
Using Synchronization Stalls in Power-aware
Accelerators

Ali Jooya and Amirali Baniasadi
Department of Electrical and Computer Engineering

University of Victoria
Victoria, B.C., Canada

E-mail:{jooya, amirali}@ece.uvic.ca

Abstract—GPUs spend significant time on synchronization
stalls. Such stalls provide ample opportunity to save leakage
energy in GPU structures left idle during such periods. In this
paper we focus on the register file structure of NVIDIA GPUs
and introduce sync-aware low leakage solutions to reduce power.
Accordingly, we show that applying the power gating technique to
the register file during synchronization stalls can improve power
efficiency without considerable performance loss. To this end, we
equip the register file with two leakage power saving modes with
different levels of power saving and wakeup latencies.

I. INTRODUCTION

GPUs are designed to achieve high and steady throughput.
This is achieved by employing hundreds of processing ele-
ments and running thousands of concurrent threads resulting
in peak power dissipation up to 300 Watt [1]. Moreover,
the current trend in GPU design is towards increasing the
number of processing elements and concurrent threads, further
increasing power dissipation. Maintaining a high number of
concurrent threads requires using very large register files.
Therefore, GPUs use highly banked register files to provide
sufficient bandwidth for concurrent threads.

Previous studies have shown that the register file is one of
the critical components in the overall energy consumption [2],
[3]. However, the register file consumes static power without
any performance contribution during periods when threads
stall on cache misses or synchronization instructions. In this
work we address this inefficiency and propose to apply power
gating technique to the unused portions of the register file,
which are associated with the threads stalled on synchroniza-
tion instructions.

Kernels executing on GPUs are composed of thousands
of threads which are grouped into blocks and assigned to
different shaders. Each thread block is divided into groups of
32 threads, referred to as warps in the NVIDIA terminology.
The warp scheduler executes warps in a round robin manner
on the SIMD pipeline, which is composed of 32 Processing
Elements (PEs). In a given clock cycle, all PEs execute the
same instruction for the threads in a warp. The compiler
assigns a fix number of registers to each thread and each
thread accesses only specific entries of the register file during
the entire kernel execution. As threads in a warp proceed

together, each warp can access certain entries of each bank.
Therefore, when a warp stalls on a synchronization instruction,
the register file portions associated with the stalled warp are
no longer accessed. The idle section of the register file can be
placed into low leakage modes to improve the power efficiency
of the GPU.

Our solution, Sync− aware low leakage Register F ile
or SLG, uses two low leakage modes, one with low level of
power savings and low weakup latency (SLG1) and the other
with higher leakage power savings and higher wakeup latency
(SLG2). Based on the predicted register file idle time we place
the appropriate section of all register banks into one of the
low leakage modes. We evaluate our solution under different
timing scenarios reporting both power and performance.

The rest of the paper is organized as follows: Section II
presents background. Section III discusses SLG. Section IV
presents the experimental setup and results. In Section V we
review related works and finally Section VI offers conclusions.

II. BACKGROUND

A. GPU Architecture

The GPU used in this paper is composed of 30 shaders,
which are connected to the memory controllers through in-
terconnection network. Memory controllers provide access to
off-chip DRAM memories. Shaders contain 32 PEs, forming
a wide SIMD pipeline executing 32 parallel threads simulta-
neously. The memory system dedicated to each shader (level
one data, instruction, constant and texture caches and shared
memory) and global memory, which is shared among all
shaders, provide instructions and data to execute GPU kernels.

B. Register File Structure

In this section we present more details on the GPU register
file architecture [4]. As Figure 1 shows, each shader contains
a register address unit that provides the register file an instruc-
tion and its operands. The collector unit checks the type of the
instruction to determine the execution unit that can execute the
instruction. The collector unit sends the requests to the bank
request arbitration unit. The arbitration unit sends the read
request for each operand to the proper bank. Each bank is

978-3-9815370-0-0/DATE13/ c©2013 EDAA



128-bit wide and accommodates four 32-bit operands and has
one read and one write port.

Fig. 1: Shader register file structure.

