
978-3-9815370-0-0/DATE13/©2013 EDAA

Statically-scheduled application-specific processor

design: a case-study on MMSE MIMO equalization

Mostafa Rizk
†‡

, Amer Baghdadi
†
, Michel Jézéquel

†
, Yasser Mohana

‡
, Youssef Atat

‡

† Telecom Bretagne; UMR CNRS 3192 Lab-STICC; Electronics Department; Brest, France

‡ Lebanese University; Physics and Electronics Department; Hadath, Lebanon

{mostafa.rizk, amer.baghdadi, Michel.jezequel}@telecom-bretagne.eu; {yamoha, youssef.atat}@ul.edu.lb

Abstract— Many application-specific processor design

approaches are being proposed and investigated nowadays. All of

them aim to cope with the emerging flexibility requirement

combined with the best performance efficiency. Application Specific

Instruction-set Processor (ASIP) design approach is among the most

explored, and thus in many application domains. However, this

concept implies a dynamic scheduling of a set of instructions which

generally lead to an overhead related to instruction decoding. To

reduce this overhead, other approaches were proposed using static

scheduling of datapath control signals. In this paper, we explore this

last approach and illustrate its benefits through a design case-study

on MMSE MIMO equalization. The proposed design has common

main architectural choices as a state-of-the-art ASIP for comparison

purpose. The obtained results illustrate a significant improvement

in execution time while using identical computational resources and

supporting same flexibility parameters.

I. INTRODUCTION

Advanced computer architectures for application-specific

processor target the accommodation of the emerging flexibility

requirement as well as attaining the best performance efficiency.

Such combination of flexibility and the ever increasing performance

requirements demands design approach that provides better ways of

controlling and managing the hardware resources. Low level design

at Register Transfer Level (RTL) can lead to efficient architectures

but the development time is very high for complex applications.

High Level Synthesis (HLS) increases productivity by converting

directly high level C language description into an RTL Hardware

Description Language (HDL). The designer cannot correlate

precisely the effect of application modifications to final

implementation quality metrics such as area, power, clock

frequency, routable layout, etc. [1]. To improve the quality, the

designer can depend only on guess and try work. The result quality

is noticeably low compared to manual RTL. A suitable approach to

design custom processors is based on Application Specific

Instruction-set Processor (ASIP) concept. It offers a compromise in

terms of design productivity and implementation quality. ASIP relies

on a few set of pre-defined custom instructions. An instruction

decoder should be designed to decode the instructions that are then

executed by the corresponding hardware at runtime. The

implementation of the instruction decoder leads to a complex

controller which increases power and area consumption.

 Recently, the idea of a processor dedicated to an application not

using an instruction set has been introduced under the name of No-

Instruction-Set-Computer (NISC). The main proposal of NISC

approach is that there exists no need to use an instruction set when

the hardware is programmed by its designers and not by its users.

NISC simplifies ASIP approach by removing the complex task of

finding and designing “most profitable” custom instructions [1]. The

elimination of the instruction set increases the designer productivity

and shrinks the time-to-market. The hardware is simplified due to the

omitting of instruction decoder what reduces the complexity and

improves the performance. All major tasks of typical processor

controller (instruction decoding, dependency analysis, instruction

scheduling, etc.) are done by the compiler statically [1] at compilation

time. The compiler, which is not restricted by die size, chip resources

or timing constrains, generates the control words (CWs) that must be

applied to datapath components at runtime in every clock cycle and

loads them in a control memory. At run time, the controller only

loads the CWs and applies them to the datapath.

In this paper, we explore and illustrate the benefits of the NISC

approach in design an application-specific processor dedicated to

MMSE MIMO equalization. The proposed design is in addition

compared with a state-of-the-art ASIP.

The rest of the paper is organized as follows. Next section

explains the used designed approach. Section 3 presents the

application case-study showing the algorithm details and the target

flexibility requirement. Sections 4 and 5 present the proposed

architecture and the simulation results respectively. The last section

concludes the paper and gives the future work.

