An Efficient and Flexible Hardware Support for
Accelerating Synchronization Operations on the
STHORM Many-Core Architecture

Farhat Thabet, Yves Lhuillier, Caaliph Andriamisaina, Jean-Marc Philippe and Raphaél David
CEA LIST, Embedded Computing Lab,
91191 Gif sur Yvette, France
Email: {farhat.thabet, yves.lhuillier, caaliph.andriamisaina, jean-marc.philippe, raphael.david} @cea.fr

Abstract—The current trend in embedded computing consists
in increasing the number of processing resources on a chip.
Following this paradigm, the STMicroelectronics/CEA Platform
2012 (P2012) project designed an area- and power-efficient
many-core accelerator as an answer to the needs of computing
power of next-generation data-intensive embedded applications.
Synchronization handling on this architecture was critical since
speed-ups of parallel implementations of embedded applications
strongly depend on the ability to exploit the largest possible
number of cores while limiting task management overhead. This
paper presents the HardWare Synchronizer (HWS), a flexible
hardware accelerator for synchronization operations in the P2012
architecture. Experiments on a multi-core test chip showed
that the HWS has less than 1% area overhead while reducing
synchronization latencies (up to 2.8 times) and contentions.

I. INTRODUCTION

Embedded systems need ever increasing levels of perfor-
mance to handle higher data rate processing, new multimedia
services and features such as security using a rich user inter-
face. Moving to many-core architectures is one way to address
peak performance needs since they deliver high performance
and low power consumption while offering design flexibility.
Exploiting this huge amount of computing power requires to
face one major challenge: efficient exploitation of parallelism.

To tackle the challenges related to the design of a many-core
architecture, STMicroelectronics and CEA (French Alternative
Energies and Atomic Energy Commission) associated their
expertises in the Platform 2012 (P2012) project [1]. P2012
is a join initiative aiming at designing an area- and power-
efficient many-core computing fabric for next-generation data-
intensive embedded applications (e.g. augmented reality) while
providing flexibility. The cluster-based resulting architecture,
named STHORM (ST(microelectronics) Heterogeneous 10w
poweR Many-core) is described in [2].

In an embedded computing fabric like STHORM, syn-
chronization handling is critical since synchronization events
are frequent, especially when using fine-grain parallelism [3],
[4]. Traditional synchronisation primitives implementations
use memory accesses relying on atomic operations such as
test-and-set. These processor instructions rely on dedicated
hardware to ensure the atomicity of operations (test then set).

978-3-9815370-0-0/DATE13/(©2013 EDAA

Unfortunately, to be generic enough to be integrated into
future STMicroelectronics products, no assumption had to be
made on the system. An additional challenge was to design a
hardware accelerator that is sufficiently flexible to efficiently
implement different synchronization primitives such as mutual
exclusions (locks or mutexes), semaphores and barriers.
Besides the challenge of efficiently implementing synchro-
nization, executing threads are continuously polling shared
variables (i.e. spin-lock) in traditional implementations at the
expense of interconnect bandwidth and energy efficiency.
This paper introduces an area-efficient hardware module,
the HardWare Synchronizer (HWS), which is dedicated to
accelerate synchronization primitives on massively-parallel
embedded architectures. Next section focuses on hardware
supports for synchronization handling. Section 3 describes the
HWS. Section 4 evaluates the HWS integration in a physical
multi-processor system. Section 5 presents simple synchro-
nization primitives implementations using the HWS and more
complex use cases currently integrated into a lightweight
runtime software. Finally, Section 6 concludes the paper.

II. RELATED WORK

In parallel programs, synchronization is a main concern for
correct execution and efficient synchronization mechanisms
drive their performance. Parallel architectures handle synchro-
nization and more generally atomicity in different ways: lever-
aging their memory model (atomic operations) or leveraging
synchronization constructs of dedicated programming models.

