
Non-Speculative Double-Sampling Technique to
Increase Energy-Efficiency in a High-Performance Processor

Junyoung Park, Ameya Chaudhari, and Jacob A. Abraham
Computer Engineering Research Center

The University of Texas at Austin, Austin, Texas, USA 78712
Email: {jypark, ameyac, jaa}@cerc.utexas.edu

Abstract—In the past few years, many techniques have been introduced
which try to utilize excessive timing margins of a processor. However, these
techniques have limitations due to one of the following reasons: first, they
are not suitable for high-performance processor designs due to the power
and design overhead they impose; second, they are not accurate enough to
effectively exploit the timing margins, requiring substantial safety margin to
guarantee correct operation of the processor. In this paper, we introduce an
alternative, more effective technique that is suitable for high-performance
processor designs, in which a processor predicts timing errors in the critical
paths and undertakes preventive steps in order to avoid the errors in the event
that the timing margins fall below a critical level. This technique allows a
processor to exploit timing margins, while only requiring the minimum safety
margin. Our simulation results show that proposed idea results in 12% and
6% improvement in energy and Energy-Delay Product (EDP), respectively,
over a Razor-based speculative method.

I. INTRODUCTION

Today’s processors have to operate in various operating conditions.
In order to ensure correct operation even in the worst-case combination
of the conditions, the timing margins of modern processors have to be
increased significantly. Therefore, timing margins in modern processors
occupy a significant fraction of the clock cycle period. However, the
probability of occurrence of the worst-case condition is extremely low.
Since most processors, most of the time, operate under normal operating
conditions, the worst-case margins incorporated in processor design
impose energy and performance penalties on the processor.

In order to utilize these excessive timing margins and improve the
processor’s Energy-Delay Product (EDP), a metric used to measure
energy consumption for a given performance, a number of run-time slack
monitoring techniques have been proposed. A class of these techniques
monitors the behaviors of critical path replicas [5-8] to predict the timing
slack in the processor critical paths. Another popular class of techniques
monitors delay changes in the actual critical paths using circuit-level
speculative double-sampling [1-4].

However, these two types of recent techniques have a few limitations.
The methods which replicate critical paths require large safety margins,
as it is not possible to design critical path replicas that exactly replicate
the delay behaviors of actual critical paths. The speculative methods
are not suitable for high-performance processor designs because the
performance overhead due to the speculative operation and the required
architectural modifications offset the energy benefit obtained by reducing
the timing margins.

In this paper, we propose an alternative, more effective timing slack
reduction technique that is suitable for high-performance processor
designs. In our technique, we use a new sequential circuit to pre-sample
the output of the critical path and estimate the timing slack in the path.
The pre-sampling operation enables our technique to operate in a non-
speculative fashion, reducing the timing margins to a minimum.

II. RELATED RESEARCH

Some of the popular techniques employed for minimizing timing
margins use critical path replicas [5-8]. As the name indicates, instead
of monitoring timing slack in the processor’s actual critical paths, these
methods monitor the slack in critical path replicas. Fig. 1 (a) shows
a block diagram of TEAtime [5], an example of the methods that use
critical path replicas. These techniques have an advantage of lower area

overhead as they need only a few critical path replica blocks to track
a large number of timing critical paths. The critical path replica blocks
are placed at various locations in the processor die to account for the
within-die (WID) variations. In addition, these techniques do not require
architectural modifications to the processor designs such as circuit-level
speculation techniques do, which we will explain in detail later.

In order to achieve a better EDP for the processor, more accurate
replica designs are required for these methods. The path delays estimated
by the critical path replicas are not always perfect and hence these
techniques require a large safety margin. With variations getting worse
with each new process technology, the safety margin has to be increased
for the newer generations of fabrication processes, which is the main
drawback of this technique.

Another popular technique to detect and minimize the timing slack is
that of using a speculative method based on double-sampling [1-4]. A
famous example of these techniques, a Razor FF (RFF) [2], is depicted
in Fig. 1 (b). This method uses a duplicated sequential circuit, which is
composed of a main FF and a shadow latch, and places it in the actual
critical path in order to capture its output. In the event that the latched
data in the main FF and that in the shadow latch do not match, i.e., the
case when a speculative operation fails, the processor re-computes the
failed instruction with the data from the shadow latch. This speculative
technique enables the processor to eliminate all of the timing margins.

