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Abstract— Many application-specific processor design 

approaches are being proposed and investigated nowadays. All of 

them aim to cope with the emerging flexibility requirement 

combined with the best performance efficiency. Application Specific 

Instruction-set Processor (ASIP) design approach is among the most 

explored, and thus in many application domains. However, this 

concept implies a dynamic scheduling of a set of instructions which 

generally lead to an overhead related to instruction decoding. To 

reduce this overhead, other approaches were proposed using static 

scheduling of datapath control signals. In this paper, we explore this 

last approach and illustrate its benefits through a design case-study 

on MMSE MIMO equalization. The proposed design has common 

main architectural choices as a state-of-the-art ASIP for comparison 

purpose. The obtained results illustrate a significant improvement 

in execution time while using identical computational resources and 

supporting same flexibility parameters. 

I. INTRODUCTION 

Advanced computer architectures for application-specific 

processor target the accommodation of the emerging flexibility 

requirement as well as attaining the best performance efficiency. 

Such combination of flexibility and the ever increasing performance 

requirements demands design approach that provides better ways of 

controlling and managing the hardware resources. Low level design 

at Register Transfer Level (RTL) can lead to efficient architectures 

but the development time is very high for complex applications. 

High Level Synthesis (HLS) increases productivity by converting 

directly high level C language description into an RTL Hardware 

Description Language (HDL). The designer cannot correlate 

precisely the effect of application modifications to final 

implementation quality metrics such as area, power, clock 

frequency, routable layout, etc. [1]. To improve the quality, the 

designer can depend only on guess and try work. The result quality 

is noticeably low compared to manual RTL. A suitable approach to 

design custom processors is based on Application Specific 

Instruction-set Processor (ASIP) concept. It offers a compromise in 

terms of design productivity and implementation quality. ASIP relies 

on a few set of pre-defined custom instructions. An instruction 

decoder should be designed to decode the instructions that are then 

executed by the corresponding hardware at runtime. The 

implementation of the instruction decoder leads to a complex 

controller which increases power and area consumption. 

  Recently, the idea of a processor dedicated to an application not 

using an instruction set has been introduced under the name of No-

Instruction-Set-Computer (NISC). The main proposal of NISC 

approach is that there exists no need to use an instruction set when 

the hardware is programmed by its designers and not by its users. 

NISC simplifies ASIP approach by removing the complex task of 

finding and designing “most profitable” custom instructions [1]. The 

elimination of the instruction set increases the designer productivity 

and shrinks the time-to-market. The hardware is simplified due to the 

omitting of instruction decoder what reduces the complexity and 

improves the performance. All major tasks of typical processor 

controller (instruction decoding, dependency analysis, instruction 

scheduling, etc.) are done by the compiler statically [1] at compilation 

time. The compiler, which is not restricted by die size, chip resources 

or timing constrains, generates the control words (CWs) that must be 

applied to datapath components at runtime in every clock cycle and 

loads them in a control memory. At run time, the controller only 

loads the CWs and applies them to the datapath.  

In this paper, we explore and illustrate the benefits of the NISC 

approach in design an application-specific processor dedicated to 

MMSE MIMO equalization. The proposed design is in addition 

compared with a state-of-the-art ASIP. 

The rest of the paper is organized as follows. Next section 

explains the used designed approach. Section 3 presents the 

application case-study showing the algorithm details and the target 

flexibility requirement. Sections 4 and 5 present the proposed 

architecture and the simulation results respectively. The last section 

concludes the paper and gives the future work. 

II. DESIGN APPROACH 

The NISC design approach offers an open source toolset [2] that 

can be used either as a free C-to-RTL (i.e. C to Verilog) synthesis 

tool or to design embedded custom-processors. The designer needs 

only to specify the datapath and the custom-functional units and then 

uses the toolset to compile the application C code on the devised 

architecture. Results can be refined and improved by modifying the 

application C code or the datapath and reusing the toolset to generate 

new results. Structural details of the architecture are captured by 

Generic Netlist Representation (GNR), which is a formal 

architecture description language (ADL) [3]. The key feature of 

GNR is that the structural information is enhanced with types and 

tool-specific information called aspects. Types and aspects are used 

in validation, datapath connection, optimization, compilation and 

implementation. GNR uses the eXtensible Markup Language (XML) 

to describe models.  GNR syntax is defined in XML Schema to 

enforce syntax and semantics checking on the given input model [4]. 

