

Fig.1. FusionSim’s Fused model.

Characterizing the Performance Benefits of Fused
CPU/GPU Systems Using FusionSim

Vitaly Zakharenko† Tor Aamodt‡ Andreas Moshovos†

†Electrical and Computer Engineering
University of Toronto

‡Electrical and Computer Engineering
University of British Columbia

Abstract— We use FusionSim to characterize the
performance of the Rodinia benchmarks on fused and discrete
systems. We demonstrate that the speed-up due to fusion is
highly correlated with the input data size. We demonstrate that
for benchmarks that benefit most from fusion, a 9.72x speed up is
possible for small problem sizes. This speedup reduces to 1.84x
with medium or large problem sizes. We study a simple,
software-managed coherence solution for the fused system. We
find that it imposes a minor performance overhead of 2% for
most benchmarks and as high as 5% for some. Finally, we
develop an analytical model for the performance benefit that is to
be expected from fusion for applications with a simple
communication and computation pattern and show that
FusionSim follows the predicted performance trend.

Keywords—CPU and GPU Fusion;

I. INTRODUCTION
Heterogeneous systems, comprising a CPU (central

processing unit) and a GPU (graphics processing unit), that are
both capable of general-purpose computations have started to
emerge. A matching heterogeneous workload could take
advantage of both the high computing power of GPUs for
SIMD-friendly multithreaded computation and the high single-
thread performance of CPUs.

Originally, heterogeneous computer systems were discrete
where the CPU and the GPU were on separate dies each with
its own private DRAM memory. Communication between the
CPU and GPU were to be orchestrated by the application by
copying data between the CPU and the GPU over a high
latency and bandwidth link (PCIe). Fused heterogeneous
architectures are now emerging where the CPU and the GPU
are on the same die and share the same DRAM memory. Fused
systems promise higher performance gains than discrete
systems as they obviate the need to explicitly copy data back
and forth over a long latency link.

We use FusionSim [2] to demonstrate the potential benefits
of fused systems. FusionSim is an open-source modeling
framework capable of cycle-accurate simulation of a complete
x86-based computer system with a CPU and a GPU. We
compare a discrete system that is representative of a
commercially available solution and a hypothetical, yet
realistic fused system. The fused system has partially private
CPU and GPU memory hierarchies, a shared last level cache,
and a common main memory. It uses a software-managed

coherence mechanism for correct CPU and GPU
communication. Using workloads from the Rodinia
benchmark suite [1] we study the relative performance of the
two systems. We demonstrate that the speed-up due to fusion
depends primarily on the input data size. The larger the input
data size, the less beneficial fusion is in terms of performance.
We provide a analytical explanation of the simulation results
obtained with FusionSim. The experiments demonstrate that
our simple, software-managed coherence mechanism is of low
overhead for most workloads.

Fused Model: FusionSim models an x86 out-of-order CPU
and a CUDA-capable GPU that operate concurrently.
FusionSim correctly models ordering and overlap in time of
asynchronous and synchronous operations, memory transfers,
CUDA events, kernels and CPU processing. Figure 2 shows
the fused system’s structure. One of the Processing Clusters
(PCs) of GPGPU-Sim [5] is replaced with a PTLsim [3] CPU
core and its local cache hierarchy. The CPU cache hierarchy is
derived from MARSSx86 [4] and interfaces with Intersim, a
NoC model of GPGPU-Sim. Intersim connects the CPU cache
hierarchy and the GPU TPCs with the shared last level cache
(LLC) which is tiled. The LLC is modeled using the L2 cache
model of GPGPU-Sim. In the default configuration, the LLC
appears as an L2 to the GPU clusters and as an L3 to the CPU.
The LLC caches the CPU’s address space and the GPU’s
global and local CUDA memory spaces. The CPU L1 and L2
caches and the GPU L1 caches remain private to the CPU and
the GPU, respectively.