Despite its ability to accurately monitor the critical path delay and
minimize the timing margins, the speculative method has not been widely
used for high-performance processor designs. One of the major reasons
for this is that high-performance processors usually have a large number
of critical paths. The same number of the duplicated sequential circuits
needs to be added to the processor to monitor all these critical paths.
This increases the processor power consumption due to the increased
power of the clock network as well as the storage elements themselves.
It also requires major architectural changes to the processor design.
Wherever the output of a logic path is being written to a memory
block, a non-speculative stabilizing pipeline stage (ST) needs to be
added. This additional pipeline stage imposes latency overhead, and
of much more concern, a significant power overhead on the processor.
Fig. 2 describes the processor pipeline modification that is needed for
a speculative based processor design. Since modern high-performance
processors adopt architecture-level speculative operations and out-of-
order execution techniques that require additional memory arrays such
as BTB, BHB, ROB, ISSUE-Q, this speculative method requires a
number of additional stabilizing stages to be added before each memory
write. Another overhead posed by the circuit-level speculative technique
is additional buffers inserted to prevent hold time violations in the
speculative clocking paths, which are called short path violations.

An aging prediction technique [10] uses a clocking concept similar to
ours, which double-samples data non-speculatively. The aging detection
operation is performed based on a duplicated sequential circuit that is
composed of two FFs: a main FF and an additional FF that is used as
an aging monitor. The additional FF samples the output of a path prior
to the main FF due to an aging margin in its data path. This circuit
compares the two captured data values in order to check if the aging
effects of the path are severe enough to cause a real circuit failure. Even

978-3-9815370-0-0/DATE13/ c©2013 EDAA



Error

FF

QMUX

D

CLK

Latch
Shadow

Error

Q_D

Q_D

(b)

(a)

FF FF

CLK

ErrorCritical Path ReplicaQ
_

D

CLK_D

Fig. 1: Two major margin elimination techniques: (a) The critical
path replica based (TEAtime [5]), (b) The circuit-level speculative
operation based (Razor FF [2])

IF

P
C

Error

(a)

R
FF

R
FF

R
FF

R
FF FF

ID EX MEM
ST

WB

Error Error Error

(b)

IF

P
C

FF FF FF FF

ID EX MEM WB

Fig. 2: (a) An original pipeline configuration, (b) A modified pipeline
configuration for circuit-level speculative operation (Razor FF [2])
though our proposed circuit has a similar circuit configuration to this
aging-aware FF, our idea differs from this as our fundamental idea is
built based on adaptive frequency scaling so as to exploit timing slack.
In addition, while this approach uses fixed design-time specified margins,
we extend the concept to include variable delays, which enables it to be
applied for the energy reduction techniques.

III. DESIGN CONCEPT

In this section, we introduce a technique that has the accuracy of
in-path delay monitors, like those used in the circuit-level speculative
double-sampling, and that is suitable for high-performance processor
designs, like the critical path replicating method. The key concept of
our technique is sampling the outputs of critical paths prior to normal
sampling, which is called non-speculative double-sampling. Fig. 3 shows
the conceptual block diagram of a non-speculative double-sampling FF
and a timing diagram that is based on it. Here, CLK (clock) signal is
generated from CLK P (the pre-sampling clock) signal with a ∆ (the
safety margin) delay. Since, due to the safety margin, the timing error
rate of FF A is almost zero, this allows us to operate a processor in
a non-speculative fashion. The frequency can be increased until FF B

encounters an error during run-time. When the two outputs of the FFs
are identical, the processor will increase the clock frequency in order to
utilize any excessive timing slack. On the other hand, when the outputs
of the two FFs are different, the processor should decrease the clock
frequency in order to ensure its correct operation. This process makes
the processor operate reliably at the maximum possible frequency.

Fig. 4 (a) illustrates our non-speculative double-sampling FF, com-
posed of a main FF and a shadow latch that performs pre-sampling
operations. Similar to the speculative double-sampling technique, we
use our duplicated sequential circuit in the same way as in-path delay
monitors. While the speculative approach uses two clocks, CLK (clock)
and CLK D (the delayed clock), which trails CLK by a delay of ∆ (the

T

CLK

Critical Path DelayD

(b)
CLK

CLK_P

Error

A 
QD

CLK_P

(a)

Q_PB

CLK

Fig. 3: (a) A conceptual model of pre-sampling FF, (b) A timing
diagram

(b)

Error

FF

QD

CLK

Latch
Shadow

(a)

Select

MUX

D

Select

Delay Element

D_D

D_D

Q_D

A series of inverters

Fig. 4: (a) Our non-speculative double-sampling FF, (b) A Delay
Element block
safety margin), our scheme uses a single phase clock. Since adding this
delay on the clock path adds skew to the clock and requires additional
design effort as well as a great deal of power consumption by the clock
networks, we add the delay on the data path of the shadow latch instead,
in order to design the pre-sampling function in our single phase clocking
system.

