
 
 

Fig.1. FusionSim’s Fused model.  
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Abstract— We use FusionSim to characterize the 
performance of the Rodinia benchmarks on fused and discrete 
systems. We demonstrate that the speed-up due to fusion is 
highly correlated with the input data size. We demonstrate that 
for benchmarks that benefit most from fusion, a 9.72x speed up is 
possible for small problem sizes. This speedup reduces to 1.84x 
with medium or large problem sizes.  We study a simple, 
software-managed coherence solution for the fused system. We 
find that it imposes a minor performance overhead of 2% for 
most benchmarks and as high as 5% for some. Finally, we 
develop an analytical model for the performance benefit that is to 
be expected from fusion for applications with a simple 
communication and computation pattern and show that 
FusionSim follows the predicted performance trend. 
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I. INTRODUCTION 
Heterogeneous systems, comprising a CPU (central 

processing unit) and a GPU (graphics processing unit), that are 
both capable of general-purpose computations have started to 
emerge. A matching heterogeneous workload could take 
advantage of both the high computing power of GPUs for 
SIMD-friendly multithreaded computation and the high single-
thread performance of CPUs. 

Originally, heterogeneous computer systems were discrete 
where the CPU and the GPU were on separate dies each with 
its own private DRAM memory. Communication between the 
CPU and GPU were to be orchestrated by the application by 
copying data between the CPU and the GPU over a high 
latency and bandwidth link (PCIe). Fused heterogeneous 
architectures are now emerging where the CPU and the GPU 
are on the same die and share the same DRAM memory. Fused 
systems promise higher performance gains than discrete 
systems as they obviate the need to explicitly copy data back 
and forth over a long latency link. 

We use FusionSim [2] to demonstrate the potential benefits 
of fused systems. FusionSim is an open-source modeling 
framework capable of cycle-accurate simulation of a complete 
x86-based computer system with a CPU and a GPU. We 
compare a discrete system that is representative of a 
commercially available solution and a hypothetical, yet 
realistic fused system. The fused system has partially private 
CPU and GPU memory hierarchies, a shared last level cache, 
and a common main memory. It uses a software-managed  
 
 

coherence mechanism for correct CPU and GPU 
communication.  Using workloads from the Rodinia 
benchmark suite [1] we study the relative performance of the 
two systems. We demonstrate that the speed-up due to fusion 
depends primarily on the input data size. The larger the input 
data size, the less beneficial fusion is in terms of performance. 
We provide a analytical explanation of the simulation results 
obtained with FusionSim. The experiments demonstrate that 
our simple, software-managed coherence mechanism is of low 
overhead for most workloads. 

Fused Model: FusionSim models an x86 out-of-order CPU 
and a CUDA-capable GPU that operate concurrently. 
FusionSim correctly models ordering and overlap in time of 
asynchronous and synchronous operations, memory transfers, 
CUDA events, kernels and CPU processing.  Figure 2 shows 
the fused system’s structure. One of the Processing Clusters 
(PCs) of GPGPU-Sim [5] is replaced with a PTLsim [3] CPU 
core and its local cache hierarchy. The CPU cache hierarchy is 
derived from MARSSx86 [4] and interfaces with Intersim, a 
NoC model of GPGPU-Sim. Intersim connects the CPU cache 
hierarchy and the GPU TPCs with the shared last level cache 
(LLC) which is tiled. The LLC is modeled using the L2 cache 
model of GPGPU-Sim. In the default configuration, the LLC 
appears as an L2 to the GPU clusters and as an L3 to the CPU.  
The LLC caches the CPU’s address space and the GPU’s 
global and local CUDA memory spaces. The CPU L1 and L2 
caches and the GPU L1 caches remain private to the CPU and 
the GPU, respectively. 

The GPU’s global address space is placed in the CPU’s 
memory address space allowing for communication between 
the CPU and the GPU. CPU- and GPU-private caches may 
both cache blocks from the global GPU space. 978-3-9815370-0-0/DATE13/©2013 EDAA 



Conventionally, writes by the CPU or the GPU are not 
coherent with respect to each other. We study a simple 
software-based coherence mechanism that extends the CUDA 
API with a cudaSelectivelyFlush function. To make CPU 
changes visible to the GPU, the programmer must call 
cudaSelectivelyFlush specifying the address and the size of the 
memory region. This call invalidates all blocks from the 
region cached in the private CPU L1 and L2 caches after 
writing those blocks that are dirty to the last level cache and 
the DRAM. GPU changes are made visible by flushing the 
GPU’s L1 caches prior to signaling kernel completion. Since 
the main memory is shared between the CPU and the GPU no 
CUDA API functions are required for the transfer of data 
blocks between the main memory and the private DRAM of 
the GPU. Thus, all cudaMemcpy variants and cudaMemset are 
eliminated. Additionally, since there is no separate device 
DRAM memory, the CUDA API functions responsible for 
device memory allocation (all variants of cudaMalloc and 
cudaFree) are also eliminated, unless they are for private GPU 
buffers.  

