
An Approach for Redundancy in FlexRay Networks
Using FPGA Partial Reconfiguration

Shanker Shreejith∗ †, Kizhepatt Vipin∗, Suhaib A. Fahmy∗ and Martin Lukasiewycz†
∗School of Computer Engineering

Nanyang Technological University, Singapore
Email: {shreejit1,vipin2,sfahmy}@ntu.edu.sg, martin.lukasiewycz@tum-create.edu.sg

†TUM CREATE Centre for Electromobility, Singapore

Abstract—Safety-critical in-vehicle electronic control units
(ECUs) demand high levels of determinism and isolation, since
they directly influence vehicle behaviour and passenger safety. As
modern vehicles incorporate more complex computational sys-
tems, ensuring the safety of critical systems becomes paramount.
One-to-one redundant units have been previously proposed as
measures for evolving critical functions like x-by-wire. However,
these may not be viable solutions for power-constrained systems
like next generation electric vehicles. Reconfigurable architec-
tures offer alternative approaches to implementing reliable safety
critical systems using more efficient hardware. In this paper,
we present an approach for implementing redundancy in safety-
critical in-car systems, that uses FPGA partial reconfiguration
and a customised bus controller to offer fast recovery from
faults. Results show that such an integrated design is better than
alternatives that use discrete bus interface modules.

I. INTRODUCTION

Emerging automotive functions like x-by-wire, adaptive
driver assistance and occupant safety systems employ a dis-
tributed computing paradigm, which requires in-vehicle net-
works to have stringent and time-bound behaviour as well as
high communication capacity. Many of these functions are
classified as safety-critical since they have a direct impact
on vehicle dynamics and occupant safety. Such functions are
are characterised by hard deterministic requirements, since
predictability is of paramount importance. Because of their
nature, most safety-critical systems have some sort of built-in
redundancy either in the shape of a hot stand-by, an isolated
backup, or a degraded mode of operation.

Event-triggered communication architectures like the Con-
troller Area Network (CAN) are unable to consistently provide
high levels of determinism, as the communication demand
increases [1]. Automotive systems are moving towards time-
triggered network architectures, such as the FlexRay protocol
that can provide high levels of predictability, even when
the network is operating at full capacity [2]. Protocols like
FlexRay provide multiple schemes of medium access to sup-
port safety critical or deterministic systems, as well as non-
safety critical systems.

To counter the challenges of increased weight and power
incurred by the increasing addition of newer functions, and the
increased communication demands of such networks, it is pro-
posed that multiple functions be aggregated onto fewer ECUs.

Traditional approaches, using general purpose processors as
the computational engine, require real-time operating systems
with time-triggered capability to meet the requirements of
safety critical systems, when aggregating functions. Moreover,
providing sufficient isolation between aggregated functions,
would be challenging since processor hardware resources
would be shared by the two (or more) functions.

Reconfigurable hardware represents a promising platform
for implementing such systems; it is possible to create opti-
mised nodes that integrate ECUs and network controllers on a
single piece of hardware, resulting in less power consumption,
and weight [3]. Moreover, FPGAs also allow us to instantiate
multiple instances on the same hardware function, with little
or no interference, proving to be ideal for integrating safety
critical or non-safety critical systems.

In this work, we propose a scheme for implementing safety
critical ECU systems on reconfigurable hardware, within a
time-triggered network like FlexRay. This approach can be
adapted to implement an isolated fault-tolerant node or a
distributed back-up node which can take over the functionality
of multiple failed nodes. The scheme exploits dynamic partial
reconfiguration of FPGAs and a custom network controller to
provide short turn-around time as required by most safety-
critical systems. We present a proof-of-concept implemen-
tation on a Xilinx FPGA that integrates a custom FlexRay
controller and ECU functionality.

II. RELATED WORK

FPGAs are widely used to implement custom architectures
to accelerate a range of algorithms. Advanced techniques like
dynamic partial reconfiguration (PR), promote re-use of FP-
GAs hardware resources by allowing non-concurrent functions
to use the same hardware. PR is a technique available in recent
FPGAs which makes it possible to modify only portions of a
circuit, while the remainder of the system continues to function
without interruption. This is achieved by selectively altering
portions of the FPGA configuration memory, the contents of
which determine the function implemented in the FPGA.