We use tunable delay for the Delay Element so it can provide different
safety margins for different operating points. Fig. 4 (b) shows a block
diagram of our tunable delay, the Delay Element block. Since the tunable
delay on the shadow-latch has a lower activity factor, this leads to a
lower power overhead for a processor when compared to the speculative
approaches that use delayed clocks.

However, the clock frequency of the non-speculative based processor
is lower than that of the speculative based one, as it must operate with
the safety margin. Fig. 5 illustrates how the maximum clock frequency is
determined for two different techniques. Here we can see that the clock

T

CLK

CLK_D

Critical Path DelayD

CLK

T

CLK

Critical Path DelayD

Critical Path DelayD_D

(a)

(b)
CLK

Fig. 5: The maximum clock frequency of (a) the speculative based
processor, (b) the non-speculative based processor



CLK

D

D_D

Q

Q_D

Error

Safe Unsafe Safe Safe

Tdq

Tcq

Txor

Tcq Tcq

Tcq

Tcq
Tcq

Tdq

Txor TxorTxor

Fig. 6: Non-speculative double-sampling FF timing diagram
cycle time, TCLK , of the non-speculative technique exceeds TCLK of
the speculative technique by ∆.

Fig. 6 shows a timing diagram of the non-speculative double-sampling
operations. The D signal path shows the timing diagram for the input
port of the main FF. D D is a delayed version of the D signal and is the
input of the shadow latch. Q and Q D are the outputs of the main FF
and the shadow latch, respectively. The error, which is computed by the
XOR operation of the Q and Q D signals, is sampled at every negative
clock edge in order to detect any timing violation in the shadow latch.
We can see that timing violation of the shadow latch is detected when
different Q and Q D signals are captured at the same rising clock edge
as shown in the second case of Fig. 6.

TABLE I compares our non-speculative double-sampling technique
with the two previously introduced techniques. Here, we can see that the
methods that use critical path replicas are suitable for high-performance
processor designs but require a large safety margin due to their inherent
inaccuracy. While the speculative double-sampling methods do not
require any safety margin, they are somewhat difficult to use in high-
performance processors. On the other hand, our non-speculative method
is quite attractive with respect to almost all of the aspects noted in
TABLE I except for the need for a small safety margin.

IV. SIMULATION AND EVALUATION

In order to verify the effectiveness of our non-speculative technique,
in this section we compare the energy consumption and EDP of our non-
speculative based processor with those of the speculative based processor
that is based on Razor FFs.

A. RT-level and circuit-level simulations

We implemented the speculative as well as the non-speculative tech-
nique in the 5-stage ARM processor design, which is our design base.
First, we synthesized the design in order to generate a base netlist using

TABLE I: Comparison between previous research and our non-
speculative double-sampling technique

(a) (b) (c)
Critical Path Replicas Speculative Non-Speculative

(CPRs) Double-Sampling Double-Sampling
Architectural Not required Required Not required
Modification
Performance No Yes No

Penalty
Short Paths No Yes No
Constraints

Critical Path Inaccurate Accurate Accurate
Tracking Accuracy

Additional CPMs CPMs + Recomputing + CPMs
Power Overhead Additional pipes +

Buffers
Area Overhead Several CPMs CPMs + Buffers + CPMs

Additional FFs
for Stabilize pipes

Critical Path Monitor Big Small Small
(CPM) Size

CPM Design Effort High Low Low
(CPRs design)

Timing Margin Large safety margin No Small safety margin
Suitability for Yes No Yes

High-Performance
Processor Designs

Fig. 7: A distribution of the processor logic paths as a percentage
of the clock cycle time

Fig. 8: Power consumptions of the speculative and non-speculative
based processors at each operating point (SS, 125◦C)
a IBM 45nm slow-corner process library. We then carried out several
iterations of P&R (Place and Route) steps in order to optimize the
synthesis result. The optimization steps led to the emergence of a large
number of critical paths in the processor.

We estimated the delays along all of the timing paths in the processors
and determined the potential critical paths by performing post-layout
static timing analysis. Fig. 7 illustrates a distribution of the timing path
delays as a percentage of the clock cycle time at each operating point.
Here, the frequency value at each operating point does not include timing
margins. For these critical paths, we replaced the original FFs in the
netlist with each type of the target FFs: the Razor FFs (for a speculative
based processor) and our non-speculative FFs (for a non-speculative
based processor), respectively.

