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Abstract—Distributed computing resources in a cloud comput-
ing environment provides an opportunity to reduce energy and
its cost by shifting loads in response to dynamically varying avail-
ability of energy. This variation in electrical power availability is
represented in its dynamically changing price that can be used
to drive workload deferral against performance requirements.
But such deferral may cause user dissatisfaction. In this paper,
we quantify the impact of deferral on user satisfaction and
utilize flexibility from the service level agreements (SLAs) for
deferral to adapt with dynamic price variation. We differentiate
among the jobs based on their requirements for responsiveness
and schedule them for energy saving while meeting deadlines
and user satisfaction. Representing utility as decaying functions
along with workload deferral, we make a balance between
loss of user satisfaction and energy efficiency. We model delay
as decaying functions and guarantee that no job violates the
maximum deadline, and we minimize the overall energy cost. Our
simulation on MapReduce traces show that energy consumption
can be reduced by ∼15%, with such utility-aware deferred load
balancing. We also found that considering utility as a decaying
function gives better cost reduction than load balancing with a
fixed deadline.

I. INTRODUCTION

The recent increase in energy prices along with the rise of
cloud computing brings up the issue of making clouds energy
efficient; as according to an EPA report data centers consume
61 million MWh per year in US, costing about 4.5 billion
dollars [1]. There has been a lot of exploration under the
quest for green data centers, searching for opportunities to
reduce energy consumption in the context of cloud computing
resources. While there are a number of hardware and software
techniques for energy savings considering different aspects,
one non-conventional perspective is to utilize the predeter-
mined service level agreements (SLAs) for energy efficiency.
Specifically, latency is an important performance metric for
any web-based services and is of great interest for service
providers who are responsible for services on the cloud.

Naturally, energy efficiency in the cloud has been pursued
in various ways including the use of renewable energy [2],
[3] and improved scheduling algorithms [4], [5], etc. Among
these, improved scheduling algorithm is a promising approach
for its broad applicability regardless of hardware configu-
rations. Typically, a SLA specification provides a measure
of flexibility in scheduling that can be exploited to improve
performance and efficiency. Recent work explores the opportu-
nities from the SLAs to shift and balance computational loads
in a cloud computing environment and delay computation for
improving the performance of the applications (e.g. see [6],
[7], [8]). But delayed scheduling may cause customer dissat-
isfaction and sometimes increases the overall cost of execution
if future variation of electricity pricing is not considered. In
this paper, we use deferral with dynamic pricing of electricity
for energy efficiency while using utility functions to capture
the loss in the value of execution by deferral.

Many applications in real world have latency constraints
or delay bounds, especially in Cloud Computing. When com-
bining with energy conservation, latency is usually a critical
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adjusting tool between performance loss, energy consumption
and customer satisfaction. Lee et al. [9] conducted a survey
to measure the impact of delay on user satisfaction and
represented delay as utility functions which are often decaying
with time. Jensen et al. [10] used time utility functions (TUFs)
for scheduling in real time systems with latency constraints
and energy bound. Our work uses similar utility functions
and extends their usage with dynamic deferral by making a
trade-off between energy efficiency and loss of utility. Most
prior work either uses delay as a constraint or minimizes
the average delay of overall computation. Unlike previous
work, we represent delay as inversely proportional to utility
as increase in delay diminishes the utility for executing a job.
Then we determine the schedule that minimizes the net cost for
execution which is the product of delay and energy price. We
apply our technique for both homogeneous and heterogeneous
workloads and show significant cost reductions with respect to
the greedy heuristic that does not take into account the utility
of execution.

This paper makes two contributions. First, we present online
algorithms for utility-aware load balancing in data centers with
dynamic deferral. When all the jobs have same utility function
(homogeneous), we present a formulation that balances load
uniformly. But when the jobs have different utility functions
(heterogeneous), our formulation uses individual utility func-
tions for each job to determine schedule. Second, we vali-
date our algorithms using MapReduce traces (representative
workload for data centers) and evaluate cost savings using
synthetic utility functions generated from the shapes extracted
from surveys in the literature [11]. In practice, utility functions
are provided by the users during the job submissions.