The GPU’s global address space is placed in the CPU’s
memory address space allowing for communication between
the CPU and the GPU. CPU- and GPU-private caches may
both cache blocks from the global GPU space. 978-3-9815370-0-0/DATE13/©2013 EDAA

Conventionally, writes by the CPU or the GPU are not
coherent with respect to each other. We study a simple
software-based coherence mechanism that extends the CUDA
API with a cudaSelectivelyFlush function. To make CPU
changes visible to the GPU, the programmer must call
cudaSelectivelyFlush specifying the address and the size of the
memory region. This call invalidates all blocks from the
region cached in the private CPU L1 and L2 caches after
writing those blocks that are dirty to the last level cache and
the DRAM. GPU changes are made visible by flushing the
GPU’s L1 caches prior to signaling kernel completion. Since
the main memory is shared between the CPU and the GPU no
CUDA API functions are required for the transfer of data
blocks between the main memory and the private DRAM of
the GPU. Thus, all cudaMemcpy variants and cudaMemset are
eliminated. Additionally, since there is no separate device
DRAM memory, the CUDA API functions responsible for
device memory allocation (all variants of cudaMalloc and
cudaFree) are also eliminated, unless they are for private GPU
buffers.

Experimental Setup: We modeled a discrete and a fused
system. Both use a single-core out-of-order CPU operating at
3.25 GHz with private 64KB L1 data and instruction caches,
and a unified 256KB L2. The discrete system has a 2MB L3.
All caches are write-back. The GPU is modeled after
NVIDIA's Quadro FX 5800 (GT200). For the fused system
the GPU’s L2 is 2MB and acts as an L3 for the CPU.

We simulate ten benchmarks from the Rodinia
benchmarks [1]. Execution time measurements exclude the
time required for data input generation and result output. To
understand the performance potential of reduced API latencies
due to fusion and to appropriately model the latency of the
CUDA calls we measured their latency on existing systems.
We then studied a range of latencies based on these
measurements. Kernel spawn latency, KSL, is the delay
between the cudaLaunchKernel API function call and the
actual kernel execution on the GPU. We modified the
bandwidthTest utility from the CUDA SDK to measure the
throughput of a micro-benchmark kernel and estimated the
KSL on a number of actual discrete systems. KSL varied from
10 µsec to 100 µsec. We use these two values to model an
optimistic and a pessimistic discrete system. Fusion will
reduce KSL. Accordingly, we modeled latencies of 0.1 µsec
(≈300 CPU cycles), 1 µsec and 10 µsec. We measured the
latency of the CUDA memory copy operations and
appropriately configured the discrete model. The fused
simulator appropriately models the latency of flushing data
from the private caches that replaces these memory copies.

A. Analytical model of performance benefits with Fusion
We demonstrate analytically that the benefits from fusion are
higher for benchmarks that a) operate on small data inputs,
b) have high data throughput kernels, c) do multiple kernel
launch and CUDA memory copy calls, and d) spend most of
their time executing the CUDA code. Our model predicts that

the speed-up from fusion reduces with the input data size.
Table I lists the parameters used in our model. The kernel can
be modeled as a channel of throughput)(KERKER dataΘ as the
actual throughput will vary with

KERdata . As
KERdata increases,

KERΘ saturates. For simplicity, and without the loss of
generality, in the rest of the section we will simply write KERΘ .

First, we develop an expression for the time GPUt spent in
execution of the CUDA code on a discrete system. All the
applications studied do a series of the following: transfer data
from CPU to GPU, compute on the GPU, transfer the results
back to the CPU. For such applications GPUt is described by
the following:

)1(







Θ

+×=
KER

KER
TOTKERGPU

data
nt δ

where TOTδ is the total latency per iteration resulting from the
memory transfers and the kernel spawn. For CUDA
applications that do not utilize multiple concurrent CUDA
streams the total latency per single computation iteration TOTδ
comprises of the time spent transferring the data to or from the
device and the kernel spawn latency:

)2(2 KS
COPY

KER
COPYTOT

data
δδδ +








Θ

+×=

This expression holds for all our benchmarks. Since on fused
systems this latency reduces to KSKSTOT δδδ ≤′=′ , the time

GPUt ' of executing the CUDA code on the fused system is
given by:

)3(
KER

KER
KER

KER

KER
KSKERGPU

datandatant
Θ

×≈







Θ

+′×=′ δ

the speed-up of the CUDA code is given by:

)4(1+
Θ×

≈
′

=
KER

KERTOT

GPU

GPU
GPU datat

t
G

δ

Since KERTOTKER ndatadata /= and using (2) for TOTδ , we
obtain:

 TABLE I: Analytical Model Parameters

Symbol Description

GPUG Speed-up due to fusion of the benchmark’s CUDA portion.

