On-Line Testing of Permanent Radiation Effects in
Reconfigurable Systems

Luca Cassano’, Dario Cozzif, Sebastian Korf*, Jens Hagemeyer?, Mario Porrmann*, Luca Sterpone

*

"Department of Information Engineering, University of Pisa, Italy
iCenter of Excellence Cognitive Interaction Technology, Bielefeld University, Germany
*Dipartimento di Automatica ed Informatica, Politecnico di Torino, Italy
emails: Tluca.cassano@ing.unipi.it, *luca.sterpone @polito.it
Hdcozzi, skorf, jhagemey, mporrmann} @cit-ec.uni-bielefeld.de

Abstract—Partially reconfigurable systems are more and more
employed in many application fields, including aerospace. SRAM-
based FPGAs represent an extremely interesting hardware plat-
form for this kind of systems, because they offer flexibility as well
as processing power. In this paper we report about the ongoing
development of a software flow for the generation of hard macros
for on-line testing and diagnosing of permanent faults due to
radiation in SRAM-FPGAs used in space missions. Once faults
have been detected and diagnosed the flow allows to generate
fine-grained patch hard macros that can be used to mask out
the discovered faulty resources, allowing partially faulty regions
of the FPGA to be available for further use.

Keywords-Automatic Test Pattern Generation, Fault Diagnosis;
On-Line Testing; Permanent Radiation Effects; SRAM-FPGA

I. INTRODUCTION AND RELATED WORK

Reconfigurable systems are gaining more and more interest
in the field of space applications [1]. SRAM-based FPGAs
represent an extremely interesting hardware platform for this
kind of systems thanks to high performance, relatively low
power consumption and low cost [2]. Moreover partial dy-
namic reconfiguration of modern FPGAs enables maximum
flexibility and can be used for performance increase, energy
efficiency improvement, and fault tolerance enhancement [2].

Radiations are responsible for causing instantaneous and
long-term damages in digital devices. Instantaneous damages
are Single Event Upsets (SEUs), i.e., changes of the content
of memory elements, and Single Event Transients (SETs),
i.e., transient undesired electrical impulses [3]. Long-term
damages are caused by the Total Ionizing Dose (TID), i.e., the
accumulation of charge trapped in the oxide layer of transistors
in CMOS circuits [4]. TID first causes degradation of the
performance of the system and ultimately it may also cause
the complete destruction of parts of the system.

Among the published work on FPGA testing, two families
of methods may be distinguished: application-independent
and application-dependent methods. Application-independent
methods, such as [5], [6], [7], [8] generally aim at detecting
structural defects due to the manufacturing process of the
chip. These techniques are performed off-line by the FPGA

978-3-9815370-0-0/DATE13/(©2013 EDAA

manufacturer and they target every possible fault in the device
without any consideration of which parts of the FPGA are
actually used by a given design. Application-dependent meth-
ods [9], [10], [11] address only those resources of the FPGA
actually used by the implemented system. These techniques
can be applied either off-line or on-line by the user after
the system design has been defined. Application-dependent
methods have been proposed for in-service testing of both
structural defects [9], [10] and SEUs [11].

The problem of detecting faults caused by the long term
exposure to radiation of an FPGA has not yet exhaustively
been explored. To the best of our knowledge, the only work
addressing the problem of on-line testing of faults due to
long term exposure to radiations is the one reported in [12].
The work is focused on the description of the architecture
used for testing reconfigurable areas without interfering with
the normal functioning of the system, while few information
about how the test hard macros (HMs) and the corresponding
test patterns are generated is given. Moreover the presented
test architecture addresses any possible faults in the logic
components of the FPGA, while faults in the routing structure
are not considered.

In this work we report about the ongoing development of
a software flow for the generation of HMs (and the associ-
ated test patterns) for testing fault induced in SRAM-based
FPGAs by the long term exposure to radiations. The proposed
flow addresses any faults in both the logic and the routing
components of SRAM-based FPGAs. Moreover test HMs can
be generated for both area-oriented testing, i.e., testing every
resource available in a particular area of the FPGA, and for
module-oriented testing, i.e., testing only those resources used
by a given module. For this reason we believe that such a flow
could represent the basis for an on-line on-demand accurate
testing service for partially reconfigurable computing systems
used in space missions.