The rest of the paper is organized as follows. Section II
presents the model we use to formulate the optimization. In
Section III, we present the algorithm for determining optimal
assignment for both homogeneous and heterogeneous work-
load. Section IV evaluates our algorithm on real electricity
prices and workload data and Section V concludes the paper.

II. MODEL FORMULATION

We consider a large computing facility (“cloud”), consisting
of n computation units. The computation units can represent
machines in a datacenter or geographically distributed data-
centers or servers waiting for requests. We divide time into
slots for the ease of load balancing decisions. The cost for
executing the jobs may vary with time, yet remain fixed within
a time slot of length τ . The time interval we are interested in is
t ∈ {0, 1, . . . , T} where T can be arbitrarily large. In practice,
T can be a year and the length of a time slot τ could be as
small as milliseconds for service requests (e.g. HTTP) or as
large as several minutes for batch-like jobs (e.g. MapReduce).
At each time slot t, the total workload Lt arrive at the central
dispatcher from which load balancing decisions are made.

In our model, the jobs can be delayed but the utility for
execution of a job can diminish with time, which we represent
by a utility function, γ(t) : N → [0, 1]. Figure 1 illustrates
different types of utility functions where the maximum value
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Fig. 1. Different utility functions representing user satisfaction. Utility for the execution of a job is maximum when the job is released (t = 0).

of utility for a job is 1 when the job is released and the
utility decays with time. Since all the jobs do not loose
value at the same rate, the utility function can take any
decaying form [9]. Interactive jobs usually have steeper utility
functions (Figure 1(a), 1(b)) while batch jobs have flatter
utility (Figure 1(d), 1(e)). For interactive jobs utility becomes
zero after a specified period of time while for batch jobs utility
may diminish with time but never become zero. For the sake of
formulation we assume that the utility function has a maximum
deadline D, after which the utility becomes zero. This helps
us guarantee that all the jobs will be finished after a certain
period of time. First we consider the uniform case with a single
utility function for all the workload. Later we extend it for the
case where different jobs may have different utility functions.

At the beginning of each time slot t, the released jobs are
assigned to machines/servers with deferral (delay) of 0 − D
slots. The total computation capacity Mi in server i is fixed
and given for 1 ≤ i ≤ n. We normalize the workload Lt

(released at time t) by the processing capability of the servers
i.e. Lt denotes the computation capacity required to execute
the workload. Hence we assume that for all t, Lt ≤

∑n
i=1Mi.

Note that this condition is not necessary since we can defer
the workload to later slots. But we do not consider that case
in this paper. We assume that the cost for execution may vary
with time. Hence it might be beneficial to defer the execution
of some tasks for cost saving. Let xi,d,t denote the portion
of the workload Lt, assigned to be executed at time t + d at
server i for 0 ≤ d ≤ D. Then

∑n
i=1

∑D
d=0 xi,d,t = Lt. If

t < 0, Lt = 0 and xi,d,t = 0 for all i, d.
The goal of this paper is to minimize the total cost (price)

for executing the workload making a trade-off between energy
price and utility loss by deferred execution. The energy cost
Ci,t(yi,t) is the cost for executing the workload yi,t at server
i at time slot t. We assume that Ci,t(yi,t) is a nonnegative,
(weakly) convex increasing function. Note that the function
itself can change with time, which allows for time variation
in energy prices. The simplest example for the cost function
for a time slot is an affine function which is the common
model for the energy cost for typical servers:

Ci,t(yi,t) = αi + βi,tyi,t

where αi and βi,t are constants for server i and time slot t
(e.g. see [2]) and yi,t is the executed workload to server i
at time t. Since we assume that the future price of energy
is not known, we use predicted parameters for future costs,
C̃i,t(yi,t) = αi + β̃i,tyi,t at time slots t′ > t.