In the first category, parallel shared-memory architectures
provide hardware support for atomicity through a combination
of shared-memory subsystems. At processor level, fest-and-
set-like instructions [5] allow to exchange values of a memory
location with the one of a register or a hard-coded value.
This hardware support does not make any assumption on the
programming model and efficiently supports a wide range of
synchronization constructs. Nevertheless, it shows scalability
issues since it is distributed over the whole memory subsystem
while needing to behave as a centralized entity.

Evolutions of these techniques were proposed, such as
the SoC Lock Cache [6] which implements the test-and-set
instruction as a memory-mapped load instruction. However,

this approach is optimized for locks (one physical bit) that
prevents it to efficiently implement semaphores or barriers.

Other techniques use coherence mechanisms available in
busses (i.e. bus snooping) to control lock variables status, such
as the Lock Table approach [7]. This method is neither scalable
nor applicable to architectures relying on network-on-chips.

The Lock Control Unit (LCU) approach [8] adds a LCU
to each core for implementing distributed lock queues and
provides each memory controller with a Lock Reservation
Table (LRT) managing the locking status of each memory
location. This approach requires new ISA primitives (Acquire,
Release) which is an issue when using existing cores.

Other parallel architectures support synchronizations
through programming model dedicated hardware support. To
address performance of synchronizations, some approaches
[9] have implemented hardware networks for barrier
synchronizations and collective communication operations
that are associated with data level parallelism. Programming
models based on thread-level parallelism [10] allow to confine
synchronizations at task transitions steps.

A general analysis of the related work shows that most of
them rely on hardware mechanisms so as to ensure atomicity
for the synchronization primitives. These approaches are not
compatible with systems which do not support this property.
Additionally, most of these approaches belong to the general
purpose computing domain, not the embedded one. Another
approach had to be investigated for STHORM.

III. DESCRIPTION OF THE HARDWARE SYNCHRONIZER

The HardWare Synchronizer (HWS) was introduced to
address challenges such as:

« acceleration of common synchronization constructs,

« flexibility and composability to adapt to evolving execu-
tion models,

« ecase of integration in most systems and area efficiency,

« reducing bandwidth, power consumption and polling,

« ability to be replicated in many-core systems (scalability),

o providing support for atomic operations in absence of
atomic support in the memory sub-system

A. HWS main features

Fig. 1 presents the HWS architecture. To allow its seamless
integration in systems based on load/store interconnects, its
interface is a standard target/slave port: the HWS is viewed
as a shared peripheral (a set of registers). A simple wrapper
can be implemented to expose the HWS registers to the
system. The computing cores are linked to the HWS by wires
implementing interrupts.

The HWS is modular. Different blocks implement dedicated
functions to support synchronization and communication prim-
itives: the Atomic Counters, the Programmable Notifier and
the Interrupt/Event Trigger (a memory-mapped module which
generates an interrupt/event to the target cores). The fourth
block named Advanced Features proposes hardware-assisted
mechanisms for handling dynamic task-scheduling, resource
allocation acceleration and thread migration which are not in
the scope of this paper.

Interrupt lines

Computing Cores

Cluster Interconnect]

[}

Memory Interface (Registers)

t t ti

Hws Advanced
Atomic Counters | Programmable Features
| Notifier

/
¥

IT/EVT Trigger ~

Fig. 1. HWS architecture overview.

Address 0x0 0x4 0x8 Oxc 0x10 0x14 0x18 Ox1c

Field value | post-inc | post-dec | ctrl value | post-inc ‘ post-dec ctrl

D Acio] Acl1]

Fig. 2. Atomic Counters memory-mapped structure.

B. Atomic Counters module

The Atomic Counters (AC) module provides memory-
mapped scalar values that can be atomically read-modify-
written using load operations. This module deports the in-
place modification in memory to remove the need for atomic
operation support in the core and the memory interconnect
sub-system. The modifications performed by the AC module
support a wide range of atomic operations and synchronization
mechanisms such as mutexes, semaphores and barriers.

In the current implementation, each physical AC has four
32-bit memory-mapped interfaces (Fig. 2). Store/load accesses
to an AC have different properties depending on the address.
The “value” field allows to read/write the AC. When read,
”post-inc” and “post-dec” fields return the value with an
atomic side-effect of post-incrementing or post-decrementing
the value. The “ctrl” field configures the AC: it can be bound
by writing a value to the "post-inc” field (e.g. when reaching
the upper bound, incrementing the AC has no effect).

