
Synchronizing Code Execution on Ultra-Low-Power
Embedded Multi-Channel Signal Analysis Platforms

Ahmed Yasir Dogan∗, Rubén Braojos∗, Jeremy Constantin†,
Giovanni Ansaloni∗, Andreas Burg† and David Atienza∗
∗Embedded Systems Lab. (ESL) - EPFL, Lausanne, Switzerland.

Email: {ahmed.dogan,ruben.braojoslopez,giovanni.ansaloni,david.atienza}@epfl.ch
†Telecommunications Circuits Lab. (TCL) - EPFL, Lausanne, Switzerland. Email: {jeremy.constantin,andreas.burg}@epfl.ch

Abstract—Embedded biosignal analysis involves a considerable
amount of parallel computations, which can be exploited by
employing low-voltage and ultra-low-power (ULP) parallel com-
puting architectures. By allowing data and instruction broadcast-
ing, single instruction multiple data (SIMD) processing paradigm
enables considerable power savings and application speedup, in
turn allowing for a lower voltage supply for a given workload.
The state-of-the-art multi-core architectures for biosignal analysis
however lack a bare, yet smart, synchronization technique among
the cores, allowing lockstep execution of algorithm parts that
can be performed using the SIMD, even in the presence of
data-dependent execution flows. In this paper, we propose a
lightweight synchronization technique to enhance an ULP multi-
core processor, resulting in improved energy efficiency through
lockstep SIMD execution. Our results show that the proposed
improvements accomplish tangible power savings, up to 64% for
an 8-core system operating at a workload of 89 MOps/s while
exploiting voltage scaling.

I. INTRODUCTION AND RELATED WORK

Energy efficiency is a fundamental aspect of portable au-
tonomous systems for biosignal analysis, where a considerable
amount of processing is performed with limited energy sup-
plies. An effective technique to achieve computational power
savings is supply voltage scaling, all the way to the sub-
threshold region. In the literature, voltage scaling has been
extensively analyzed, including its limitations and disadvan-
tages [1], [2].

One of the main issues with low-voltage operation is perfor-
mance degradation, which can limit the degree of achievable
voltage scaling for a given processing requirement. Parallel
computing using multiple cores can alleviate this issue, pro-
vided that applications can be parallelized. To this end, in [3]
near threshold ultra-low-power (ULP) multi- and single-core
architectures are compared in terms of power and performance
ability for several multi-channel biosignal processing applica-
tions. It has been shown that the multi-core approach achieves
better energy efficiency compared to the single-core approach
for medium and high workloads [3].

This work was partially supported by the the Swiss Confederation under the
Nano-Tera.ch NTF Project BioCS-Node. We also acknowledge the support of
the Swiss NSF under the project number PP002-119052.
978-3-9815370-0-0/DATE13/ c©2013 EDAA

One of the key contributors to the overall power consump-
tion is the active power dissipated by instruction memory
accesses. To alleviate this issue, in [4] coordinated accesses
to instruction and data memories, enabled by a smart crossbar
interconnect that supports broadcasting, is proposed. However,
the benefit of broadcasting (up to 40.6% active power sav-
ings [4]) relies on lockstep execution of algorithm parts that
can be carried out using the single instruction multiple data
(SIMD) processing paradigm. Therefore, substantial power
savings can only be achieved by synchronous instruction
execution, which even for many embarrassingly parallel ap-
plications is not guaranteed, due to data dependent program
flow as well as data memory access conflicts, which bring the
processing cores out of lockstep.

Barrier insertion techniques are widely used in parallel
computing architectures to achieve synchronization [5]. Cores
are synchronized at certain barrier points of execution, i.e.,
a core is stalled until all other cores reach the same point.
While multi-core synchronization has been mostly proposed
for high-performance computing [6], we propose to apply
this technique to achieve reduced power consumption on ULP
multi-core architectures.

In the literature, many software-only [7] and software-
hardware hybrid implementations of barriers are proposed [8].
However, these techniques are rather complicated for an
embedded ULP platform, where both energy efficiency and
low complexity due to real-time applications, are critical.
Moreover, mainstream SIMD architectures (e.g., GPUs) lack
the flexibility needed for dynamically managing lockstep ex-
ecution of cores during data-dependent program flows.

