimination like in [8], [7]). This
was done for the sake of an easier implementation. There are
no conceptual problems with implementing our solution with
other CNF transformations.

All of the benchmarks were run on a 4-core Intel R© CoreTM

i7-2600 CPU @ 3.40GHz with 8GB of RAM. Only one core
was utilized for each benchmark.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

G
a
te

 C
u
b
e
s
 (

s
)

State Cubes (s)

Fig. 4. Runtime comparison for satisfiable benchmarks.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

G
a
te

 C
u
b
e
s
 (

s
)

State Cubes (s)

Fig. 5. Runtime comparison for unsatisfiable benchmarks.

B. Results

The results of our experiment are displayed in Figures 4
and 5. Figure 4 contains benchmarks where the property was
proved not to hold (satisfiable benchmarks), and Figure 5
lists benchmarks where the property does hold (unsatisfiable
benchmarks). We omitted benchmarks that took less than 10

seconds for both of the methods to solve. We set a timeout
of 10000 seconds for all of the benchmarks, and we did not
include results where both methods timed out.

The results demonstrate that for satisfiable benchmarks,
allowing cubes of gate variables seems to have a generally
positive effect on the performance of the algorithm. The
best time ratio for the gate cube approach is .31 (which
corresponds to a 3.2X runtime improvement for the benchmark
bc57sensorsp3). The average time ratio for satisfiable
benchmarks is .82 (which corresponds to an average speedup
of 1.21X). For the unsatisfiable benchmarks, the performance
is not as reliable. The best performance increase was seen by
the benchmark 6s34; which has a time ratio of .26 (a 3.85X
speedup). For some of the benchmarks, the performance was
close to the same. This likely indicates that both versions of
the algorithm frequently chose cubes from the second pass of
ternary simulation.

V. DISCUSSION

The results demonstrate that allowing cubes of gate vari-
ables can cause very drastic performance changes between the
benchmarks. In general we found that the gate cube version of
PDR works better for satisfiable benchmarks, but the trend is
not as clear for unsatisfiable benchmarks. The variation in the
results indicates that perhaps there exists a better heuristic for
choosing what logic to include in a certain cube. Regardless,
the results show that the gate cube version of the algorithm
does perform much better in many of the benchmarks.

Future work will focus on different heuristics for choosing
what logic to include in each cube and different heuristics for
cube minimization.

REFERENCES

[1] A. Biere and K. Heljanko. Hardware Model Checking Competition
(HWMCC) 2011 Benchmarks. Available at: http://fmv.jku.at/hwmcc11/,
2011.

[2] Aaron R. Bradley. SAT-based model checking without unrolling. In
Proceedings of the 12th international conference on Verification, model
checking, and abstract interpretation, VMCAI’11, pages 70–87, Berlin,
Heidelberg, 2011. Springer-Verlag.

[3] Randal E. Bryant. Graph-based algorithms for boolean function manip-
ulation. IEEE Transactions on Computers, 35(8):677–691, 1986.

[4] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo. Incremental
formal verification of hardware. In Formal Methods in Computer-Aided
Design (FMCAD), 2011, pages 135 –143, 2011.

[5] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV : a new
symbolic model checker. Software Tools for Technology Transfer, 1998.

[6] W. Craig. Linear Reasoning: A New Form of the Herbrand-Gentzen
Theorem. Symbolic Logic, 22(3):250–268, 1957.

[7] N. Eén and A. Biere. Effective preprocessing in sat through variable and
clause elimination. In In Proceedings of SAT05, pages 61–75. Springer,
2005.

[8] N. Eén, A. Mishchenko, and R. Brayton. Efficient implementation of
property directed reachability. In Formal Methods in Computer-Aided
Design (FMCAD), 2011, pages 125 –134, 2011.

[9] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[10] K. L. McMillan. Interpolation and SAT-based model checking. In
International Conference on Computer-Aided Verification, pages 1–13,
2003.

[11] A. Mishchenko et al. ABC: A system for sequential synthesis and
verification, 2007.

[12] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety
properties using induction and a sat-solver. In Proceedings of the
Third International Conference on Formal Methods in Computer-Aided
Design, FMCAD ’00, pages 108–125, London, UK, UK, 2000. Springer-
Verlag.

[13] G. S. Tseitin. On the Complexity of Derivations in Propositional
Calculus. 1968.