The remainder of the paper is organized as follows: Sec-
tion II gives some background about the existing tools and
about how we intend to modify them; Section III presents the
structure of the proposed flow; Section IV concludes the paper.

II. BACKGROUND

In this section we give background information about the
previously developed tools that, once modified to address
permanent faults, will be employed in the presented flow.
We point out that these tools have been designed to analyse
the effects of SEUs in the configuration memory of FPGAs.
These faults can simply be detected through the readback of
the configuration memory itself. The modified versions of the
tools will analyse the effects of permanent faults in FPGAs.

A. The STAR Tool

STAR [13] is an analytical tool able to determine which
are the critical resources for a given reconfigurable module
(or fabric area) inside an SRAM-based FPGA. The critical
resources for a given reconfigurable module (or fabric area)
are those resources whose faulty behaviour directly affects the
behaviour of the considered reconfigurable module (or fabric
area). In the proposed software flow the STAR tool will be
used to identify the critical resources of the reconfigurable
module (or fabric area) that has to be placed on the FPGA
under test.

B. The DHHarMa Tool

DHHarMa [14] is a software flow for the automatic gen-
eration of homogeneous HMs starting from high level HDL
descriptions. Using a data base containing the complete de-
scription of the resources of a given FPGA and the connections
among them, DHHarMa is able to homogeneously pack, place
and route generic HDL HM descriptions. In the presented soft-
ware flow, DHHarMa will be used to automatically generate
a set of HMs that use all the resources that have to be tested.
On the one hand the generated HMs should be as large and
dense as possible, so to occupy a large number of resources
(thus a small number of macros would be necessary to test
the whole FPGA). On the other hand very large and dense
HMs could be difficult to test and to place on the FPGA. The
modified version of DHHarMa should find a good trade-off
between these issues in order to generate optimized HMs.

C. The SEU-X Tool

SEU-X [15] is a tool for analysing the testability of SEUs
affecting the configuration memory of SRAM-based FPGA
systems. In particular the tool is able to formally demonstrate
which of the SEUs cannot be tested. In the presented software
flow a version of the tool, modified to keep into account
permanent faults due to radiations, will be used. In particular
the tool will be used to determine whether the generated test
HMs are fully testable or not, and thus if using the set of
generated test HMs it is possible to test all the possible faults,
or if more test HMs are necessary.

D. The Genetic Algorithm Based Test Pattern Generation Tool

The tool presented in [11] is a genetic algorithm-based test
pattern generator addressing SEUs affecting the configuration
memory of the resources actually used by a system imple-
mented on an SRAM-based FPGA. It has been designed in

order to maximize the fault coverage obtained by the generated
test patterns on the one hand and to minimize the length of
the test patterns themselves on the other hand. Also this tool
will be modified to take into account permanent faults. In
the presented flow it will be used to generate test patterns
associated with the generated test HMs.

III. THE PROPOSED SOFTWARE FLOW

The aim of the proposed software flow is supporting on-line
on-demand testing, diagnosis and fault masking architectures
for dynamically reconfigurable systems like [1], [12].

The proposed software flow is hierarchical and it is devel-
oped in two steps. The first step aims at determining whether
a given area of an SRAM-based FPGA is free from permanent
faults due to radiation. This first step will be performed very
often thus it must be as fast as possible. If a faulty behaviour
of the system is detected, the second step performs a fine-
grained diagnosis in order to isolate the faulty resources. Since
this second step is performed only when a fault occurred in
the system, it can take a much longer time then the first step.

After the faulty resources have been detected, a patch HM
is created in order to mask them out, thus allowing partially
faulty regions of the FPGA to be available for further use.
For masking a resource out we mean generating a HM that
occupy that resource, thus making the resource unavailable
for user defined modules. Obviously the diagnosis process
will be as fine-grained as possible in order to mask out the
minimum amount of resources of the FPGA, thus maximizing
the amount of resources still available for further use. In
this way the flow will allow partially damaged SRAM-based
FPGAs deployed in space missions still to be used.