The datapath is captured in GNR [5] that describes the components, 

ports, connections and aspects. The component type can be a basic 

RTL component (register, multiplexer, functional unit, etc.) or a 

module, which is a hierarchical component that can have an internal 

netlist. Each port is parameterized by its bitwidth and type (Clock 

“clock”, control port “ctrlPort”, input “inPort”, output “outPort”, 

and control word port “cwPort”). Connections link in between 



source ports (outPort) and destination ports (inPort) of different 

components. Aspects describe the behavior of the component for 

different tools in the toolset [5]. According to the component type 

the compilation aspect defines one or more machine actions (MA), 

which are very low-level functionalities of the component that 

determines both the timing and the control values of each control 

port at each operation. Synthesis and simulation aspects contain 

HDL information of the component. The functionality of the 

component can be described by its compilation aspect, and by netlist 

specifications or HDL description.  For an example, Fig.1 shows the 

GNR description of a multiplexer that can implement two operations 

as shown in its compilation aspect; hence its control port “sel” is 1-

bit wide. The multiplexer is of type “Mux” and has two parameters: 

BIT_WIDTH and DELAY. The HDL description of the multiplexer is 

input through the file “Mux2.v”. 

In some applications, the hardware must be controlled directly 

through specific instructions. The toolset provides pre-bound 

functions and variables that have common C syntax. The compiler 

maps them to specific hardware resources [6]. For a specific module, 

the designer should declare pre-bound functions in the compiler 

aspect of the module. The compiler generates proper control bits to 

access their corresponding hardware resources. The declaration 

should define the control values for enabling the function and the 

ports that are used as inputs and outputs. Figure 2 shows an example 

of a pre-bound function write that controls loading data to a register. 

Both input port “i” and control value of the control port “load” are 

specified. The pre-bound functions have no implementation and are 

treated similarly to other operations. Therefore, they can be 

scheduled in parallel with other operations [6]. 

High performance designs are achieved by having direct control 

of hardware resources. Direct compiling of C code descripting 

complex application using NISC gave inefficient hardware results. To 

achieve high performance, we described manually all the control 

signals for each clock cycle. Pre-bound functions were used to have 

direct control of hardware resources using the toolset. To increase 

design productivity, we exploit the automatic completion of the GNR 

to reduce the datapath description. And we made use of syntax 

checking and rule validation provided by the toolset to quickly detect 

and fix errors. Also we used the toolset compiler to schedule 

statically and to arrange automatically the control signals in memory. 

III. MMSE MIMO EQUALIZATION APPLICATION 

Multi-Input Multi-Output (MIMO) techniques with multiple 

antennas at transmission and reception sides proliferates in wireless 

communication systems. Turbo-equalization concept [7] can be used 

at the MIMO receiver to cancel the effects of MIMO co-antenna 

interference. When used in an iterative scheme, the Minimum Mean 

Square Error Interference Cancellation (MMSE-IC) algorithm 

implements MIMO equalization with an acceptable tradeoff between 

complexity and performance. The variety of transmission standards 

and environments imposes the requirement of architecture flexibility 

in emerging wireless communication applications to accommodate 

different algorithmic variants and to follow the market pressure. All 

the components of a MIMO receiver should support different system 

configurations concerning the time selectivity  of the channel (block, 

quasi-static and fast fading) and different techniques of transmission 

diversity (2×2, 3×3 and 4×4 space-time coding).  