III. ALGORITHM

In this section, we present an online algorithm for the utility-
aware deferred load balancing problem. Given the model, the
goal of the dispatcher is to determine the dispatching rule xi,d,t
to minimize the total cost during [1, T ]. Since the workload
is not known in advance, we formulate an online optimization

which is applied at each time t, over [t, t + D] slots to
determine the assignment for the released workload Lt. In the
formulation, we represent delay as inversely proportional to
utility as increase in delay diminishes the utility for executing
a job. Then our objective is to minimize the net cost for
execution which is the product of delay (with respect to the
release time) and energy price. As jobs are delayed, the net
cost for execution increases. So it is better to execute the jobs
early. But the energy price may be higher in the earlier time
slots. Hence we make the trade-off by the product of energy
price and delay for the execution of a job. Thus for each
job j, the objective is to minimize: 1

utilityj
× execution costj

Therefore each job is executed with a certain utility at the time
and place that minimizes the total net value of the execution
of the jobs. By taking the sum of the product of delay and
energy cost for all the jobs, we put more priority to the jobs
with steeper utility functions (interactive jobs). We first present
a formulation for the homogeneous workload where all the
jobs have the same utility function. Later, we extend it for the
heterogeneous workload.
A. Homogeneous Workload

The dispatcher makes decision on the assignment of the
workload to the servers. It has access to the past and current
prices, but only statistical knowledge about future prices,
which it can use to make optimal decision for future time
slots. The following optimization is applied at the dispatcher
at each time t to determine the assignment of workload xi,d,t
to servers for 0 ≤ d ≤ D and 1 ≤ i ≤ n.

min
xi,d,t

n∑
i=1

D∑
d=0

1

γ(d)
· Ci,t(xi,d,t−d)

+
n∑

i=1

D∑
k=1

D∑
d=k

1

γ(d)
· C̃i,t+k(xi,d,t+k−d) (1a)

subj. to
n∑

i=1

D∑
d=0

xi,d,t = Lt (1b)

0 ≤
D∑

d=s−t

xi,d,s−d ≤Mi ∀i, t ≤ s ≤ t+D. (1c)

where C̃i,t′() is the predicted cost function at time t′ > t
for data center i and xi,d,t′′ is the unexecuted workload at data
center i that was assigned at time t′′ < t to be executed at time
t′′+d where t− t′′ ≤ d ≤ D. Initially, xi,d,t = 0 when t < 0.
Constraint (1b) ensures that total new assignment is equal to
the total released workload and constraint (1c) ensures that
total assignment to a server does not exceed the capacity of
the server.

Since the energy cost function Ci,t(·) is an affine function
and γ(d) is constant for the time slot d, the objective function
is linear as well as the constraints. Hence it is clear that the



optimization in (1) is a linear program. Note that the workload
xi,d,t in the formulation is not considered to be integer. This
is acceptable because the number of requests at each time slot
is in the range of thousands and we can round the resulting
assignment with minimal increase in cost.
B. Heterogeneous Workload

We now consider the case where different jobs have differ-
ent utility functions and hence have different deadlines. We
distinguish between the jobs based on their utility functions.
Suppose there are J types of utility functions. Then the
workload can be decomposed into J classes, with workload
in each class Lj,t having the same utility function γj(·) where
1 ≤ j ≤ J . To represent different classes of workload,
we include another dimension by adding an index j with
the notations for workload assignment xi,d,j,t. Then we can
reformulate the optimization at time t, for 0 ≤ d ≤ D,
1 ≤ i ≤ n and 1 ≤ j ≤ J ,

min
xi,d,j,t

n∑
i=1

D∑
d=0

J∑
j=1

1

γj(d)
· Ci,t(xi,d,j,t−d)

+

n∑
i=1

D∑
k=1

D∑
d=k

J∑
j=1

1

γj(d)
· C̃i,t+k(xi,d,j,t+k−d) (2a)

s.t.
n∑

i=1

D∑
d=0

xi,d,j,t = Lj,t ∀j (2b)

0 ≤
D∑

d=s−t

J∑
j=1

xi,d,j,s−d ≤Mi ∀i, t ≤ s ≤ t+D(2c)

IV. SIMULATION

In this section, we evaluate the cost incurred by the utility-
aware load balancing algorithm relative to the greedy solution
in the context of workload generated from realistic data.