An AC can be used to implement a hardware binary mutex
using “trylock” mechanisms (like in a fest-and-set implemen-
tations). Unfortunately, the resulting extra-traffic between the
processing cores and the HWS leads to software polling. To
avoid polling, the HWS provides a runtime software support to
implement various blocking synchronization functions that do
not rely on the caller to actively poll hardware resources. The
HWS is able to automatically notify the processing cores about
an awaited event using the Programmable Notifier module.

C. Programmable Notifier module

The Programmable Notifier (PN) enables each processing
core able to access the HWS to schedule event notifications
according to specific ACs values. It allows a software code
to program events notification whenever the value of an AC
becomes equal or different (greater than, less than, not equal,
less or equal than and greater or equal than) to zero and to

avoid software polling on the ACs while waiting for triggering
conditions to occur. Thus, the traffic contention on the local
interconnect is reduced. This hardware support ensures a high
reactivity for synchronization barriers.

The PN consists of a set of memory-mapped condition
storage registers, a control register and a condition checker.
There is one condition storage register per AC which is read
when the corresponding AC is modified: its value is used by
the condition checker to check if the registered condition is
matched by the new value of the AC. Each condition storage
register contains three fields, core_set (set of cores to be
notified), evt_id (interrupt line to be used for notification) and
pn_condition (condition to be satisfied at every change on the
target AC value). The condition storage registers are set or
updated using a unique memory-mapped control register.

The first step for checking a condition consists in analyzing
every access to an AC to verify if its new value satisfies the
condition defined by the pn_condition field. In the second
step, if the condition is met, then the corresponding events are
generated. Finally, the set of fields stored in the corresponding
condition storage register are reinitialized.

The PN module is useful for implementing barriers without
polling (all threads are notified by event at barrier completion).
Each thread entering the barrier updates the PN core_set for
notification, decrements the AC value and enters into a waiting
(i.e. low power) state until receiving an event notification.

IV. INTEGRATION ENVIRONMENT AND PERFORMANCE
EVALUATION

The HWS was chosen to be the infrastructure for synchro-
nization handling in the STHORM architecture [2].

A. Evaluation of hardware-related characteristics of the HWS

Scalability and area cost of the proposed approach are
investigated using two environments. The first one is the RTL
model of the HWS which was synthesized using different
parameters of the STHORM cluster. The second one is a 32-
nm test-chip of an instance of the STHORM platform, called
Locomotiv, composed of one cluster of 4 cores.

1) Area and Frequency evaluation: synthesis experiments
were conducted using first the Locomotiv configuration (4
PEs) and then STHORM cluster configurations (8 and 16
PEs) with the complete HWS configuration. The results were
obtained from RTL models synthesized using a STMicroelec-
tronics 32nm CMOS low-power library on Synopsys Design
Compiler E-2010.12. The HWS achieved an operating fre-
quency of 600MHz.

The area evaluation results are given for a 500 Mhz operat-
ing frequency. The HWS area and scalability evaluations were
done using two different experiments. The first one evaluated
the HWS area with respect to the number of processing
elements with a fixed number (i.e. 64) of 32-bit ACs. Table I
shows that for example the area of the Locomotiv HWS is
about 0.049 mm? (~ 70 KGates) which represents 1% of
the chip area. It also shows that the overhead of the HWS

TABLE I
AREA, CLUSTER OVERHEAD AND POWER CONSUMPTION OF THE HWS
WITH RESPECT TO THE NUMBER OF PES OF THE CLUSTER.

PEs | Area (mm?2) | Overhead (%) | Power Cons.(mWW)
4 0.049 1.00 18.7
8 0.061 0.62 22.9
16 0.085 0.43 31.9

Other
32% Atomic
Counters
47%

Other
26%
Event
Trigger.
Atomic B8

2% \
61% Prog.