To provide all the required operands of an instruction
in a single clock cycle, each bank stores the same-named
operand for four adjacent threads. Therefore, the arbitration
unit sends read requests to multiple banks to provide all
requested operands of an instruction. Figure 2 shows the
organization of operands in register banks. As the figure
depicts, we assume that each SM holds 96 threads which are
divided into three warps. Each thread shares with its neighbor
threads a portion of the register file, depending on the register
usage of the kernel. The operands of the threads sharing the
same register bank are stored in the same entries of the register
bank. Therefore, in a single clock cycle, all threads read the
required operands from the banks or write back the results.
For example, in Figure 2, threads 4 to 7 share register banks
4 to 7. To execute an instruction with three source operands,
the first operand of each thread is read from Bank4 and the
second operands are read from Bank5 and the third operands
are read from Bank6.

Register banks are connected to the operand collector units
via crossbar. There are two types of collectors, one for special
operations (SOP) and one for the rest of operations. The
number of collector units depends on the number of SFUs and
the SIMD pipeline width. The crossbar outputs the operands
from each bank to different operand collectors. When the
operand collector receives all requested operands, it dispatches
operands to execution units. When instruction execution is
done, the results are written back into banks storing destination
operands. Note that,

C. Power Gating

Power gating is a well-known technique used to reduce leak-
age power of circuits in their idle mode. This is achieved by
using a high threshold voltage transistor (TSleep in Figure 3(b))
between the actual ground and the circuit ground (called
virtual ground). When the circuit is in standby state, by turning
off the sleep transistor, the virtual ground is charged up to a
value close to VDD. This cuts off the leakage path between
the supply and ground and the data in storage elements is

Fig. 2: Data organization in register banks.

lost. By turning the sleep transistor on, the virtual ground is
restored to its nominal voltage which requires additional time
to discharge the virtual ground node. The extra time required
is referred to as wakeup latency.

III. SLG

The shader scheduler selects warps to execute on the SIMD
pipeline. All warps of a thread block assigned to a shader
progress with the same speed until the SIMD pipeline reaches
a diverging control flow or a memory access instruction. Such
instructions can harm performance if they result in threads
having different control flow paths or different memory re-
sponse times [5]. This also reduces SIMD pipeline utilization.
Therefore, it is quite common that after a while, some warps
fall behind other warps in a shader. Considering the fact that
warps may progress with different speeds, the programmer
needs to use synchronization instructions whenever necessary
to sync all warps of a thread block.

When threads of a warp execute a synchronization instruc-
tion, they have to wait until all warps of the thread block
reach the same synchronization instruction. Based on how far
behind (in terms of instruction count) other warps are, a warp
may have to wait for several cycles. When the last warp of
the thread block executes the synchronization instruction, all
waiting warps can continue their execution from the next cycle.
Based on the order in which warps reach the synchronization
instruction they experience different stall durations. Based on
the predicted stall duration we put the register file assigned
to idle warps into one of power saving modes. Both SLG1
and SLG2 modes maintain register file contents and differ in
the leakage power reduction level and the wakeup latency.
SLG1 saves less power while SLG2 has higher leakage
power reduction. We evaluate various wakeup latencies for
each power saving mode. The wakeup latency of SLG1 varies
between 1 and 24 cycles and SLG2’s wakeup latency varies
between 2 and 35 cycles in this study.

When a warp executes a synchronization instruction, ini-
tially, we assume a long stall and put its register file in the
SLG2 mode. When the last warp of the thread block executes
the synchronization instruction the warps of the thread block
have been synchronized and they can continue their execution



from the next cycle. Therefore, anticipating an end to the
idle period, we change all warps’ leakage saving modes from
SLG2 to SLG1.

Note that as the first warp is wakened the rest of the warps
put their register file into SLG1 mode requiring a period equal
to the difference of SLG2 and SLG1 latencies to wakeup.
When the next (second) warp is selected for execution, we
signal its register file to change its mode from SLG1 to normal
which requires only cycles equal to SLG1 wakeup latency
(part of this latency may be covered by the latency of pipeline
stages between fetch and register file access).

A. Hardware Implementation
To put the register file of the warp waiting on a synchro-

nization stall (or S-stall) in one of the SLG modes, we select
the corresponding entries of the register file (using the warp
ID) and apply SLG to reduce leakage power dissipation.