Experimental Setup: We modeled a discrete and a fused 
system. Both use a single-core out-of-order CPU operating at 
3.25 GHz with private 64KB L1 data and instruction caches, 
and a unified 256KB L2. The discrete system has a 2MB L3. 
All caches are write-back. The GPU is modeled after 
NVIDIA's Quadro FX 5800 (GT200). For the fused system 
the GPU’s L2 is 2MB and acts as an L3 for the CPU.  

We simulate ten benchmarks from the Rodinia 
benchmarks [1]. Execution time measurements exclude the 
time required for data input generation and result output. To 
understand the performance potential of reduced API latencies 
due to fusion and to appropriately model the latency of the 
CUDA calls we measured their latency on existing systems. 
We then studied a range of latencies based on these 
measurements. Kernel spawn latency, KSL, is the delay 
between the cudaLaunchKernel API function call and the 
actual kernel execution on the GPU. We modified the 
bandwidthTest utility from the CUDA SDK to measure the 
throughput of a micro-benchmark kernel and estimated the 
KSL on a number of actual discrete systems. KSL varied from 
10 µsec to 100 µsec. We use these two values to model an 
optimistic and a pessimistic discrete system. Fusion will 
reduce KSL. Accordingly, we modeled latencies of 0.1 µsec 
( ≈300 CPU cycles), 1 µsec and 10 µsec. We measured the 
latency of the CUDA memory copy operations and 
appropriately configured the discrete model. The fused 
simulator appropriately models the latency of flushing data 
from the private caches that replaces these memory copies. 

A. Analytical model of performance benefits with Fusion  
We demonstrate analytically that the benefits from fusion are 
higher for benchmarks that a) operate on small data inputs, 
b) have high data throughput kernels, c) do multiple kernel 
launch and CUDA memory copy calls, and d) spend most of 
their time executing the CUDA code. Our model predicts that 

the speed-up from fusion reduces with the input data size. 
Table I lists the parameters used in our model. The kernel can 
be modeled as a channel of throughput )( KERKER dataΘ  as the 
actual throughput will vary with 

KERdata . As 
KERdata increases, 

KERΘ  saturates. For simplicity, and without the loss of 
generality, in the rest of the section we will simply write KERΘ .  

First, we develop an expression for the time GPUt  spent in 
execution of the CUDA code on a discrete system. All the 
applications studied do a series of the following: transfer data 
from CPU to GPU, compute on the GPU, transfer the results 
back to the CPU. For such applications GPUt  is described by 
the following:  
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where TOTδ  is the total latency per iteration resulting from the 
memory transfers and the kernel spawn. For CUDA 
applications that do not utilize multiple concurrent CUDA 
streams the total latency per single computation iteration TOTδ  
comprises of the time spent transferring the data to or from the 
device and the kernel spawn latency: 
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This expression holds for all our benchmarks.  Since on fused 
systems this latency reduces to KSKSTOT δδδ ≤′=′ , the time 

GPUt '  of executing the CUDA code on the fused system is 
given by: 
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the speed-up of the CUDA code is given by:  
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Since KERTOTKER ndatadata /=  and using (2) for TOTδ , we 
obtain: 

 TABLE I: Analytical Model Parameters  

Symbol Description 

GPUG  Speed-up due to fusion of the benchmark’s CUDA portion.  

TOTG  Total speed-up of the benchmark 

KERn  Number of kernel invocations 

GPUt  Time consumed by execution of the CUDA code 

TOTdata  Total input data size of the benchmark 

KERdata  Data size per kernel invocation  

TOTδ  Total latency of a single computation iteration 

KSδ  Kernel spawn latency  

COPYδ  Latency of the CUDA host-to/from-device memory copy 

KERΘ  Kernel data throughput 

COPYΘ  Bandwidth of the host-to/from-device memory copy 
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In (5), TOTAL∆  is the total latency of the benchmark execution 
including all kernel spawn and memory transfers. The 2nd term 
of (5) is responsible for the speed-up due to the reduction of 
the total cumulative latency TOTAL∆   by fusion. Intuitively, this 
is the number of times the GPU computation task could have 
been accomplished during the total latency time of TOTAL∆  
with infinite PCIe bandwidth. TOTAL∆  is only reduced by 
fusion since KSL is not eliminated. The 3rd term of (5) is 
responsible for the speed-up due to the elimination of the PCIe 
throughput limitation. Intuitively, this is the ratio of GPU 
computation throughput over PCIe throughput. 
Equation (5) can be rewritten as follows:  

 

A kernel’s throughput KERΘ  increases with KERdata  for small 

KERdata values and saturates to a constant for large 

KERdata values. The throughput saturates when the input data 
size is sufficient for maximum possible warp scheduler 
occupancy for the given kernel.  Due to the )( KERKERNEL dataΘ  
dependency and since KERdata  is in the denominator of the 2nd 
term in (6) it follows that (a) the 2nd term is dominant for 
small KERdata  and is insignificant for large KERdata  and (b) the 
3rd term is dominant for large KERdata  and is insignificant for 
small KERdata .   