Counters
Notifier.
19%

Event
Trigger.

1%

Prog.
Notifier
12%
(a) Locomotiv Configuration - 4 (b) STHORM Typical Configuration -

PEs and 64 32-bit ACs 16 PEs and 128 32-bit ACs

Fig. 3. Contributions of different HWS parts to the global area in a 32nm
technology.

TABLE II
AREA AND POWER CONSUMPTION OF THE HWS WITH RESPECT TO THE
NUMBER OF ACS.

32-bit Atomic Counters | Area (mm?2) | Power Cons. (mW)
32 0.042 12.1
64 0.061 18.7
128 0.098 31.9

compared to the total size of the cluster decreases when the
number of PEs increases.

Fig. 3 presents the contribution of differents HWS parts to
total area budget for Locomotiv and a typical STHORM con-
figuration. This figure illustrates that for typical configurations,
the ACs are one of the main contributors to HWS area budget.
The second experiment evaluated the impact of the number
of ACs on HWS area (the number of PEs was kept constant
(i.e. 8)). Table II shows that doubling the number of ACs has
a non-negligible area impact on the HWS. This increase is
mainly due to the duplication of AC registers and the related
consequences on internal multiplexer and demultiplexer logics.

2) Power Consumption Evaluation: the power consumption
evaluation used a VC-1 decoder application [11]. This applica-
tion was parallelized and implemented on a TLM simulation
platform of STHORM and a runtime software using HWS
acceleration features. The different accesses to the HWS TLM
model were recorded to have traces of real execution of the
application. These traces were transformed into VHDL test-
bench accesses to obtain the peak power consumption using
Synopsys PrimeTime E-2010.12 in a STMicroelectronics 32-
nm technology. Results are presented in Tables I and II. The
peak dynamic power consumption of the HWS included in
Locomotiv (i.e. for 4 PEs) is about 18.7 mW.

V. HWS USE CASES FOR RUNTIME SOFTWARE
ACCELERATION

In STHORM, the HWS is used to accelerate synchronization
mechanisms, runtime-software-related tasks and powerful exe-
cution engines. Together with the HWS, a lightweight runtime

TABLE III
MEMORY ACCESSES FOR STANDARD SYNCHRONIZATION CONSTRUCTS.

Class Op. Description Behavior
Binary lock exclusively 1 X LDac + 1 %
. STpn
acquires a mutex
mutexes unlock | releases an owned | 1 X STgc
mutex
SEI:;-S wait waits for a free }5'; LDac + 1 x
p semaphore token pn
post releases a 1 X LDy
semaphore token
Barriers wait synchronizes con- é; LDac + 1%
. pn
current jobs
Joiners join merges concurrent | 1 X LDge
jobs
Queues reserve | reserves a writable 1 X LDac +
tries X LDgc
queue slot
send sends a writable Lo LDac +
tries X LDgc
queue slot
peek reserves a read- iriei XLI%IC +
able queue slot ac
release | recycles a read- tlm.g; XLLDDM +
able queue slot ac

software called HARS (Hardware-Assisted Runtime Software)
was introduced to manage the platform.

A. Implementation of simple synchronization mechanisms

Table III shows the behavior of some synchronizations im-
plemented in HARS using the HWS. Synchronization classes
cover a wide range of synchronization mechanisms from
binary mutexes to circular buffer queues. The last column
shows the analytical behavior with respect to needed mem-
ory accesses: LD/ST,, is for PN accesses (read/load or
write/store), LD /ST, is for AC accesses, and tries is for
conditional trials (i.e. polling).

Table III shows that active polling is almost never required
since it is replaced by a single PN access (1 x ST},,). Active
polling is still required in HWS-based implementation of
circular buffer queues as the PN is not able to perform side-by-
side atomic-counters and non-zero comparisons. If the HWS
is accessible in 3 cycles and the cluster-level shared-memory
access costs 1 cycle, “reserve/send” and “peek/release” opera-
tions take an average of 26 cycles (HWS) instead of 40 cycles
(test-and-set-based implementation).