II. DESIGN APPROACH

The NISC design approach offers an open source toolset [2] that

can be used either as a free C-to-RTL (i.e. C to Verilog) synthesis

tool or to design embedded custom-processors. The designer needs

only to specify the datapath and the custom-functional units and then

uses the toolset to compile the application C code on the devised

architecture. Results can be refined and improved by modifying the

application C code or the datapath and reusing the toolset to generate

new results. Structural details of the architecture are captured by

Generic Netlist Representation (GNR), which is a formal

architecture description language (ADL) [3]. The key feature of

GNR is that the structural information is enhanced with types and

tool-specific information called aspects. Types and aspects are used

in validation, datapath connection, optimization, compilation and

implementation. GNR uses the eXtensible Markup Language (XML)

to describe models. GNR syntax is defined in XML Schema to

enforce syntax and semantics checking on the given input model [4].

The datapath is captured in GNR [5] that describes the components,

ports, connections and aspects. The component type can be a basic

RTL component (register, multiplexer, functional unit, etc.) or a

module, which is a hierarchical component that can have an internal

netlist. Each port is parameterized by its bitwidth and type (Clock

“clock”, control port “ctrlPort”, input “inPort”, output “outPort”,

and control word port “cwPort”). Connections link in between

source ports (outPort) and destination ports (inPort) of different

components. Aspects describe the behavior of the component for

different tools in the toolset [5]. According to the component type

the compilation aspect defines one or more machine actions (MA),

which are very low-level functionalities of the component that

determines both the timing and the control values of each control

port at each operation. Synthesis and simulation aspects contain

HDL information of the component. The functionality of the

component can be described by its compilation aspect, and by netlist

specifications or HDL description. For an example, Fig.1 shows the

GNR description of a multiplexer that can implement two operations

as shown in its compilation aspect; hence its control port “sel” is 1-

bit wide. The multiplexer is of type “Mux” and has two parameters:

BIT_WIDTH and DELAY. The HDL description of the multiplexer is

input through the file “Mux2.v”.

In some applications, the hardware must be controlled directly

through specific instructions. The toolset provides pre-bound

functions and variables that have common C syntax. The compiler

maps them to specific hardware resources [6]. For a specific module,

the designer should declare pre-bound functions in the compiler

aspect of the module. The compiler generates proper control bits to

access their corresponding hardware resources. The declaration

should define the control values for enabling the function and the

ports that are used as inputs and outputs. Figure 2 shows an example

of a pre-bound function write that controls loading data to a register.

Both input port “i” and control value of the control port “load” are

specified. The pre-bound functions have no implementation and are

treated similarly to other operations. Therefore, they can be

scheduled in parallel with other operations [6].

High performance designs are achieved by having direct control

of hardware resources. Direct compiling of C code descripting

complex application using NISC gave inefficient hardware results. To

achieve high performance, we described manually all the control

signals for each clock cycle. Pre-bound functions were used to have

direct control of hardware resources using the toolset. To increase

design productivity, we exploit the automatic completion of the GNR

to reduce the datapath description. And we made use of syntax

checking and rule validation provided by the toolset to quickly detect

and fix errors. Also we used the toolset compiler to schedule

statically and to arrange automatically the control signals in memory.

III. MMSE MIMO EQUALIZATION APPLICATION

Multi-Input Multi-Output (MIMO) techniques with multiple

antennas at transmission and reception sides proliferates in wireless

communication systems. Turbo-equalization concept [7] can be used

at the MIMO receiver to cancel the effects of MIMO co-antenna

interference. When used in an iterative scheme, the Minimum Mean

Square Error Interference Cancellation (MMSE-IC) algorithm

implements MIMO equalization with an acceptable tradeoff between

complexity and performance. The variety of transmission standards

and environments imposes the requirement of architecture flexibility

in emerging wireless communication applications to accommodate

different algorithmic variants and to follow the market pressure. All

the components of a MIMO receiver should support different system

configurations concerning the time selectivity of the channel (block,

quasi-static and fast fading) and different techniques of transmission

diversity (2×2, 3×3 and 4×4 space-time coding).

The input vector of the MIMO turbo receiver shown in Fig.3 is

given by the following expression:

Fig. 1. GNR description of a multiplexor

Fig. 2. Pre-bound function used for loading data to a register

 y = Hx + w (1)

where y is vector of size of number of receiver antennas (Nr), x is a

vector of size of number of transmitter antennas (Nt), H is the MIMO

channel matrix of size Nr × Nt and w is a vector of Additive White

Gaussian Noise (AWGN) of size Nr.