The main contributions of this paper are the following:
1) We introduce the usage of barrier synchronization for

ULP computing architectures. We show that lockstep
SIMD code execution reduces power consumption on
multi-channel data processing platforms, maximizing the
positive impact of instruction and data broadcasting.

2) We describe a hybrid lightweight hardware-software
barrier technique to synchronize code execution among
cores. The proposed solution involves a hardware syn-
chronizer in conjunction with an instruction set exten-
sion (ISE) for the processing cores.

Our results show that by applying the proposed enhancements
to a state-of-the-art processing platform with 8-core, up to 64%
power savings is achieved for a biosignal analysis workload
of 89 MOps/s while exploiting voltage scaling.

II. BIOSIGNALS MONITORING APPLICATIONS

Biosignal analysis applications process acquisitions of
single- or multiple-input biological signals, either to de-noise
them or to extract their characteristic features. As it has
been recently shown in [9], this signal processing can be
optimized to run in real-time on typical embedded low-power
microcontrollers. Biosignal applications present considerable
parallelism, which can be exploited on multi-core processing
platforms in conjunction with low voltage operation to achieve
energy savings.

In this work we consider three reference benchmarks,
widely used in Electrocardiogram (ECG) processing: the first
one (MRPFLTR) performs baseline wander correction and
noise suppression based on the morphological filtering [10].
The second benchmark (MRPDLN) delineates ECG signals
based on multi-scale morphological derivatives [11]. The last
benchmark (SQRT32) consists of a square root kernel, mostly
used for multi-lead ECG combination, based on [12].

III. TARGET MULTI-CORE PROCESSING ARCHITECTURE

The target multi-core architecture (c.f. Fig. 1) used in
this study supports SIMD operations to exploit data level
parallelism. It consists of 8 processing cores, a shared data
memory (DM, 64 kByte in total, divided into 16 banks), a
shared instruction memory (IM, 96 kByte in total, divided into
8 banks) and a hardware synchronizer for enhanced lockstep
execution of applications. Central data and instruction cross-
bars (hereafter D-Xbar and I-Xbar, respectively) interconnect
the shared memories and the processing cores. In case of
multiple conflicting memory access requests (occurring when
a memory bank is accessed by more than one core at different
memory locations), the cores are served in sequence and the
waiting cores are clock gated.

Each core is a custom 16-bit reduced instruction set com-
puting (RISC) architecture [3], providing a complete RISC
instruction set including instructions for interrupt and sleep
mode support. The sleep mode allows external clock gating of
the entire core, until a wakeup event occurs. This new multi-
core architecture improves the one in [4] (c.f. ulpmc-bank)
with a light-weight hardware synchronizer that cooperates with
the cores to coordinate IM accesses.

IV. PROPOSED SYNCHRONIZATION TECHNIQUE

The substantial power savings achieved through SIMD
operations highly rely on synchronous code execution among
the cores. A loss of synchronization between the cores can
occur mainly due to two reasons: data access conflicts and
data-dependent program flow.

A data access conflict occurs when a DM bank is accessed
by more than one core at different memory locations (i.e.,
a shared data access). In this case, the cores that have been

B
a
n
k
-
0

B
a
n
k
-
1

IM CORES DM

D
-
X
b
a
r

B
a
n
k
-
1
5

Synchronizer

B
a
n
k
-
0

B
a
n
k
-
1

B
a
n
k
-
7

I
-
X
b
a
r

Read Port

Id=1
Core

Id=7
Core

Core
Id=0 Stall

Read Port

Stall

Read Port

Stall

ISE

ISE

ISE Lock

Lock

Lock

Write
Ports

W
r
i
t
e

P
o
r
t
s

Check-in
Check-outWakeUp

Stall

Stall

Stall

WakeUp

WakeUp

Read Port

Read Port

Read Port

Fig. 1. Improved Multi-Core Architecture with Hardware Synchronizer

served continue code execution while the rest of the cores
wait for data to be served. We propose to address this issue
by enhancing the data serving policy in the D-Xbar. This
enhancement stalls synchronous cores until all of them have
been served successfully. When a data access conflict occurs,
the program counter of the cores are compared to detect if the
cores are synchronous.