The input vector of the MIMO turbo receiver shown in Fig.3 is 

given by the following expression: 

 
Fig. 1.  GNR description of a multiplexor 

 

Fig. 2.  Pre-bound function used for loading data to a register 

 y = Hx + w  (1) 

where y is vector of size of number of receiver antennas (Nr), x is a 

vector of size of number of transmitter antennas (Nt), H is the MIMO 

channel matrix of size Nr × Nt and w is a vector of Additive White 

Gaussian Noise (AWGN) of size Nr. 

The MMSE-IC Linear Equalizer (LE) removes the co-antenna 

interference and provides the estimated symbol vector  ̃ of size Nt 

and the corresponding bais vector g. Along the feedback path, the 

decoder provides a posteriori information to a soft mapper that 

provides the a priori information to the equalizer as decoded symbol 

vector  ̂ of size Nt. The equalizer considers that a symbol of the 

vector x is distorted by the Nt – 1 other symbols of the vector and the 

noise channel and tries to combat both. Equation 1 can be written in 

the following form: 

          ∑                     –               (2) 

where hi and hj are the i
th
 and j

th
 column of H matrix. 

Using the Wiener filter   
       

 , the estimation of x is given by: 
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  are variances of transmitted symbols, decoded 

symbols and noise. I is identity matrix of size Nr × Nr. 
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Equation 3 can be written as: 

  ̃        
      ̂     ̂  where           (6) 

The computation of         and g is performed one time for a 
whole block of symbols for which channel is considered as constant 
whereas  ̃ is computed repeatedly for each equalization iteration. 

 

Fig. 3.  MIMO turbo receiver scheme  
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  <Function n="write"stateDependency="none"stages="1"delay="0"setupTime=0 holdTime="0"> 
   <Input port="i"/> 
   <Ctrl port="load" val="1"/> 
  </Function> 
 

   <Simulation topModuleName="Mux2"> 

    <VerilogParams> 

     <Param n="BIT_WIDTH" val="{@BIT_WIDTH}"/> 

    </VerilogParams> 

    <VerilogCode> 

     <File n="Mux2.v"/> 

    </VerilogCode> 

   </Simulation> 

 </Annot_verilog> 

 <Annot_compiler> 

  <Transfers> 
   <DataTransfer inPort="i0"outPort=o transferDelay="{@DELAY}> 

    <Ctrl val="0" port="sel"/> 

   </DataTransfer> 
   <DataTransfer inPort="i1" outPort=o transferDelay="{@DELAY}"> 

    <Ctrl val="1" port="sel"/> 

   </DataTransfer> 

  </Transfers> 

 </Annot_compiler> 

</Mux> 

<Mux type="Mux2"> 

 <Params> 

  <Param n="BIT_WIDTH/> 

  <Param n="DELAY" val="0/> 

 </Params> 

 <Ports> 

  <InPort n="i0" bitWidth="{@BIT_WIDTH}"/> 

  <InPort n="i1" bitWidth="{@BIT_WIDTH}"/> 

  <CtrlPort n="sel" bitWidth="1" default="x"/> 

  <OutPort n="o" bitWidth="{@BIT_WIDTH}"/> 

 </Ports> 

 <Annot_verilog> 

  <Synthesis topModuleName="Mux2"> 

   <VerilogParams> 

    <Param n="BIT_WIDTH" val="{@BIT_WIDTH}"/> 

   </VerilogParams> 

   <VerilogCode> 

    <File n="Mux2.v"/> 

   </VerilogCode> 

 

http://www.acronymfinder.com/Minimum-Mean-Squared-Error-Interference-Cancellation-(MMSE_IC).html


IV. MMSE-IC LINEAR EQUALIZER NISC ARCHITECTURE 

One can note that the computation of coefficients and symbol 

estimation have common arithmetic operations, however they execute 

at different time. Allocating separate resources for each task will 

result in an inefficient architecture in case of quasi-static and block-

fading channel. Sharing hardware resources between the two tasks 

ensures efficiency and flexibility related to time selectivity of the 

channel. Regarding the flexibility requirement of transmission 

diversity, the allocation of hardware resources according to the most 

complex configuration will result in inefficient architecture for low 

complex ones. To meet the requested requirements, complex matrix 

operations are decomposed into basic real arithmetic operations. In 

the following we introduce the proposed hardware resources capable 

of performing complex operations using basic real arithmetic 

operators. 