The MMSE-IC Linear Equalizer (LE) removes the co-antenna

interference and provides the estimated symbol vector ̃ of size Nt

and the corresponding bais vector g. Along the feedback path, the

decoder provides a posteriori information to a soft mapper that

provides the a priori information to the equalizer as decoded symbol

vector ̂ of size Nt. The equalizer considers that a symbol of the

vector x is distorted by the Nt – 1 other symbols of the vector and the

noise channel and tries to combat both. Equation 1 can be written in

the following form:

 ∑ – (2)

where hi and hj are the i
th
 and j

th
 column of H matrix.

Using the Wiener filter

 , the estimation of x is given by:

 ̃
 ̂ ̂ (3)

where , ̂ is the j
th
 element of vector ̂, hj is the

j
th
 column of H matrix and (.)

H
 is the Hermitian operator. Pj and

λj are defined as:

 where (σ

 σ

 ̂

) σ

 (4)

and
 , ̂

 and
 are variances of transmitted symbols, decoded

symbols and noise. I is identity matrix of size Nr × Nr.

 ̂

 where
 (5)

Equation 3 can be written as:

 ̃
 ̂ ̂ where (6)

The computation of and g is performed one time for a
whole block of symbols for which channel is considered as constant
whereas ̃ is computed repeatedly for each equalization iteration.

Fig. 3. MIMO turbo receiver scheme

∙∙∙

∙∙∙

 ∏

MMSE-IC

Linear

Equalizer

Soft

Demapper

Soft Mapper

MAP

Decoder Decoded Bits
LLR

LLR (Ext)

 ̃

OFDM

Interface

 ̂

 ∏

∙ ∙
∙

 <Function n="write"stateDependency="none"stages="1"delay="0"setupTime=0 holdTime="0">
 <Input port="i"/>
 <Ctrl port="load" val="1"/>
 </Function>

 <Simulation topModuleName="Mux2">

 <VerilogParams>

 <Param n="BIT_WIDTH" val="{@BIT_WIDTH}"/>

 </VerilogParams>

 <VerilogCode>

 <File n="Mux2.v"/>

 </VerilogCode>

 </Simulation>

 </Annot_verilog>

 <Annot_compiler>

 <Transfers>
 <DataTransfer inPort="i0"outPort=o transferDelay="{@DELAY}>

 <Ctrl val="0" port="sel"/>

 </DataTransfer>
 <DataTransfer inPort="i1" outPort=o transferDelay="{@DELAY}">

 <Ctrl val="1" port="sel"/>

 </DataTransfer>

 </Transfers>

 </Annot_compiler>

</Mux>

<Mux type="Mux2">

 <Params>

 <Param n="BIT_WIDTH/>

 <Param n="DELAY" val="0/>

 </Params>

 <Ports>

 <InPort n="i0" bitWidth="{@BIT_WIDTH}"/>

 <InPort n="i1" bitWidth="{@BIT_WIDTH}"/>

 <CtrlPort n="sel" bitWidth="1" default="x"/>

 <OutPort n="o" bitWidth="{@BIT_WIDTH}"/>

 </Ports>

 <Annot_verilog>

 <Synthesis topModuleName="Mux2">

 <VerilogParams>

 <Param n="BIT_WIDTH" val="{@BIT_WIDTH}"/>

 </VerilogParams>

 <VerilogCode>

 <File n="Mux2.v"/>

 </VerilogCode>

http://www.acronymfinder.com/Minimum-Mean-Squared-Error-Interference-Cancellation-(MMSE_IC).html

IV. MMSE-IC LINEAR EQUALIZER NISC ARCHITECTURE

One can note that the computation of coefficients and symbol

estimation have common arithmetic operations, however they execute

at different time. Allocating separate resources for each task will

result in an inefficient architecture in case of quasi-static and block-

fading channel. Sharing hardware resources between the two tasks

ensures efficiency and flexibility related to time selectivity of the

channel. Regarding the flexibility requirement of transmission

diversity, the allocation of hardware resources according to the most

complex configuration will result in inefficient architecture for low

complex ones. To meet the requested requirements, complex matrix

operations are decomposed into basic real arithmetic operations. In

the following we introduce the proposed hardware resources capable

of performing complex operations using basic real arithmetic

operators.

A. Complex number operations

Addition and subtraction/negation of two complex numbers

require two adders and subtractors respectively whereas the

conjugation is completed using only one subtractor. Using the Eq. 7

complex number multiplication needs three adders, two subtractors

and three real multipliers.