On the other hand, many applications involve data-
dependent code sections, which lead to conditional execution
of different parts of the code and, consequently, synchroniza-
tion is lost. To address this case, we propose to resynchronize
the cores at the end of data-dependent code sections with a
light-weight synchronization strategy:

1) First, the data-dependent code sections in applications
are determined (c.f. Section IV-C). For instance, for a
given application with a program flow as depicted in
Fig. 2, A, B and C (check-in points) are the beginning
of the data-dependent code sections, whereas A’, B’
and C’ (check-out points) are the points where the
corresponding data-dependent code sections end.

2) Second, for each data-dependent code section a DM po-
sition is assigned to trace the synchronization process. In
these memory positions, both the 1-bit core identity flags
and total number of cores (the core counter), currently
running the corresponding data-dependent code section
are stored. Once a core arrives to a check-in point, the
corresponding DM position is modified by setting the
identity flag and incrementing the core counter.

3) Third, when a core arrives to a check-out point, the core
counter is decremented. The arriving core goes into sleep
mode and waits for the other cores, expected to arrive at
the same check-out point, to resynchronize. Once all the
cores, expected to arrive at the same check-out point,
reach to the check-out point, then the cores continue
execution of the code in lockstep.

A A’
B

C
C’

B’

Fig. 2. An Example of Data-Dependent Code Section

The following sections detail the hardware and software
support that implements this execution paradigm.

A. Hardware Synchronizer

Typically, several cores reach a check-in point together and
then the cores may branch to different conditional code path.
Depending on the taken conditional code sections, the cores
can reach the corresponding check-out point together, sepa-
rately, or some of them together while the others separately.

To check-in/check-out a core needs two clock cycles, since
a memory read and then a memory write are needed. The
synchronizer merges multiple check-in/check-out requests for
a synchronization point and modifies the assigned memory
position, accordingly. The checkpoint status is updated with
the new identity flags and the core counter (incremented
for check-in and decremented for check-out). Merged check-
in/check-out requests are also executed in two clock cycles.

When all the expected cores reach to a check-out point,
the core counter becomes zero. In this case, the synchronizer
wakes up all the cores, waiting to be resynchronized (indicated
by the core identity flags), and the corresponding memory
word is initialized to zero.

B. ISE in the Processing Core

To support the above-described strategy, we have cus-
tomized the instruction set architecture of the core by adding
two new instructions (SINC and SDEC) and a core output (lock
signal) to support the check-in and check-out processes. More
specifically, SINC and SDEC are dedicated to the check-in
and check-out processes, respectively, whereas the lock output
signal is used to guarantee the atomicity of the read-modify-
write operations performed during check-ins and check-outs.
In addition, a specific core register (Rsync) is used to store the
base address of the assigned DM array, holding the identity
flags and core counter for each synchronization point. The
details of the extensions are as follows:

a) SINC: The assembler semantic is: SINC #literal.
The literal stands for the synchronization point index, which
addresses the position of the synchronization point in the
assigned DM array. The instruction reads data from the
memory address, calculated by adding the literal value to the
Rsync base address register. This read data is forwarded to the
write port (without any manipulation since the corresponding
modifications are performed in the synchronizer), and the core
output indicating a check-in request to the synchronizer is
activated (c.f. Fig 1).

b) SDEC: The assembler semantic is: SDEC #literal. It
is similar to SINC, but the output indicates a check-out request.
In addition, after requesting the check-out the core goes into
sleep mode until a wake up occurs (i.e., when all expected
cores reach to the check-out point).

c) Lock Output Signal: This output is activated when
SINC and SDEC instructions are executed. This signal locks
the memory position, accessed via the instructions, until it
has been modified with the new value for serializing not
synchronous memory accesses among the cores in sequential
check-in/check-out processes.