Electricity Price: We assume that the servers are distributed
geographically at distant locations. We run our simulations for
four sites and choose distant locations near those power grids
whose real time electricity prices are publicly available. We
used the publicly available data from electricity markets from
Independent System Operator New England (ISO-NE) [12],
New York Independent System Operator (NYISO) [13], Elec-
tric Reliability Council of Texas (ERCOT) [14] and Electricity
Market of New Zealand (NZ) [15]. We took the locational
based marginal prices (LBMP) from the 5 minute spot markets
for three days (15th, 14th and 8th February, 2012) and ran our
experiments on the prices of 15th February using the prices for
14th and 8th for prediction of future prices. We use the four
locations to have both temporal and geographical variation
of electricity prices e.g. the time zones of New York, New
England, Texas and New Zealand are GMT-5, GMT-7, GMT-6
and GMT+13 respectively. The variation of electricity prices
for different locations are plotted in Figure 2 with Eastern
Standard Time (EST). These graphs indicate significant spatio-
temporal variation in electricity prices.

Workload Description: We use two publicly available
MapReduce traces as examples of dynamic workload. The
MapReduce traces were released by Chen et al. [16] which are
produced from real Facebook traces for one day (24 hours)
from a cluster of 600 machines. We count the number of
different types of job submissions over a time slot length of
5 minutes and use that as a dynamic workload (Figure 3) for
simulation. For the experiments we used time slot length of 5

Fig. 2. Illustration of five minute locational marginal electricity prices in
real time market on 15th February, 2012 for four different regions (a) New
England (ISO-NE), (b) New York (NYISO), (c) Texas (ERCOT), (d) New
Zealand (NZ).

(a) Workload A (b) Workload B

Fig. 3. Illustration of traces for dynamic workload used in the experiments.

minutes because the electricity prices vary with an interval of
5 minutes. In practice, load balancing decisions can be made
more frequently with slot length size in the range of seconds.
We then assign deadline for each job in terms of the number
of slots the job can be delayed. For the case of homogeneous
workload, we set D to be 12 slots and use the utility functions
from Figure 1 for the simulation. This is realistic because
MapReduce workloads have deadlines in the range of minutes
as deadlines of 8-30 minutes from SLAs for these workloads
have been used in the literature [7], [8]. For the heterogeneous
case, we use k-means clustering to classify the MapReduce
workload into five job groups (JGA-JGE) based on the map,
shuffle and reduce bytes. The characteristics of each group are
depicted in Table I where smaller jobs dominate the workload
mix. This kind of clustering has been used by Chen et al. [16]
for classifying the workload. For each class of jobs we assign
a utility function from Figure 1(a)-(e) such that for larger class
(small/interactive jobs) utility decays quickly and for smaller
class (large/batch jobs) utility decays slowly.

TABLE I
CLUSTER SIZES AND UTILITY FUNCTIONS FOR WORKLOAD

CLASSIFICATION BY K-MEANS CLUSTERING FOR HETEROGENEOUS
WORKLOAD

Cluster Workload A Workload B Utility
#Jobs GB #Jobs GB Figure 1

JGA 5700 1.49 6272 1.18 (a)
JGB 145 86.76 263 49.73 (b)
JGC 33 253.95 56 141.71 (c)
JGD 14 651.63 38 441.24 (d)
JGE 2 8702.16 9 1296.13 (e)

Utility Functions: We generated utility functions syntheti-
cally for each job using a family of curves drawn from those
in Figure 1. We understand that often utility functions are
not explicit, as previous work showed users can describe their
job utility [9] but often schedulers do not specifically request
that information. In fact, users do suffer a loss in value with
job deferral and this loss is not uniform as some jobs loose
value faster than others or by different functions. Our goal is
to capture these phenomena by the utility functions and their
heterogeneity.