Modern SRAM-based FPGAs allow partial dynamic recon-
figuration and partial readback of the configuration memory.
We use partial dynamic reconfiguration to place a test HM
on the FPGA and to apply the corresponding test patterns.
We capture the responses of the HM in memory elements
and then we use memory readback to access the response of
the HM in order to analyse it and to determine whether the
tested reconfigurable module (or fabric area) is fault-free or
not. Access to the configuration memory is made available by
dedicated IP Cores, such as [16].

The proposed software flow for the generation of the test
HMs and the corresponding test patterns, is represented in
Figure 1. Figure 2 represents the software flow for the fine
grained diagnosing of faults and for the generation of the patch
HM used to mask out the faulty resource. In the following
these two flows are presented.

A. Fault Testing

The input of the flow for the generation of the test HMs
and the associated test patterns is a file (called primary input,
see Figure 1) containing either the definition of the module
that has to be placed on the FPGA or the coordinates of an
area of the FPGA that is intended to be tested.

The first step of the flow is the execution of STAR on
the primary input file. The output of the analysis carried out

Area/ ~
Module
under test

List of
critical l
resources
Test Hard Macro
Generation

Critical
resources file

STAR I

SEU-X

Primary Input 1.n

Critical
resources
list for Test
HM 1

A
GA-based
Test Pattern <
Generator

XDL2Bitstream
(Xilinx tools)

Test Hard
Macro 1
(XDL)

Test
bitstream
Hard
Macro 1

Test
Patterns
for Hard
Macro 1

FPGA

Fig. 1. The software flow for fault testing.

by STAR (called critical resource file, see Figure 1) is a
file containing all the critical resources for the reconfigurable
module (or fabric area) specified in the primary input file.
These resources will be the ones addressed by the test flow. It
is worth noting that the critical resources for a given reconfig-
urable module (or fabric area) are not only the ones occupied
by the reconfigurable module or included in the fabric area,
but also all those adjacent resources whose behaviour directly
affects the behaviour of the considered reconfigurable module
(or fabric area) [17].

The output file of the STAR tool represents the input file
of the Test Hard Macro Generator block (see Figure 1). This
block performs an iterative execution of the following steps:

1) DHHarMa reads the critical resource file and it generates
a list of HMs that use all the critical resources for the
considered reconfigurable module (or fabric area).

2) The list of HMs generated by DHHarMa is analysed by
STAR , that produces the lists of the critical resources for
these HMs. This step checks whether the HMs generated
by DHHarMa use all the critical resources specified
in the critical resource file. If the generated HMs do
not occupy all the critical resources, a not used critical
resource file (file FI in Figure 1), containing the list of
the critical resources still not used by the generated HMs
is produced.

3) SEU-X is executed on the generated HMs in order
to determine whether they are fully testable or not.
In particular SEU-X determines which of the critical
resources for the considered reconfigurable module (or
fabric area) can be tested using the generated HMs. The
list of the not testable critical resources is specified in
the not testable critical resource file (file F2 in Figure 1).

4) If both the not used and the not testable critical resource
files are empty, the generated test HMs can fully test all
the critical resources for the considered reconfigurable
module (or fabric area), thus the execution of the test
HM generator can stop. Otherwise the new critical
resource file, containing the union of the not used and

e GA-based
Test Hard Test Pattern —; Bitstreams
Macro 1 Generator Z’;‘:t:i‘
(XDL)
Iteration O L
N v OoRA ||l
ﬂ results F PGA

Critical
Resources

ﬂ.

FPGA
responces

ﬂv
Testing

Hard
Macros |}

(iteration

Output <J_
---» Response «— | EE SRRl

Analyzer

5

Patch Generator | |
(DHHarMa) |

List of
possible
faulty
resources

5

Fig. 2. The software flow for fault diagnosing.

the not testable critical resource files, is created and the
execution restarts from step 1, to generate test HMs for
the missing critical resources.

At the end of the execution of the Test Hard Macro
Generator block, possible unnecessary (redundant) test HMs
will be dropped from the test HM list.