C. Synchronization Points Insertion

The proposed synchronization framework only requires the
resynchronization points to be defined by inserting pragma
in the code. While manually implemented in this study, this
instrumentation can in principle be automated during the
compilation process. For a given code the check-in and check-
out instructions are inserted as shown below.

1
2 SINC #(Synchronization Array Index X)
3 if (CONDITION)
4 {//if operations... }
5 else
6 {//else operations... }
7 SDEC #(Synchronization Array Index X)
8

Listing 1. Synchronization Points Insertion

These check-in and check-out instructions are inserted on
each data-dependent conditional statement (while/for loops,
case/if-else statements, etc.).

V. POWER AND PERFORMANCE EVALUATION

A. Experimental Setup

To assess the proposed synchronization paradigm in terms
of power and performance, we have implemented two multi-
core designs, with and without the synchronization feature.
Both designs are synthesized in a 90 nm low-leakage process
technology. For an accurate power analysis of the designs,
toggling information while running the reference benchmarks
is obtained by simulating a fully routed design (including the
clock tree) with back-annotated timing information. The power
values at scaled voltages are calculated considering that the
power decreases with the square of the supply voltage. The
scaling of the operating voltages is limited to the transistor
threshold voltage level, to avoid performance variability and
functional failures occurring mainly at sub-threshold voltages.

The achieved minimum critical path delay at the nominal
voltage (1.2 V) is 8.9 ns and 9.6 ns for the architectures without
and with the synchronization feature, respectively. The tar-
geted applications do not require such high clock frequencies,
thus no vital timing issue is present. A relaxed constraint of
12 ns gives good power results for both designs with and
without the synchronization feature [4], while still allowing
for considerable voltage scaling.

0.01

0.1

1

10

100

1 10 100 1000

Po
w

er
 C

on
su

m
pt

io
n,

 m
W

Number of Operations, MOps/s

w/o synchronizer with synchronizer

211 MOps/s
15.38 mW

0.01

0.1

10

100

Po
w

er
 C

on
su

m
pt

io
n,

 m
W

89 MOps/s
10.46 mW

(a) MRPFLTR benchmark

0.01

0.1

1

10

100

1 10 100 1000

Po
w

er
 C

on
su

m
pt

io
n,

 m
W

Number of Operations, MOps/ s

w/o synchronizer with synchronizer

156 MOps/s
12.61 mW

290 MOps/s
18.27 mW

Po
w

er
 C

on
su

m
pt

io
n,

 m
W

(b) SQRT32 benchmark

0.01

0.1

1

10

100

1 10 100 1000

Po
w

er
 C

on
su

m
pt

io
n,

 m
W

Number of Operations, MOps/ s

w/o synchronizer with synchronizer

167 MOps/s
13.93 mW

336 MOps/s
20.09 mW

(c) MRPDLN benchmark

Fig. 3. Total Power Consumption of the ULP architectures while running different benchmarks

B. Power and Performance Results

Thanks to the resynchronization process, the stalls due to
IM access conflicts are minimized, achieving a speed-up of
up to 2.4x on the benchmarks. The architecture with the
synchronization feature achieves between 2.5 Ops and 4.0 Ops
per clock cycle, whereas the architecture without it can execute
between 1.1 Ops and 2.0 Ops per clock cycle, due to the
overhead incurred by stalls.

Table I reports the distribution of the average power con-
sumptions between the different components for the multi-
core designs with and without the synchronization feature.
The improved architecture achieves up to 60% savings for
the total number of IM bank accesses when running the ECG
benchmarks. This access rate reduction leads to a significant
reduction of the power consumed due to IM accesses, as seen
in Table I. On the other hand, due to the synchronization
overhead, the total number of DM accesses is increased by
less than 10%, which leads to almost no increase in the
power consumed by the DM. Furthermore, the synchronizer
consumes less than 2% of the total power.

The cores in the improved architecture consume slightly
more power than those of the architecture without the syn-
chronization feature due to the ISE. This effect is balanced by
savings in the interconnects, because of the reduced signal
activity due to increased SIMD operations. The improved
architecture achieves 2x power savings in the clock tree,
since it requires lower clock frequency for a given workload.
Overall, without exploiting voltage scaling, synchronization
provides up to 38% dynamic power savings.