For benchmarks utilizing CUDA streams and overlapping 
kernel execution with data transfers the latency is bounded by 
(2):  
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This results in a smaller speed-up GPUG  for such 
benchmarks.  Further, by applying Amdahl’s law we get an 
expression for the total benchmark speed-up TOTG :  
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The total speed-up is proportional to the percent of the total 
execution time that was spent executing the CUDA code and 
is bounded by the CUDA speed-up GPUG . From (5) and (8) we 
see that the following factors result in higher performance 
benefits from fusion: (i) High benchmark kernel throughput 

KERΘ , (ii) small benchmark input data size TOTdata , 

(iii) many kernel invocations (large KERn ), and (iv) long time 

spent in CUDA code relative to the x86 code (large GPU% ) 
From (5) we note that for larger problem sizes the effect of 

the total latency TOTδ is amortized by the data size and leads to 
a reduction of the benefits from fusion. 

A.  Performance With Zero-Overhead Coherence  
We initially assume zero overhead for the software-based 

coherence mechanism to obtain an upper bound on 
performance.

 
Figure 2 reports the relative performance improvement of the 
fused system with the optimistic 0.1 µsec KSL over discrete 
systems with 100 µsec or 10 µsec KSL. The performance 
boost due to fusion varies substantially depending on the 
benchmark, the data input size (compare gaus_4 and 
gaus_128), and the discrete system’s KSL. The lower the 
discrete KSL the less the benefits from fusion. From this point 
our baseline discrete system will have a 10 µsec KSL. 

Figure 3 reports fusion performance with KSL of 0.1, 1, and 
10 µsec. We limit our attention to the benchmarks that 
benefited most from fusion. Fusion benefits remain mostly 
unaffected even when KSL is as high as 1 µsec. Even when 
fusion does not reduce KSL, it improves performance from 
9% (pathfinder) to 93% (gaus_4). From this point on, our 
fused system will use an optimistic 0.1 µsec KSL. 

 
Fig.3. Speed-up of fused systems with different KSL relative to the 
10 µsec latency discrete system. 

 
Fig.2. Fusion performance relative to discrete systems. No coherence 
overhead. 



B. Performance With Software Coherence 
Figure 4 shows that the memory coherence performance 

overhead on the fused system is less than 2% for most 
benchmarks and as high as 5% for bfs_small.  

C. The Effect of the Input Data Size 
We analyze how fusion benefits vary with the input data 

size focusing on bfs and gaus that benefited most from fusion. 
Figure 5 shows that fusion benefits reduce with larger input 
data sizes for bfs and gaus. Fusion benefits for Gaus drop 
from 9.72x with a small input to 1.84x with medium input 
(gaus_256).  Gaus_265 runs for only 10ms on the discrete 
system. Therefore, fusion benefits are significant with small 
enough input that results in about 10ms of execution time. For 
larger inputs, the latency of memory copy operations and the 
kernel spawn latency become insignificant and fusion 
performance approaches that of the discrete system. The fact 
that smaller input sets boost fusion benefits should encourage 
software developers to use the GPU for finer-grain tasks. 

D. Results Analysis 
Figure 5 showed that when used with small inputs gaus and 

bfs significantly benefit from fusion (9.72x and 4.28x 
respectively) while nn's performance improves only by 1.05x. 
Their respective computation patterns explain this behavior. 
Gauss and Bfs incur substantial latency overhead due to 
multiple kernel spawns inside a loop and multiple memory 
transfers in Bfs. Nn performs only one kernel spawn and only 
two memory copies accumulating only a minor latency 
overhead. For the same order-of-magnitude input data size the 
number of kernel spawns of gauss and bfs is around 100x and 
16x that of nn respectively. 

The analytical model (5) can be used to explain the 
experimental results. Figure 12 reports 

TOT

KERTOT

data
n×δ from (5) 

which is the effective computation latency per unit of input 
data (ECL). The total latency TOTδ of a single computation 
iteration has been calculated as α×+× )10( _ CPYMEMKER nn , 
where α is some constant that gets eliminated in the 
normalization. The factor 10 accounts for an order-of-
magnitude higher latency for kernel spawns vs. memory copy 
operations. To make comparisons easier, all measurements are 
normalized to the value of backprop that benefits the least 
from fusion. 

Figure 6 shows the Bytes/sec kernel processing throughput 
(KPT) per benchmark. (5) predicts that fusion speed-up is 
proportional to KPT. Bfs has the highest KPT, which explains 
its high speed-up. Gauss’ KPT is medium/low but gets 
compensated by the extremely high values of ECL in Fig. 7 
thus resulting in high speed-up. Nn has a low KPT that 
additionally contributes to its low speed-up. For gauss and nn 
ECL is the greatest and the lowest among the benchmarks, 
respectively. This explains the high and the low speed-ups 
they experience. 
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Fig.4. Performance overhead of software-based memory coherence.  Fig.5. Data size vs. fusion performance for bfs and gaus. 

  
Fig.6. Kernel throughput of Rodinia benchmarks. 

 
Fig.7. The  
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