TOTG Total speed-up of the benchmark

KERn Number of kernel invocations

GPUt Time consumed by execution of the CUDA code

TOTdata Total input data size of the benchmark

KERdata Data size per kernel invocation

TOTδ Total latency of a single computation iteration

KSδ Kernel spawn latency

COPYδ Latency of the CUDA host-to/from-device memory copy

KERΘ Kernel data throughput

COPYΘ Bandwidth of the host-to/from-device memory copy

)5(1
COPY

KERNEL
KERNEL

TOTAL

TOTAL
GPU data

G
Θ
Θ

+Θ×
∆

+≈

)6()()(1
COPY

KERKERNEL
KERKERNEL

KER

TOT
GPU

datadata
data

G
Θ

Θ
+Θ×+≈

δ

1+Θ×
×

≈ KER
TOT

KERTOT
GPU data

nG δ

In (5), TOTAL∆ is the total latency of the benchmark execution
including all kernel spawn and memory transfers. The 2nd term
of (5) is responsible for the speed-up due to the reduction of
the total cumulative latency TOTAL∆ by fusion. Intuitively, this
is the number of times the GPU computation task could have
been accomplished during the total latency time of TOTAL∆
with infinite PCIe bandwidth. TOTAL∆ is only reduced by
fusion since KSL is not eliminated. The 3rd term of (5) is
responsible for the speed-up due to the elimination of the PCIe
throughput limitation. Intuitively, this is the ratio of GPU
computation throughput over PCIe throughput.
Equation (5) can be rewritten as follows:

A kernel’s throughput KERΘ increases with KERdata for small

KERdata values and saturates to a constant for large

KERdata values. The throughput saturates when the input data
size is sufficient for maximum possible warp scheduler
occupancy for the given kernel. Due to the)(KERKERNEL dataΘ
dependency and since KERdata is in the denominator of the 2nd
term in (6) it follows that (a) the 2nd term is dominant for
small KERdata and is insignificant for large KERdata and (b) the
3rd term is dominant for large KERdata and is insignificant for
small KERdata .

For benchmarks utilizing CUDA streams and overlapping
kernel execution with data transfers the latency is bounded by
(2):

)7(2 KS
COPY

KER
COPYTOT

data
δδδ +








Θ

+×≤

This results in a smaller speed-up GPUG for such
benchmarks. Further, by applying Amdahl’s law we get an
expression for the total benchmark speed-up TOTG :

)8(
%%

1
GPU

GPUGPUCPU
TOT G

G
G ≤

×+
=

The total speed-up is proportional to the percent of the total
execution time that was spent executing the CUDA code and
is bounded by the CUDA speed-up GPUG . From (5) and (8) we
see that the following factors result in higher performance
benefits from fusion: (i) High benchmark kernel throughput

KERΘ , (ii) small benchmark input data size TOTdata ,

(iii) many kernel invocations (large KERn), and (iv) long time

spent in CUDA code relative to the x86 code (large GPU%)
From (5) we note that for larger problem sizes the effect of

the total latency TOTδ is amortized by the data size and leads to
a reduction of the benefits from fusion.

A. Performance With Zero-Overhead Coherence
We initially assume zero overhead for the software-based

coherence mechanism to obtain an upper bound on
performance.

Figure 2 reports the relative performance improvement of the
fused system with the optimistic 0.1 µsec KSL over discrete
systems with 100 µsec or 10 µsec KSL. The performance
boost due to fusion varies substantially depending on the
benchmark, the data input size (compare gaus_4 and
gaus_128), and the discrete system’s KSL. The lower the
discrete KSL the less the benefits from fusion. From this point
our baseline discrete system will have a 10 µsec KSL.