An architecture for implementing fail-safe safety critical
ECU systems on FPGAs, leveraging dynamic reconfiguration
(complete reconfiguration), is described in [4]. Their archi-
tecture uses FPGA logic as a fail-safe back-up, which is
completely reconfigured with one of the back-up modes when978-3-9815370-0-0/DATE13/ c©2013 EDAA

High priority fixed width slot with
Channel ID for status

Lower priority dynamic width slots for
volume data transfer

Cycle 0 Cycle 1 Cycle m-1

Network Idle TimeSymbol WindowDynamic Seg Static Seg

Slot 1 Slot n Slot n+1 Slot k

Fig. 1. FlexRay Cycle

CRITICAL (1 bit) Prime/Red. (2 bits)

Header Payload

5 bytes 2 bytes

Trailer

3 bytes

NODE ID (10 bits) ERR STS (3 bits)

Fig. 2. Dynamic Segment Payload with Message ID

errors are detected. PR has been used in non-safety critical
automotive applications such as driver assistance systems [5].
In such cases, using PR can allow a reduction in the size of the
required FPGA by time-multiplexing different functionality.
In [6], the authors show how PR can be used to dynamically
reconfigure a faulty ECU communication controller.

Our work aims to develop a scalable framework for using
partial reconfiguration within time-triggered communication
networks. We show that a custom network controller com-
bined with an ECU on a single FPGA allows extensions to
the standard definitions, allowing for further robustness to
failures. We propose to combine the determinism provided
by time-triggered scheme with the flexibility of reconfigurable
hardware, to develop a system architecture for next generation
safety critical systems that are scalable, while offering higher
performance and efficiency.

III. PROPOSED ARCHITECTURE

A. FlexRay Communication Cycle

The FlexRay communication cycle is the fundamental el-
ement of the FlexRay protocol, which is organised as m
cycles (up to 64) which repeat over time [2]. Of the four
configurable segments, as shown in Fig. 1, our focus is
on the flexible dynamic segment, primarily used for event-
triggered communication on a priority basis. Current systems
like adaptive cruise control sparingly use the dynamic segment,
meaning they can be used for status communication, without
disturbing existing systems. We propose to use the first n slots
of the dynamic segment to communicate fixed length system
status messages for safety-critical nodes, which will trigger
recovery in the case of errors.

We propose to utilise the two-byte message ID to indicate
the critical status of the device, and whether its functions
need to be taken over by a redundant unit, and the dynamic
slot filtering scheme, as defined in the FlexRay protocol [2].
The frame structure is shown in Fig. 2. Node ID defines
the unique ID assigned to the different safety-critical nodes
within the network. The critical error status flag describes a
critical error condition, and demands immediate attention. The
error status flag indicate the consecutive number of non-critical
errors encountered by the node, which are tolerable up to a
predefined threshold. Within our architecture, each system may

have localised fault detection logic or depend on distributed
fault detection modules or on a combination of the two. The
prime/redundant flag is used to distinguish the prime unit and
the redundant unit, which use the same ID.

In each cycle, the node transmits (internal fault-detection)
or receives (centralised fault-detection) fault status. Critical
errors and high error rates are indicated using the embedded
bits. Since only a fixed amount of payload data (2 bytes) is
used in the highest priority slots, predictable latency is ensured
by this scheme. The lower priority dynamic slots may still be
used by other nodes for volume data transfer.

B. Safety-critical nodes on FPGAs

Almost all safety critical systems have a fall-back mode
of operation to accommodate unexpected failures. Common
strategies are to support either a fail-safe mode or a fault-
tolerant implementation. A fault-tolerant implementation is a
robust system, which can recover from faulty situations with-
out severe degradation in system performance. Fault-tolerance
is ensured by building redundancy for key operations and
intelligence to switch to redundant logic, while the primary
unit recovers from the erroneous condition [7].