Cost Parameters: The cost function parameter βi,t is deter-
mined using current electricity price and the future prices, β̃i,t′
for t′ > t, are determined using a electricity price prediction
model. For our simulations, we use load independent parame-
ter αi = 0, for all i. Depending on the nature of the workload
we set the total capacity of each site because the algorithms
keep on assigning the workload to the site with lowest cost
until the site is overloaded. For both the workload, we use
capacity Mi = 50 for all i.

The future electricity prices β̃i,t for the next D time slots
are randomly generated from Gaussian distributions because of
their high unpredictability and the volume (D) of generation.
We used the same mean but different variances for the gener-
ation in each time slot. We use the optimal daily coefficients
for the price prediction filter from [17]. Let µ̃t

i[χ] and σ̃t
i [χ]

be the predicted means and standard deviations for each time
slot t on day χ for geographical location i. Then the mean of
the prediction model for Gaussian distribution is obtained as
follows:

µ̃t
i = ε0 +

D∑
j=0

εt−jβi,t−j .

Here, εj are the coefficients for the moving average method
which can be estimated by training the model over the previous
day prices. The variance parameter σ̃t

i [χ] is estimated from the
history using the following equation:

σ̃t
i [χ] = k1σ

t
i [χ− 1] + k2σ

t
i [χ− 2] + k7σ

t
i [χ− 7].

Here, σt
i [χ−1], σt

i [χ−2] and σt
i [χ−7] denote the previous

standard deviation values σt
i on yesterday, the day before

yesterday and the same day last week, respectively. Since
we used the electricity prices for Wednesday (15th February,
2012), we chose the k1 = 0.837, k2 = 0 and k7 = 0.142 from
[17]. For the previous standard deviation values (σt

i [χ − 1],
σt
i [χ − 7]) values we use the past standard deviation of

electricity prices for D slots on those days such that σt
i [χ −

1] := std(βi,t[χ − 1], βi,t−1[χ − 1], . . . , βi,t−D[χ − 1]) and
σt
i [χ−7] := std(βi,t[χ−7], βi,t−1[χ−7], . . . , βi,t−D[χ−7]);

where std(.) denotes the standard deviation. The mean µ̃t
i[χ]

is computed from the moving average of the prices for D
previous slots on the current day χ. By using two different
methods for mean and variance, we exploit both the temporal
and historical correlation of electricity prices.

Evaluation: Currently load balancing in the cloud typically
does not use deferral of workload [2]. Often the load balancing
decisions are made dynamically using the greedy method [4].
In this method, jobs are assigned to the data centers with
the lowest current electricity prices without considering utility
or deferral. Using our algorithms, we can make a trade-off
between energy efficiency and utility loss by deferring some of
the workload to later time slots. We compare the total energy
cost from our algorithms with the greedy strategy without
deferral and evaluate the cost reduction. Figure 4 illustrates
the cost reduction with each of the utility functions for the
homogeneous case. For both the workload, step function
performs poorly due to error in future price prediction. This
shows the benefit of representing utility (delay) as a decaying
function over time, giving less weight for the later slots at the
time of load balancing decisions. Hence considering utility
as a decaying function is better than representing utility by a
deadline. Figure 5 depicts the cost reduction for the workload
mix from Table I. It shows that distinguishing the workload

(a) Workload A (b) Workload B

Fig. 4. Comparison of total cost from utility-aware load balancing and greedy
method for homogeneous workload.

Fig. 5. Comparison of total cost from utility-aware load balancing (ULB)
and greedy method for heterogeneous workload.

and scheduling them according to the shape (steepness) of
their utility functions results in cost savings of ∼15%.

V. CONCLUSION

We have proposed online algorithms for utility-aware load
balancing with dynamic deferral. The algorithms optimize
the dynamic assignment of the workload to the servers by
making a trade-off between energy consumption and utility
loss due to deferral with future electricity price prediction. Our
simulations highlight that significant cost and energy savings
can be achieved using the algorithms. Our future work is to
consider other parameters such as heterogeneity of servers,
capacity provisioning etc. during the load balancing decisions.
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