After the complete list of test HMs has been generated, the
HMs themselves, together with the associated used critical
resources, are given in input to the GA-based test pattern
generator. This tool is intended to generate an efficient set
of test patterns for every given test HM.

The list of the test HMs, and the associated test patterns
represent the output of the fault testing flow. The test HMs
are specified in XDL, so they can be translated into an NCD
description and then into a bitstream.

We point out that after a test HM has been placed, the
associated test patterns will be applied through partial dynamic
reconfiguration of one or more LUTs included in the HM
itself. The output of the test HM will then be captured into
memory elements that will then be readback and analysed in
order to discover whether the behaviour of the HM was correct
or not. Figure 3(a) shows an example of test HM (marked in
blue) for a faulty programmable interconnect point (marked in
red).

B. Fine-Grained Fault Diagnosing

After a faulty response of the system during the test phase,
the fine-grained fault diagnosing and patching flow can be
executed (see Figure 2). This flow is intended to identify in
a fine-grained way the faulty resources and then to generate
a set of patch HMs used to mask out the faulty resources. In
this way partially faulty regions of the FPGA could still be
available for further use.

The fine-grained fault diagnosing and patching flow can
be divided into an iterative flow (the diagnosis flow) and
the patching flow. The diagnosis flow starts from the output
of the testing phase (the test HMs and the associated out-
put responses). Having these files (and knowing the critical
resources covered by each test HM) the Output Response

Faultx Resource

Test Hard Macro

Faulty Resource
Patch Hard Macro

(a) A test hard macro (b) A patching hard macro

Fig. 3. Examples of test/patching hard macros.

Analyzer block builds a list of possible faulty resources.
Starting from this point the following steps are executed:

1) If the list of possible faulty resources has reached the
desired level of granularity, the iterative execution ends.
Otherwise step 2 is executed.

2) The test HM generator is executed to generate a set of
test HMs for the remaining possible faulty resources
(called diagnostic HMs). It is worth noting that it is
impossible to generate a HM using just one resource,
because it would represent an inconsistent circuit, and
thus it would be impossible to place it on the FPGA.
Because of this, multiple diagnostic HMs will be gener-
ated, each using the possible faulty resource, but also
some unfaulty resources. It is vital for the diagnosis
process that all the generated diagnostic HMs use the
considered possible faulty resource, and that each uses
different unfaulty resources.

3) The GA-based test pattern generator is executed in order
to generate test patterns for the diagnostic HMs.

4) The diagnostic HMs are placed on the faulty FPGA and
the corresponding test patterns are applied using partial
dynamic reconfiguration

5) By analysing the responses of the diagnostic HMs, the
Output Response Analyzer block builds the new list of
possible faulty resources and the execution of the flow
restarts from step 1.

After the desired diagnostic granularity has been reached,
the remaining possible faulty resources should be made un-
available for further uses. This allows partially damaged
FPGAs still to be used. It is desirable that just the faulty
resources of the FPGA are made unavailable.

A way to exclude resources from the place-and-route is
generating patching HMs intended to mask out the undesired
resources. Unfortunately in order to integrate these patching
HMs in the user design, the HMs will also involve a given
amount of unfaulty resources, that will be wasted. Therefore it
is important that patching HMs will use the minimum amount
of unfaulty resources. In the proposed software flow the Patch
Generator block (shown in Figure 2) is in charge of generating
patching HMs taking into account the considerations discussed
above. Figure 3(b) shows an example of patching HM, where
the patching HM is marked in yellow and the faulty resource
is marked in red. It can be noticed that more resources than
the faulty one are involved in the patch.

IV. CONCLUSIONS

We have reported about the development of a flow for
the generation of HMs for testing permanent faults caused
by long term exposure of FPGAs to radiation, as it is the
case in space missions. The flow is hierarchical, and it is
composed by two steps. The first step aims at quickly on-
line discovering whether the FPGA is working properly or
not. If a faulty behaviour has been detected, the second step is
executed in order to locate the faulty resources. Finally a patch
HM occupying the faulty resources (and thus masking them
out) can be generated, thus making partially faulty regions of
the FPGA still available for further use.