FPGA partial reconfiguration (PR) offers alternative ways
of implementing such redundancy. Areas of the FPGA fabric
that are designated as partially reconfigurable regions (PRR)
at design time can be selectively reconfigured during run-time,
without altering the function of static parts of the design. Des-
ignating the primary functionality of the node in a PRR and a
redundant (or degraded) mode of operation in the static region,
fault-tolerance can be efficiently built into a system designed
on reconfigurable hardware. If the primary function encounters
an error and needs to be reconfigured, the degraded mode
can be enabled while the primary function is reconfigured.
FPGA based designs are better equipped to handle aggregation
of different functions and thus can be designed to provide
complete isolation between the two functions.

C. Proposed Approach to Reconfiguration

Fig. 3 shows an example ECU system on reconfigurable
hardware. The primary function is the computational im-
plementation of some algorithm like adaptive cruise con-
trol, which uses custom hardware accelerators for compute-
intensive calculations. It communicates with other ECUs and
sensors over the FlexRay bus through the FlexRay commu-
nication controller (CC) and the bus driver (BD), which is
efficiently implemented as a custom module. The functional
unit, comprising the primary function, acceleration and as-
sociated memory, are completely implemented in a partially
reconfigurable region (PRR-1), so that the functionality can
be switched or reconfigured in case of an error. The commu-
nication interface comprising the FlexRay CC, BD and the
PR controller are implemented in the static region, SR-1. The
second static region (SR-2) is designated for implementing
redundant logic.

Under normal operation, the node is healthy and SR-2 is
configured with the redundant logic, but is clock-gated to

Bus A

Bus B

System
I/f.

FPGA

Custom i/f.

Bus i/f.

NV
RAM

DDR
Mem FlexRay

CC
Bus

Driver
PR
Ctrl.

Appn.
Acclr.

Primary
Function

Appln.
Mem

System Bus

PRR-1
Backup
Function

SR-2

SR-1

Fig. 3. Fail-safe ECU on FPGA

conserve power. If the node features fault-detection, a local
fault initiates redundant mode and the status is indicated to
other nodes over the FlexRay bus. Otherwise, a FlexRay
frame in the assigned slot with the critical error flag set in
the status data would trigger the switch to redundant mode.
Disabling clock-gating takes only one clock cycle, resulting
in fast turnaround to the redundant mode. Subsequently the
partial reconfiguration controller is triggered to reconfigure
PRR-1, to enable recovery from the error. PRR-1 is isolated
from the system bus by the PR controller, and hence the
reconfiguration proceeds without disturbing the functionality
of the node. While reconfiguration is in-progress, the CC
continues to receive data and the redundant function may use
these to provide the required functionality. Once the PRR-1
region is reconfigured and enabled, the node may optionally
perform a complete reset, by reseting the FlexRay CC and
re-integrating to the network. SR-2 is then clock-gated to
conserve power.

Implementing this mechanism using a discrete FlexRay
controller would not be feasible, since these errors would
have to be processed in the ECU processor, adding significant
latency. Rather, we use a customised FlexRay controller that
incorporate special extensions to enable this functionality.
Filters can be programmed to filter dynamic segment messages
with a message ID matching the ECU’s ID (in case of remote
fault detection) or to transmit messages with the message
ID and status, in the priority slot assigned to it (in case of
local fault detection). Whenever an error state is received or
transmitted, the trigger is passed to the partial reconfiguration
controller by these filters. Only by using such a customised
controller implementation is it possible for the reconfiguration
commands to be acted on immediately by the PR engine. In a
normal design, using a fixed standard controller, the FlexRay
messages, or local error state would need to be processed
by the processor, resulting in noticeable latency before the
redundant logic is activated. In our approach, the turn-around
time from the point of receiving a reconfiguration command to
switching to the back-up mode can be made negligibly small.

Reconfiguration is performed using a special built-in hard-
ware macro called the internal configuration access port
(ICAP). Xilinx supports PR in a processor based environment
through a vendor-provided controller such as the OPBHW-
ICAP, connected as a slave device to the processor bus, but
this approach gives low throughput in the region of 4.66-10.1
MBytes/sec [8], [9], resulting in a large reconfiguration latency

Radix-2
FFT

DPR

Interrupt
Ctlr. MicroBlaze

System
I/f

System
RAM

Backup
RAM

Backup
Logic

SR-2
PRR-1

PR
Ctlr.

Bus A

FlexRay
CC

From Data Generator Bus
Traffic
Gen.