 (a+bj)(c+dj) = a(c+d)−d(a+b)+j{a(c + d) + c(b − a)} (7)

NISC_CCASM shown in Fig.4 is a NISC module that has similar
architecture as the combined complex adder, subtractor and
multiplier (CCASM) [8]. It can perform all complex addition,
subtraction, negation and conjugation. Equation 8 shows the
inversion of a complex number. It can be obtained by using resources
in NISC_CCASM in addition to a pre-computed lookup table (LUT)
to retrieve the inverse of a

2
+b

2
.

 (8)

B. Complex Matrix operations

Using four instances of NISC_CCASM, the addition, subtraction,

negation, and hermitian of complex matrix can be performed with

efficient resource utilization. Multiplication of two 2×2 matrices

requires four additional adders to sum up the multiplication result.

For 3×3 and 4×4 matrices, the multiplication of two matrices requires

six additional adders. Matrix inversion is performed using the

analytic method. The 2×2 matrix inversion is given by:

 *

+

*

+ (9)

4×4 matrices are divided into four 2×2 matrices and inverted

 *

+

 *

+ (10)

where

C. Fixed point representation

All numbers used in the computation have a fixed point

representation. Using 16-bit signed representation with different bits

for integer and fractional part in different computation steps ensures

low performance loss for all supported configurations and enables

Fig. 4. NISC_CCASM block diagram

the reuse of hardware resources. The needed precision for each
arithmetic, load or store operation was achieved via long simulations
[8].All used adders and subtractors are capable to detect
overflow/underflow occurrence and to fix the output at its
maximum/minimum values. Fixed point converter module was
established to perform the conversion at the output of each
multiplier. Each converter module selects the required bits for the
integer and fractional parts, and detects the occurrence of
overflow/underflow.

D. Architecture resources

The proposed architecture is presented in Fig. 5. It includes three

memory blocks, a control unit, and the MMSE-IC LE module. Cmem

memory block stores the control words generated by NISC compiler.

Chmem memory block saves the constant data of the channel.

 LUT

memory block contains pre-computed inverse values used in complex

number inversion. The control unit is simple and only derives control

signals at runtime. The equalizer module called EquaNISC shown in

Fig. 6 is composed of three main units:

1) Storage unit that contains three groups of 16-bit registers. Each

pair of registers is proposed to store a complex number, one

storing the real part and the other the imaginary part. Each group

can store one 4×4 complex matrix. The three groups of registers

save data loaded from memory blocks or results of intermediate

computations. In addition to the register groups, four registers are

instantiated to store
 , ̂

 ,
 and

 ̂
 .

2) Computational unit that contains all resources that perform the

computation operations. Four NISC_CCASM and three Complex

Adders (CA) form the core of the computational unit. Each

NISC_CCASM includes six multiplexers, three real adders, three

real subtractors, three signed multipliers and three fixed point

converters. Each complex adder is simply composed of two real

adders.

3) Multiplexing unit that arranges all data transfers in between

storage unit, computational unit and memory blocks. It is

composed of several multiplexers that construct a chain between

different components of the proposed architecture.

W = A−1 + A−1B(D − CA−1B)−1CA−1 X = −A−1B(D − CA−1B)−1

Y = − (D − CA−1B)−1CA−1 Z = (D − CA−1B)−1

Fig. 5. Block diagram of proposed architecture

Fig. 6. EquaNISC block diagram

E. Architecture design

In our architecture, all basic components such as multiplexers,

adders, subtractors, registers, shift registers, multipliers, fixed point

converters, and memory blocks were described by their HDL

description (i.e. Verilog). Hierarchical modules such as

NISC_CCASM and EquaNISC units described using netlist

description using GNR.

Pre-bound functions were used to achieve efficient utilization of

resources and accurate execution timing. Different computational

operations that can be executed in the same clock cycle were merged

to the same pre-bound function to maximize the exploitation of

hardware resources and time. Each pre-bound function describes all

required control values of all resources used to perform the

operation(s) in one clock cycle. Figure 7 shows a sample pre-bound

function that loads data from

 LUT to register H000 in the storage

unit. The control values of the load port of the register and the

selection port of the multiplexer, connected to the input of the

register, are specified explicitly.

V. SIMULATION RESULTS

The used toolset generates the final HDL description of the

architecture in addition to the memory block. The simulation results

show a good performance in computing the equalizer coefficients.