A. Complex number operations 

Addition and subtraction/negation of two complex numbers 

require two adders and subtractors respectively whereas the 

conjugation is completed using only one subtractor. Using the Eq. 7 

complex number multiplication needs three adders, two subtractors 

and three real multipliers. 

 (a+bj)(c+dj) = a(c+d)−d(a+b)+j{a(c + d) + c(b − a)} (7) 

NISC_CCASM shown in Fig.4 is a NISC module that has similar 
architecture as the combined complex adder, subtractor and 
multiplier (CCASM) [8]. It can perform all complex addition, 
subtraction, negation and conjugation. Equation 8 shows the 
inversion of a complex number. It can be obtained by using resources 
in NISC_CCASM in addition to a pre-computed lookup table (LUT) 
to retrieve the inverse of a

2
+b

2
. 
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B. Complex Matrix operations 

Using four instances of NISC_CCASM, the addition, subtraction, 

negation, and hermitian of complex matrix can be performed with 

efficient resource utilization. Multiplication of two 2×2 matrices 

requires four additional adders to sum up the multiplication result. 

For 3×3 and 4×4 matrices, the multiplication of two matrices requires 

six additional adders. Matrix inversion is performed using the 

analytic method. The 2×2 matrix inversion is given by: 
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4×4 matrices are divided into four 2×2 matrices and inverted  
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where   

 

C. Fixed point representation 

All numbers used in the computation have a fixed point 

representation. Using 16-bit signed representation with different bits 

for integer and fractional part in different computation steps ensures 

low performance loss for all supported configurations and enables 

 

Fig. 4.  NISC_CCASM block diagram 

the reuse of hardware resources. The needed precision for each 
arithmetic, load or store operation was achieved via long simulations 
[8].All used adders and subtractors are capable to detect 
overflow/underflow occurrence and to fix the output at its 
maximum/minimum values. Fixed point converter module was 
established to perform the conversion at the output of each 
multiplier. Each converter module selects the required bits for the 
integer and fractional parts, and detects the occurrence of 
overflow/underflow. 

D. Architecture resources 

The proposed architecture is presented in Fig. 5. It includes  three 

memory blocks, a control unit, and the MMSE-IC LE module. Cmem 

memory block stores the control words generated by NISC compiler. 

Chmem memory block saves the constant data of the channel. 
 

 
 LUT 

memory block contains pre-computed inverse values used in complex 

number inversion. The control unit is simple and only derives control 

signals at runtime. The equalizer module called EquaNISC shown in 

Fig. 6 is composed of three main units:  

 

1) Storage unit that contains three groups of 16-bit registers. Each 

pair of registers is proposed to store a complex number, one 

storing the real part and the other the imaginary part. Each group 

can store one 4×4 complex matrix. The three groups of registers 

save data loaded from memory blocks or results of intermediate 

computations. In addition to the register groups, four registers are 

instantiated to store   
 ,   ̂

 ,   
  and   

    ̂
 . 

 

2) Computational unit that contains all resources that perform the 

computation operations.  Four NISC_CCASM and three Complex 

Adders (CA) form the core of the computational unit. Each 

NISC_CCASM includes six multiplexers, three real adders, three 

real subtractors, three signed multipliers and three fixed point 

converters. Each complex adder is simply composed of two real 

adders. 

 

3) Multiplexing unit that arranges all data transfers in between 

storage unit, computational unit and memory blocks. It is 

composed of several multiplexers that construct a chain between 

different components of the proposed architecture. 