(a) (b)

Fig. 3: (a) The control logic, which selects the proper mode
for the register file and (b) Intermediate power gating circuit.

Figure 3(a) shows the circuit and control logic we use to
implement SLG. There is a register in each shader which
keeps track of the number of threads which are already
waiting at an S-stall (Figure 3(a)). This is a 10-bit register
as the maximum number of threads per shader is 1024 in
this study. The control logic shown in Figure 3(a) uses the
bits of this register to select the appropriate register mode
for the corresponding warp. If the value of this register is
zero the register file is in active mode (no thread is waiting
on the S-stall). If there are non-zero bits in this register and
the value is less than the number stored in the register that
shows the maximum number of threads in each block, then
there are warps waiting on the S-stall and the register file
of the corresponding warp should be placed in SLG2 mode.
When this register’s value is equal to the maximum number of
threads in each block, then all the threads of the corresponding
thread block have executed the synchronization instruction and
the control logic should bring all warps into the SLG1 mode.
Figure 3(b) shows the intermediate power gating circuit. The
register mode signals issued from control logic go through
the D flip-flops to select the appropriate register mode. D flip-
flops’ enable signals is the same signal that shader control unit
uses to access the appropriate register file entry for each warp.
The details of the voltage generator unit can be found in [6].
The area overhead of the circuit is less than 0.5%. We also
assume negligible power overhead associated with the circuit.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section we present the experimental setup and report
leakage power reduction and performance. We analyze SLG’s
sensitivity to the wakeup latency of SLG1 and SLG2 modes.

TABLE I: GPU configuration.

Parameter Value Parameter Value
Number of shaders 30 SIMD pipline width 32
Shader clock frequency 1.3 GHZ Warp width 32
Max thread per shader 1024 Scheduling PDOM

A. GPU Configuration and benchmark details

We use the GPGPU-Sim [7] simulator with the system con-
figuration shown in Table I. For our evaluations we simulated
the execution of benchmarks listed in Table II. The table
also reports the number of kernels, thread blocks, warps in
each thread block and synchronization instructions each thread
executes during runtime.

TABLE II: Benchmarks’ characteristics.

Benchmark Num. of Thread Warps/ Stalls
kernels Blocks Block at sync.

Dynproc [4] 52 52 16 78
Scan [4] 1 64 8 19
Gaussian [4] 16 16 8 4
LPS [8] 1 1024 4 2048
Backprop [4] 2 1024 8 4
Srad [9] 4 64 8 4

B. Results

To study the sensitivity of SLG to wakeup latencies and
the number of pipeline stages we use the x.y.z notation
and present different scenarios. Under this notation x and y
represent SLG1 and SLG2 wakeup latencies, respectively. z
represents the number of pipeline stages between instruction
fetch and register file access. In Table III we report how
relative values of x, y and z affect performance penalties as-
sociated with SLG1 and SLG2. As the table shows, SLG2’s
latency is always larger than SLG1’s. We assume that register
file dissipates 36% and 52% less leakage power while in
SLG1 and SLG2 modes, respectively [10].

TABLE III: Performance penalty associated with different
relative values of x, y, z.

low power modes x <y <z x <z <y z <x <y
SLG1 0 0 x-z
SLG2 0 y-z y-z

In Figure 4 we report performance loss and power reduction
for various x.y.z models. We choose 3, 4, 5, 13 and 24 for
x, 4, 5, 6, 7, 17 and 35 for y and 3, 5, 10 and 20 for z. Note
that performance is compared to a GPU where all registers are
always active. As it can be seen from the figure, performance
loss is more sensitive to SLG1 rather than SLG2 wakeup



latency. This is due to the fact that an increase in SLG1
wakeup latency, delays all warps moving to active mode. An
increase in SLG2 wakeup latency, however, only stalls the
first warp executing after an S-stall is finished (see Table III).

Processors employing deeper pipelines, i.e. processors with
larger z, are less prone to such latencies as an increase in
the number of stages between fetch and register access stages
provides enough time to wake up sleeping registers in time.

As Figure 4 (b) shows some benchmarks, e.g., Gassian,
show more power reduction growth by increasing the number
of pipeline stages (z) and wakeup latencies (x and y) and some
benchmarks, e.g., Scan, save less power. Power reduction
depends on the share of each power saving mode of the total
execution time. The higher the ratio of time register file spends
in SLG modes, the higher power reduction.