JTAG and RS232

SR-1

Fig. 4. Prototype for fail-safe Radar Signal Processing node

TABLE I
RESOURCE UTILISATION

PRR-1 SR-2
SR-1

ICAP
Cntrlr

FlexRay
I/f

Test
Logics

Registers 3632 200 672 4607 268
LUTs 3473 138 586 7021 577
BRAMs 24 2 8 8 6
DSPs 6 - - 3 0
Total Power 1.8 Watts

of the order of several milliseconds, depending upon the PRR
size. However, the ICAP hard macro itself supports much
higher speeds such as 400 MBytes/sec. We have developed
a custom ICAP controller, that reaches the ICAP’s maximum
speed [10], using DMAs from external memory, thus enabling
faster reconfiguration.

IV. CONCEPT VALIDATION AND RESULTS

To validate the architecture and investigate turnaround
times, we have implemented a simple radar signal processing
node that forms the front-end for driver assistance or adaptive
cruise control systems [11]. The system was developed using
Xilinx EDK 13.3 and hardware validated on a Xilinx ML605
development board hosting a Virtex-6 FPGA (XC6VLX240T).
The application is based on a frequency modulated continuous
wave (FMCW) technique with a triangular modulating wave,
which can simultaneously determine distance and range-rate
of the preceding vehicle. We use a 1 millisecond triangular
modulator with a radar cycle of 32 milliseconds. The primary
function from our node architecture is a MicroBlaze based sys-
tem, as in Fig. 4, which executes software routines to estimate
parameters from the frequency domain data that is generated
by the radix-2 FFT hardware module. The estimates are then
passed over the FlexRay bus to the central node, which also
performs fault-detection and transmits the status using our
proposed scheme. The primary ECU functionality is contained
within PRR-1, while the redundant unit is contained within
static region, SR-2. The FlexRay controller, PR controller and
the test logic are in SR-1. The logic utilisation of the design
is shown in Table I. PRR-1 has a partial bitstream size of 262
KBytes.

The radar data is received once every 32 milliseconds, on
static slot 7 in cycles 32 and 64. The node is configured
to monitor slot 24 (first dynamic slot) which relays node
status using our proposed scheme. The performance of the
framework in the different test cases is measured in terms

TABLE II
TURNAROUND AND RECOVERY TIME

Turnaround Time Recovery Time

Intr. Cntlr./
ICAP Cntlr.

MicroBlaze
Intr. Cntlr

Custom
Logic

Xilinx
ICAP

Custom
ICAP

CC Latency 20 ns

Interrupt
Latency

12 to 420 us 0 ns Custom Logic (0 ns)

Turnaround/
Recovery

12 to 420 us 30 ns 26.240 ms 0.656 ms

of turnaround time and node recovery time. Turnaround time
defines the time to switch to redundant logic from reception
of error, while recovery time is the time taken to recover from
error and resume normal operation. The turnaround times and
recovery times are shown in Table II.

In our first experiment, the data interrupt is processed by
the MicroBlaze processor, which checks for the critical error
flag or a consecutive error count greater than the threshold
and issues a reconfiguration command to the ICAP controller.
However, the MicroBlaze also processes FFT data using a high
priority interrupt resulting in a worst case interrupt latency
of 41038 clock cycles, depending on when the error status
flag was received. Thus the turnaround time can vary from
12us in the best case to 422us in the worst case. Alternatively,
when the reconfiguration interrupt is instead processed within
the controller through the custom extension, the generated
interrupt is routed directly to the ICAP controller, resulting in
a reduced latency of 20ns. This approach offers deterministic
results, achieves a short turnaround of 30ns (400× over the
best case) and is independent of the state of the logic in PRR-
1.

To measure the overall recovery time, tests were undertaken
with different PR controllers. In the first experiment, we
have used the processor based XPS hardware ICAP con-
troller available from Xilinx. The design takes 26,240us to
reconfigure the functional block in PRR-1. The node re-
integration consumes a further 6 FlexRay cycles, taking the
total recovery time to 32.25ms. With our custom PR controller,
PRR-1 reconfiguration is completed in just 656us, providing
a 40× improvement over the Xilinx controller. Considering
the re-integration time, the node will complete recovery and
reintegration to the network in 6.66 ms.