REFERENCES

[1] J. Hagemeyer, A. Hilgenstein, D. Jungewelter, D. Cozzi, C. Felicetti, U.
Riickert, S Korf, M. Koster, F. Margaglia, M. Porrmann, F. Dittmann,
M. Ditze, J. Harris, L. Sterpone, J. Ilstad, “A Scalable Platform for
Run-time Reconfigurable Satellite Payload Processing,” in Proc. of the
NASA/ESA Conference on Adaptive Hardware and Systems, 2012.

[2] R. Ferguson and R. Tate, “Use of field programmable gate array
technology in future space avionics,” in Proc. of the 24th Digital
Avionics Systems Conference, 2005.

[3] R. Baumann, “Radiation-induced Soft Errors in Advanced Semicon-

ductor Technologies,” IEEE Transactions on Device and Materials

Reliability, vol. 5, no. 3, pp. 305 — 316, September 2005.

J. Wang, “Radiation effects in FPGAs,” in Proc. of the 9th Workshop

on Electronics for LHC Experiments, 2003.

[5]1 W. Huang, F. Meyer, N. Park, and F. Lombardi, “Testing Memory Mod-
ules in SRAM-based Configurable FPGAs,” in Proc. of the International
Workshop on Memory Technology, Design and Testing, 1997.

[6] M. Renovell, J. Portal, J. Figuras, and Y. Zorian, “Minimizing the

Number of Test Configurations for Different FPGA Families,” in Proc.

of the Eighth Asian Test Symposium, 1999.

J. Smith, T. Xia, and C. Stroud, “An Automated BIST Architecture

for Testing and Diagnosing FPGA Interconnect Faults,” Journal of

Electronic Testing, vol. 22, pp. 239-253, 2006.

[8] M. Abramovici and C. Stroud, “BIST-Based Test and Diagnosis of
FPGA Logic Blocks,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 9, no. 1, pp. 159 —-172, 2001.

[9] M. Rozkovec, J. Jenicek, and O. Novak, “Application Dependent FPGA

Testing Method,” in Proc. of the 13th Euromicro Conference on Digital

System Design: Architectures, Methods and Tools, 2010.

M. Tahoori, “Application-Dependent Testing of FPGAs,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 9,

pp.- 1024 1033, 2006.

C. Bernardeschi, L. Cassano, M. Cimino, and A. Domenici, “Application

of a genetic algorithm for testing seus in sram-fpga systems,” in Proc.

of the 6th HIPEAC Workshop on Reconfigurable Computing, 2012.

M. Abdelfattah, L. Bauer, C. Braun, M. Imhof, M. Kochte, H. Zhang,

J. Henkel, and H.-J. Wunderlich, “Transparent Structural Online Test

for Reconfigurable Systems,” in Proc. of the 18th IEEE International

On-Line Testing Symposium, 2012.

L. Sterpone and M. Violante, “A new analytical approach to estimate

the effects of seus in tmr architectures implemented through sram-based

fpgas,” IEEE Transactions on Nuclear Science, vol. 52, no. 6, pp. 2217

— 2223, December 2005.

S. Korf, D. Cozzi, M. Koster, J. Hagemeyer, M. Porrmann, U. Riickert,

and M. Santambrogio, “Automatic HDL-Based Generation of Homo-

geneous Hard Macros for FPGAs,” in Proc. of the IEEE 19th Annual

International Symposium on Field-Programmable Custom Computing

Machines, 2011.

C. Bernardeschi, L. Cassano, and A. Domenici, “SEU-X: a SEu Un-

uXecitbility prover for SRAM-FPGAs,” in Proc. of the 18th IEEE

International On-Line Testing Symposium, 2012.

LogiCORE IP XPS HWICAP (v5.00a), Xilinx, July 2010.

M. Violante, N. Battezzati, and L. Sterpone, Reconfigurable Field

Programmable Gate Arrays for Mission-Critical Applications. Springer

Science & Business Media, 2011.

[4

[l

[7

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