(a)

(b)

Fig. 4: (a) Performance loss and (b) power reduction for
different timing scenarios. Performances are compared to
GPUs where all registers are always active.

V. RELATED WORKS

Recently, power gating has been used as a primary power
management technique in multicore processors. Kim et al.
introduced the concept of intermediate power saving mode
in [11]. They proposed and evaluated a power gating structure
with two power saving modes. One is high leakage reduction
without state retention and the other is intermediate leakage
reduction with state retention.

Singh et al. proposed a circuit supporting multiple in-
termediate power saving modes [6]. Each mode represents
a different trade-off between power leakage reduction and
wakeup latency. The power reduction was determined by
controlling the steady state VGND in the sleep mode.

Roy et al. applied intermediate power saving technique with
two sleep modes to the register file in multicore processors

to reduce leakage power dissipation for memory pending
instructions while saving the register values content. They
evaluated their proposed technique for coarse-grained, fine-
grained and simultaneous multithreading CMPs [10].

Gebhart et al. proposed two techniques to reduce energy
in GPUs [12]. They proposed using a register file cache to
replace accesses to the large main register file with accesses
to a smaller structure which contains the immediate register
working set of active threads. They also investigated a two-
level thread scheduler which partitions threads into active and
pending threads.

VI. CONCLUSION

In this paper we studied the stalls associated with synchro-
nization instructions in GPUs. We introduced SLG which
utilized intermediate power gating to reduce leakage power
dissipation in the register file. The results showed that SLG
reduced leakage power dissipation by up to a maximum of
22% while maintaining performance at a competitive level.

REFERENCES

[1] N. Corporation. Tesla c2050 and tesla c2070 computing proces-
sor board. http://www.nvidia.com/docs/IO/43395/Tesla C2050 Board
Specification.pdf.

[2] Y. Wang, S. Roy, and N. Ranganathan, “Run-time power-gating in caches
of gpus for leakage energy savings,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2012, march 2012, pp. 300 –
303.

[3] D. Li, S. Byna, and S. Chakradhar, “Energy-aware workload consoli-
dation on gpu,” in Parallel Processing Workshops (ICPPW), 2011 40th
International Conference on, sept. 2011, pp. 389 –398.

[4] N. Corporation. Nvidia cuda sdk code samples. http://developer.
download.nvidia.com/compute/cuda/sdk/website/samples.html.

[5] J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision for
integrated branch and memory divergence tolerance,” in Proceedings
of the 37th annual international symposium on Computer architecture,
ser. ISCA ’10. New York, NY, USA: ACM, 2010, pp. 235–246.
[Online]. Available: http://doi.acm.org/10.1145/1815961.1815992

[6] H. Singh, K. Agarwal, D. Sylvester, and K. Nowka, “Enhanced leakage
reduction techniques using intermediate strength power gating,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 15,
no. 11, pp. 1215 –1224, nov. 2007.

[7] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
cuda workloads using a detailed gpu simulator,” in Performance Analysis
of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, april 2009, pp. 163 –174.

[8] M. Giles. (2008, Apr) Jacobi iteration for a laplace discretisation on
a 3d structured grid. http://people.maths.ox.ac.uk/œgilesm/hpc/NVIDIA/
laplace3d.pdf.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, oct. 2009, pp. 44 –54.

[10] S. Roy, N. Ranganathan, and S. Katkoori, “State-retentive power gating
of register files in multicore processors featuring multithreaded in-order
cores,” Computers, IEEE Transactions on, vol. 60, no. 11, pp. 1547
–1560, nov. 2011.

[11] S. Kim, S. Kosonocky, D. Knebel, and K. Stawiasz, “Experimental
measurement of a novel power gating structure with intermediate power
saving mode,” in Low Power Electronics and Design, 2004. ISLPED
’04. Proceedings of the 2004 International Symposium on, aug. 2004,
pp. 20 –25.

[12] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient mechanisms for
managing thread context in throughput processors,” in Proceedings of
the 38th annual international symposium on Computer architecture,
ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp. 235–246.
[Online]. Available: http://doi.acm.org/10.1145/2000064.2000093