Table 1 shows the number of clock cycles required for the

computation of the coefficients using our proposed design. The

results are in addition compared with that of EquASIP, which is an

ASIP with a custom instruction set dedicated for MMSE-IC

equalization [8]. Both processors use identical computational

resources and support same flexibility parameters. The comparison

between the two designs shows significant improvement in terms of

execution time: 34% for MIMO 4×4 and 33% for MIMO 2×2. In

EquASIP, the devised instruction set and pipeline structure can lead
for data dependency issue. For cases where the current instruction

needs the results computed by a previous instruction which still

Fig. 7. Pre-bound function that loads data from

 LUT to the register H000

TABLE I. MMSE-IC LE EXECUTION TIME COMPARISON

Expression

MIMO 2×2 (cycles) MIMO 4×4 (cycles)

Proposed

design

EquASIP

[8]
Proposed

design

EquASIP
[8]

E (Eq.4) 14 18 39 50

 (Eq.4) 10 14 48 68

 (Eq.4) 2 12 16 39

 (Eq.5) 4 7 17 27

 (Eq.5) 12 23 14 23

 , (Eq.5 , Eq.6) 4 7 7 14

under execution in the pipeline, one or more No Operation (NOP)

instructions are added. This scheme induces additional execution time

overhead. On the other hand, the proposed EquaNISC design

implements directly the control signals on hardware resources and

executes each operation in one clock cycle. Also the merging of

different independent operations into one pre-bound function, which

executes in one clock cycle, reduces the execution time.

VI. CONCLUSION

In this paper, we have presented a flexible application-specific

processor dedicated to MIMO MMSE-IC LE (EquaNISC). The use of

NISC design flow ensures promising design quality and productivity.

The direct controlling of resources in EquaNISC ensures less

execution time compared to EquASIP. Sharing and reusing resources

provide efficient hardware utilization through all required

computations for different system configurations.

In addition to these results, the use of simple controller

architecture (without instruction decoder) should lead to a significant

gain in area and power consumption. Synthesis results and related

measures and evaluations are the objectives of our current research

work on this topic.

REFERENCES

[1] M. Reshadi, "No-Instruction-Set-Computer Technology Modeling and

Compilation," Thesis desiration 2007.

[2] NISC toolset website: http://www.ics.uci.edu/~nisc/.

[3] B. Gorjiara, M. Reshadi, D. Gajski, "GNR: A Formal Language for

Specification, Compilation, and Synthesis of Custom Embedded

Processors," in Processor Description Languages: Applications and

Methodologies., 2008, ch. 13.

[4] B. Gorjiara, M. Reshadi, P. Chandraiah, D. Gajski, "Generic Netlist

Representation for System and PE Level Design Exploration," in

International Symposium on Hardware/Software Codesign and System

Synthesis (CODES+ISSS)., 2006.

[5] B. Gorjiara, M. Reshadi, D. Gajski, "Generic Architecture Description

for Retargetable Compilation and Synthesis of Application-Specific

Pipelined IPs," in International Conference on Computer Design

(ICCD), 2006.

[6] M. Reshadi, D. Gajski, "Interrupt and Low-level Programming Support

for Expanding the Application Domain of Statically-scheduled

Horizontally-microcoded Architectures in Embedded Systems," in

Design Automation and Test in Europe (DATE), 2007.

[7] C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A.

Glavieux, "Iterative correction of inter symbol interference: Turbo

equalization," European Trans. on Telecom, vol. 6, no. 5, pp. 507–511,

Sept-Oct 1995.

[8] A.R. Jafri, "Multi-ASIP Architectures for Flexible Turbo Receiver,"

Electronics, Telecom Bretagne, Brest, PhD dissertation 2011.

<Function n="LoadLUTtoH000 stateDependency=all stages=1 delay=0"setupTime=0"holdTime=0>
 <Ctrl port="Eq_Mux_iH000_sel" val="0111"/>
 <Ctrl port="Eq_H000_load" val="1"/>
</Function>

H000 H001 H011 H010 H330 H331

Storage Unit
V000 V001 V011 V010 V330 V331
G000 G001 G011 G010 G330 G331

Multiplexing Unit

…

…
 …

 2
w

2

x

2

x̂

2

ˆ

2

xx  

x~
2

x̂

H

2

w

y

x̂

CWs

g

NISC

CCASM0

CA1

CA3
CA2 NISC

CCASM1

NISC

CCASM2

NISC

CCASM3

Computational Unit

C
o

n
tr

o
l

u
n

it

 EquaNISC

Cmem

∙
 ∙

 ∙

Demapper
ChMem

1/x LUT

Mapper