The synchronization feature is even more beneficial when
voltage scaling is considered (c.f. Fig 3). Thanks to higher

TABLE I
DYNAMIC POWER DISTRIBUTION OF THE DESIGNS WHILE RUNNING

REFERENCE BENCHMARKS AT 8 MOPS/S AND 1.2 V

w/o synchronizer with synchronizer
Total 0.64 mW < P < 0.94 mW 0.47 mW < P < 0.58 mW
Cores 0.14 mW 0.16 mW
IM 0.20 mW < P < 0.36 mW 0.09 mW < P < 0.15 mW
DM 0.05 mW < P < 0.08 mW 0.06 mW < P < 0.08 mW
D-Xbar 0.06 mW 0.05 mW
I-Xbar 0.03 mW 0.02 mW
Syncronizer - 0.01 mW
Clock Tree 0.09 mW < P < 0.16 mW 0.05 mW < P < 0.08 mW

Ops/cycle, in fact power savings up to 64% are achieved
while running the MRPFLTR benchmark at a workload of
89 MOps/s. Similar results have been observed for the other
benchmarks: 56% power reduction for SQRT32 at 156 MOps/s
and 55% power reduction for MRPDLN at 167 MOps/s.

VI. CONCLUSION

Embedded multi-input data processing expose a high de-
gree of parallelism, which can be exploited in multi-core
architectures in conjunction with supply voltage scaling to
develop an ultra-low-power processor for portable systems.
One of the drawbacks in the state-of-the-art architectures
is high instruction fetch power consumption, especially for
applications causing asynchronous code execution among the
cores. To address this issue, we have proposed a technique of
code execution synchronization among the cores to maximize
the rate of SIMD operations. The proposed enhancements
achieve up to 64% power savings when applied to a near-
threshold 8-cores platform.

REFERENCES

[1] S. Hanson et al., “Exploring variability and performance in a sub-200-
mV processor,” SSC, vol. 43, no. 4, pp. 881–891, 2008.

[2] R. Dreslinski et al., “Near-threshold computing: Reclaiming Moore’s
law through energy efficient integrated circuits,” Proc. IEEE, vol. 98,
no. 2, pp. 253–266, 2010.

[3] A. Y. Dogan et al., “Low-power processor architecture exploration for
online biomedical signal analysis,” IET Circuits, Devices Systems, vol. 6,
no. 5, pp. 279 –286, 2012.

[4] ——, “Multi-core architecture design for ultra-low-power wearable
health monitoring systems,” in DATE, vol. 1, no. 1, 2012, pp. 988–994.

[5] D. E. Culler et al., Parallel Computer Architecture: A Hardware/Soft-
ware Approach. San Francisco: Morgan Kaufmann Publishers, 1999.

[6] A. Gottlieb et al., “The NYU ultracomputer-designing an MIMD shared
memory parallel computer,” IEEE Trans. Comput, vol. C-32, no. 2, pp.
175 –189, feb. 1983.

[7] C. Ferri et al., “Energy-optimal synchronization primitives for single-
chip multi-processors,” in GLSVLSI, New York, 2009, pp. 141–144.

[8] C. Stoif et al., “Hardware synchronization for embedded multi-core
processors,” in ISCAS, may 2011, pp. 2557 –2560.

[9] F. Rincon et al., “Development and evaluation of multilead wavelet-
based ECG delineation algorithms for embedded wireless sensor nodes,”
TITB, vol. 15, no. 6, pp. 854–863, Nov. 2011.

[10] Y. Sun et al., “ECG signal conditioning by morphological filtering,”
Computers in Biology and Medicine, vol. 32, no. 6, pp. 465–479, 2002.

[11] Y. Sun, K. L. Chan, and S. M. Krishnan, “Characteristic wave detection
in ECG signal using morphological transform,” BMC Cardiovascular
Disorders, vol. 5, no. 1, p. 28, 2005.

[12] T. J. Rolfe, “On a fast integer square root algorithm,” SIGNUM Newsl.,
vol. 22, no. 4, pp. 6–11, Oct. 1987.