Figure 3 reports fusion performance with KSL of 0.1, 1, and
10 µsec. We limit our attention to the benchmarks that
benefited most from fusion. Fusion benefits remain mostly
unaffected even when KSL is as high as 1 µsec. Even when
fusion does not reduce KSL, it improves performance from
9% (pathfinder) to 93% (gaus_4). From this point on, our
fused system will use an optimistic 0.1 µsec KSL.

Fig.3. Speed-up of fused systems with different KSL relative to the
10 µsec latency discrete system.

Fig.2. Fusion performance relative to discrete systems. No coherence
overhead.

B. Performance With Software Coherence
Figure 4 shows that the memory coherence performance

overhead on the fused system is less than 2% for most
benchmarks and as high as 5% for bfs_small.

C. The Effect of the Input Data Size
We analyze how fusion benefits vary with the input data

size focusing on bfs and gaus that benefited most from fusion.
Figure 5 shows that fusion benefits reduce with larger input
data sizes for bfs and gaus. Fusion benefits for Gaus drop
from 9.72x with a small input to 1.84x with medium input
(gaus_256). Gaus_265 runs for only 10ms on the discrete
system. Therefore, fusion benefits are significant with small
enough input that results in about 10ms of execution time. For
larger inputs, the latency of memory copy operations and the
kernel spawn latency become insignificant and fusion
performance approaches that of the discrete system. The fact
that smaller input sets boost fusion benefits should encourage
software developers to use the GPU for finer-grain tasks.

D. Results Analysis
Figure 5 showed that when used with small inputs gaus and

bfs significantly benefit from fusion (9.72x and 4.28x
respectively) while nn's performance improves only by 1.05x.
Their respective computation patterns explain this behavior.
Gauss and Bfs incur substantial latency overhead due to
multiple kernel spawns inside a loop and multiple memory
transfers in Bfs. Nn performs only one kernel spawn and only
two memory copies accumulating only a minor latency
overhead. For the same order-of-magnitude input data size the
number of kernel spawns of gauss and bfs is around 100x and
16x that of nn respectively.

The analytical model (5) can be used to explain the
experimental results. Figure 12 reports

TOT

KERTOT

data
n×δ from (5)

which is the effective computation latency per unit of input
data (ECL). The total latency TOTδ of a single computation
iteration has been calculated as α×+×)10(_ CPYMEMKER nn ,
where α is some constant that gets eliminated in the
normalization. The factor 10 accounts for an order-of-
magnitude higher latency for kernel spawns vs. memory copy
operations. To make comparisons easier, all measurements are
normalized to the value of backprop that benefits the least
from fusion.

Figure 6 shows the Bytes/sec kernel processing throughput
(KPT) per benchmark. (5) predicts that fusion speed-up is
proportional to KPT. Bfs has the highest KPT, which explains
its high speed-up. Gauss’ KPT is medium/low but gets
compensated by the extremely high values of ECL in Fig. 7
thus resulting in high speed-up. Nn has a low KPT that
additionally contributes to its low speed-up. For gauss and nn
ECL is the greatest and the lowest among the benchmarks,
respectively. This explains the high and the low speed-ups
they experience.

REFERENCES
[1] S. Che, et al., Rodinia: A benchmark suite for heterogeneous

computing. In IISWC, Oct. 2009.
[2] FusionSim simulation framework: www.fusionsim.ca
[3] PTLsim: cycle-accurate x86 CPU simulator. www.ptlsim.org
[4] MARSSx86: Micro-ARchitectural and System Simulator for x86 based

Systems. www.marss86.org
[5] Bakhoda, et al., Analyzing CUDA Workloads Using a Detailed GPU

Simulator, ISPASS, April, 2009.

Fig.4. Performance overhead of software-based memory coherence. Fig.5. Data size vs. fusion performance for bfs and gaus.

Fig.6. Kernel throughput of Rodinia benchmarks.

Fig.7. The

TOT

KERTOT

data
n×δ of (5) normalized over backprop.

http://www.fusionsim.ca/
http://www.marss86.org/