W = A−1 + A−1B(D − CA−1B)−1CA−1 X = −A−1B(D − CA−1B)−1 

Y = − (D − CA−1B)−1CA−1 Z = (D − CA−1B)−1 



 
Fig. 5.  Block diagram of proposed architecture 

 
Fig. 6.  EquaNISC block diagram  

E. Architecture design 

In our architecture, all basic components such as multiplexers, 

adders, subtractors, registers, shift registers, multipliers, fixed point 

converters, and memory blocks were described by their HDL 

description (i.e. Verilog). Hierarchical modules such as 

NISC_CCASM and EquaNISC units described using netlist 

description using GNR. 

Pre-bound functions were used to achieve efficient utilization of 

resources and accurate execution timing. Different computational 

operations that can be executed in the same clock cycle were merged 

to the same pre-bound function to maximize the exploitation of 

hardware resources and time. Each pre-bound function describes all 

required control values of all resources used to perform the 

operation(s) in one clock cycle.  Figure 7 shows a sample pre-bound 

function that loads data from 
 

 
 LUT to register H000 in the storage 

unit. The control values of the load port of the register and the 

selection port of the multiplexer, connected to the input of the 

register, are specified explicitly. 

V. SIMULATION RESULTS 

The used toolset generates the final HDL description of the 

architecture in addition to the memory block.  The simulation results 

show a good performance in computing the equalizer coefficients. 

Table 1 shows the number of clock cycles required for the 

computation of the coefficients using our proposed design. The 

results are in addition compared with that of EquASIP, which is an 

ASIP with a custom instruction set dedicated for MMSE-IC 

equalization [8]. Both processors use identical computational 

resources and support same flexibility parameters. The comparison 

between the two designs shows significant improvement in terms of 

execution time: 34% for MIMO 4×4 and 33% for MIMO 2×2.  In 

EquASIP, the devised instruction set and pipeline structure can lead 
for data dependency issue. For cases where the current instruction 

needs the results computed by a previous instruction which still 
 

 

Fig. 7.  Pre-bound function that loads data from  
 

 
 LUT to the register H000 

TABLE I.  MMSE-IC LE EXECUTION TIME COMPARISON  

Expression 

MIMO 2×2 (cycles) MIMO 4×4 (cycles) 

Proposed 

design 

EquASIP 

[8] 
Proposed 

design 

EquASIP 
[8] 

E (Eq.4) 14 18 39 50 

    (Eq.4) 10 14 48 68 

   (Eq.4) 2 12 16 39 

   (Eq.5) 4 7 17 27 

   (Eq.5) 12 23 14 23 

     
 ,   (Eq.5 , Eq.6) 4 7 7 14 

 

under execution in the pipeline, one or more No Operation (NOP) 

instructions are added. This scheme induces additional execution time 

overhead. On the other hand, the proposed EquaNISC design 

implements directly the control signals on hardware resources and 

executes each operation in one clock cycle. Also the merging of 

different independent operations into one pre-bound function, which 

executes in one clock cycle, reduces the execution time. 

VI. CONCLUSION 

In this paper, we have presented a flexible application-specific 

processor dedicated to MIMO MMSE-IC LE (EquaNISC). The use of 

NISC design flow ensures promising design quality and productivity. 

The direct controlling of resources in EquaNISC ensures less 

execution time compared to EquASIP. Sharing and reusing resources 

provide efficient hardware utilization through all required 

computations for different system configurations.   

In addition to these results, the use of simple controller 

architecture (without instruction decoder) should lead to a significant 

gain in area and power consumption. Synthesis results and related 

measures and evaluations are the objectives of our current research 

work on this topic. 
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<Function n="LoadLUTtoH000 stateDependency=all stages=1 delay=0"setupTime=0"holdTime=0> 
 <Ctrl port="Eq_Mux_iH000_sel" val="0111"/> 
 <Ctrl port="Eq_H000_load" val="1"/> 
</Function> 

 

 
H000 H001 H011 H010 H330 H331 

Storage Unit 
V000 V001 V011 V010 V330 V331 
G000 G001 G011 G010 G330 G331 

Multiplexing Unit 
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