The results show that the custom FlexRay controller allows
us to achieve short and predictable turnaround, compared to
a traditional interrupt-based processing technique associated
with discrete controllers and processor based designs, which
may incur significant and non-deterministic latency. This is
because we can process the messages within the controller
hardware, rather then require a long roundrip to a processor.
Using a custom ICAP controller for PR, the recovery time of
a safety-critical ECU on reconfigurable hardware can also be
reduced to support higher levels of fault-tolerance. The use
of clock gating results in a power efficient architecture, when
compared with other alternatives where redundant logic must
be active constantly. The scheme can also support failures on
the fabric like a LUT failure, by using multiple bitstreams

of the same logic which targets a different PR region or has
different resource utilisation. The low device utilisation per-
mits aggregation of another function on to the same hardware,
which can run in complete isolation. Hence, a single device
can be designated as a redundant unit for multiple nodes and
the framework can be extended to support multiple redundant
modules on the same device, saving power and space.

V. CONCLUSION

Consolidation and time-multiplexing of ECU functions is
an important trend in modern vehicles. FPGAs offer exciting
possibilities due to their customisation. Dynamic partial recon-
figuration can be used to both multiplex functions and offer
redundancy. We have presented a scalable scheme for imple-
menting safety-critical systems utilising custom bus controllers
and partial reconfiguration on FPGAs. It offers function
consolidation and isolated operation while providing higher
performance and energy efficiency. Our results show that
customised extensions to an on-chip FlexRay controller and
a customised PR controller can offer significant performance
advantages that make FPGAs ideal for such implementations.
We aim to look into extensions of this scheme, along with
some formal analysis of the robustness of such methods.

ACKNOWLEDGMENT

This work was supported by the Singapore National Re-
search Foundation under its Campus for Research Excellence
And Technological Enterprise (CREATE) programme.

REFERENCES

[1] CAN Specification, Version 2.0, R. Bosch GmBh, Std., 1991.
[2] FlexRay Communications System, Protocol Specification Version 2.1

Revision A, FlexRay Consortium Std., December 2005. [Online].
Available: http://www.flexray.com

[3] S. Chakraborty, M. Lukasiewycz, C. Buckl, S. Fahmy, N. Chang,
S. Park, Y.Kim, P. Leteinturier, and H. Adlkofer, “Embedded Systems
and Software Challenges in Electric Vehicles,” in Proceedings of the
Design Automation and Test in Europe (DATE), 2012.

[4] N. Chujo, “Fail-safe ECU System Using Dynamic Reconfiguration of
FPGA,” R & D Review of Toyota CRDL, vol. 37 no. 2, pp. 54–60, April
2002.

[5] C. Claus, J. Zeppenfeld, F. Muller, and W. Stechele, “Using partial-run-
time reconfigurable hardware to accelerate video processing in driver
assistance system,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2007.

[6] H.-M. Pham, S. Pillement, and D. Demigny, “Reconfigurable ECU com-
munications in Autosar Environment,” in Proc. International Conference
on Intelligent Transport Systems Telecommunications (ITST), 2009.

[7] K. Klobedanz, A. Koenig, W. Mueller, and A. Rettberg, “Self-
Reconfiguration for Fault-Tolerant FlexRay Networks,” in Interna-
tional Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW), 2011.

[8] C. Claus, F. H. Muller, J. Zeppenfeld, and W. Stechele, “A new frame-
work to accelerate Virtex-II Pro dynamic partial selfreconfiguration.” in
Proceedings of IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2007.

[9] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time partial reconfigu-
ration speed investigation and architectural design space exploration,” in
Proceedings of International Conference on Field Programmable Logic
and Applications (FPL), 2009.

[10] K. Vipin and S. Fahmy, “A High Speed Open Source Controller for
FPGA Partial Reconfiguration,” in Proceedings of the International
Conference on Field Programmable Technology (FPT), 2012.

[11] J. Saad, A. Baghdadi, and F. Bodereau, “FPGA-based radar signal
processing for automotive driver assistance system,” in Proceedings of
IEEE/IFIP International Symposium on Rapid System Prototyping, 2009.