Finally, most synchronization constructs (mutexes, barriers,
etc.) are reduced to only two memory accesses (one AC access
plus one PN access). For these constructs, test-and-set-based
implementation often requires several accesses (1 per failed
trial) for a mutex acquisition, and at least two accesses for
read-modify-write operation on the synchronization structure
meta-data. These memory access reductions allow to decrease
synchronization primitives latency, to limit memory sub-sytem
contention and to save bandwidth for computations.

B. RTM execution engine implementation using HWS features

On top of basic synchronization and allocation primitives
building the core set of HARS APIs, some execution engines

were implemented. Especially, the HWS has been used to
optimize the Reactive Tasks Management (RTM) [3] execu-
tion engine. RTM is a fast lightweight fork/join API which
leverages the HWS to accelerate its software scheduler. The
RTM uses two ACs of the HWS per parallel fork operation.
Using the HWS, this software scheduler is able to schedule
duplicated tasks (i.e. dup) in 23 cycles and different tasks (i.e.
fork) in 26 cycles, allowing to efficiently manage fine-grain
tasks. A test-and-set-based implementation of this scheduler
takes an average of 66 cycles per scheduled task. A more
powerful asynchronous version is described in [4].

VI. CONCLUSION

This paper presented the HWS Atomic Counters and Pro-
grammable Notifier hardware supports that handle synchro-
nization primitives in a flexible/scalable dedicated module.
Thanks to the HWS, multi- and many-core system developers
can write optimized dynamic task-scheduling and allocation
algorithms, barrier synchronizations, communicating queues
and atomic operations. The HWS has been integrated and
validated in the Locomotiv chip and is the synchronization
support of the STHORM many-core architecture. Its low area
and power budget makes it suitable for many-core embedded
architectures.

ACKNOWLEDGMENT

This work was partly supported by the European cooperative
CATRENE project CA104 COBRA.

REFERENCES

[1] STMicroelectronics and CEA, “Platform 2012: A many-core pro-
grammable accelerator for ultra-efficient embedded computing in
nanometer technology,” Research Workshop on STMicroelectronics Plat-
form 2012, Toronto, 2010.

[2] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building an
ecosystem for a scalable, modular and high-efficiency embedded com-
puting accelerator,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE12), 2012, pp. 983-987.

[3] M. Qjail, R. David, K. Ben Chehida, Y. Lhuillier, and L. Benini,
“Synchronous reactive fine grain tasks management for homogeneous
many-core architectures,” in ARCS ’11, February 2011.

[4] M. Qjail, R. David, Y. Lhuillier, and A. Guerre, “Artm: A lightweight
fork-join framework for many-core embedded systems,” in Design,
Automation Test in Europe Conference Exhibition (DATE), march 2013.

[51 J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable syn-
chronization on shared-memory multiprocessors,” ACM Trans. Comput.
Syst., vol. 9, pp. 21-65, February 1991.

[6] B. E. S. Akgul and V. J. Mooney III, “The system-on-a-chip lock
cache,” Design Automation for Embedded Systems, vol. 7, pp. 139-174,
2002. [Online]. Available: http://dx.doi.org/10.1023/A:1019751632622

[71 M.-C. Chiang, “Memory system design for bus-based multiprocessors,”
Ph.D. dissertation, Madison, WI, USA, 1991.

[8] E. Vallejo, R. Beivide, A. Cristal, T. Harris, F. Vallejo, O. Unsal, and
M. Valero, “Architectural support for fair reader-writer locking,” in
Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International
Symposium on, dec. 2010, pp. 275 -286.

[9] S. F Lundstorm and G. H. Barnes, “A controllable mimd architecture,”

in Proceedings of the International Conference on Parallel Processing,

1980, pp. 19-27.

Apple Inc., “Grand Central Dispatch (GCD) Reference,” Tech. Rep.,

May 2010.

M. Bariani, P. Lambruschini, and M. Raggio, “Vc-1 decoder on stmi-

croelectronics p2012 architecture,” in In 8th Intl. Workshop STreaming

Day, September 2010.

(10]

(11]