Processor power values were obtained and averaged from post-layout
simulation using PrimeTime-PX. Fig. 8 shows the dynamic and static
power of the speculative and non-speculative based processor in each
operating point described in Fig. 7. The power consumption of the
speculative based processor is slightly higher than that of the non-
speculative one due to its additional pipeline stage and the high activity
factor of the clock network.

In order to measure the path delay variations, we extracted SPICE
netlists for the timing critical paths and performed Monte-Carlo simu-
lations. The delay variation data obtained from the Monte-Carlo simu-
lations were used to decide the error probability and value of ∆ (the
safety margin), which will be added to the clock cycle time of the non-
speculative based processor. According to our Monte-Carlo simulation
results, the highest 10-20% of the timing paths should be considered to
be the potential critical paths.

B. Architectural simulations

In order to implement both the speculative based as well as the non-
speculative based processors, we modified the simplescalar simulator
[9]. For the speculative based processor simulator, we added an extra



pipeline stage called ’pre-commit’. This stage is non-speculative and is
used to stabilize the data before committing it to the processor’s memory.
This simulator was modified to inject faults in the instruction execution.
When an error was triggered, the processor pipeline was flushed and the
program counter was rolled back to the first instruction in the commit
stage. The simulator for the non-speculative based processor was similar
to that of the speculative based one, except it did not have the additional
pipeline stage and the mechanism to roll back.

In order to incorporate the effect of random timing violations, we in-
jected random timing errors during the simulations. The error probability
was computed using equations (1) and (2). As noted in the circuit-level
simulation section, the mean and the variance parameters of the path
delay variations were obtained from Monte-Carlo simulations.

Perr(t) = 1− φ
(
t− µ
σ

)
=

1

2

[
1− erf

(
t− µ
σ
√
2

)]
(1)

erf(x) =
2
√
π

∫ x

−∞
et

2
dt (2)

In equation (1), Perr(t) is the probability of any critical path delay
exceeding the value t. µ is the mean critical path delay, and σ is the
standard deviation of the delay. Thus, a FF that latches data t seconds
after the clock edge will have an error probability of Perr(t).

The error rate for the main FF, which operates speculatively in the
speculative based processor, was maintained at 0.04%. The error rate for
the shadow latch, which pre-samples data in the non-speculative based
processor, was also maintained at 0.04%. The safety margin between
the shadow latch and the main FF in both methods was fixed in such a
manner that, on average, the latching time for the main FF was the 6σ
delay point. This ensures an almost zero error probability with respect
to the operations of both processors. In addition, our simulation results
indicate a 0.16% IPC overhead for the speculative based processor. This
verifies the reported overhead in Razor [2].

In order to compare the two methods in the same condition, we applied
the same clock frequency control scheme to both cases. As discussed in
the previous section, the clock frequency of the non-speculative based
processor is lower than that of the speculative based processor since the
non-speculative technique requires a safety margin even if it is small.
We estimated the total run-time of the two processors for the “SHA”
Mibench benchmark program using frequency modulation. In order to
evaluate the system, rather than using random instruction streams, we
used a processor benchmark code with a sufficiently long run-time. The
total run-time was computed by adding the clock cycle periods for all
of the clock cycles. The clock period was incremented (or decremented)
in steps of 10ps to control the processor frequency, and thus, the error
rate.

C. Evaluation

TABLE II shows the energy consumption and EDP values obtained at
different operating points and the percentage benefit in using our non-

Voltage Temp Energy (x10−4J) / EDP (x10−5)
(V) (◦C) Speculative Non-Speculative % Improvement

0.7
25 5.97 / 5.31 5.34 / 5.19 10.48 / 2.44
75 5.99 / 5.36 5.36 / 5.23 10.52 / 2.47
125 5.36 / 5.99 5.23 / 5.36 10.52 / 2.47

0.8
25 7.07 / 4.81 6.27 / 4.57 11.39 / 5.04
75 7.15 / 4.92 6.34 / 4.68 11.35 / 4.97
125 7.11 / 4.87 6.30 / 4.63 11.35 / 4.96

0.9
25 8.45 / 4.67 7.40 / 4.35 12.47 / 6.97
75 8.51 / 4.74 7.45 / 4.40 12.52 / 7.09
125 8.57 / 4.81 7.50 / 4.47 12.52 / 7.08

1.0
25 9.58 / 4.56 8.27 / 4.14 13.64 / 9.15
75 9.65 / 4.64 8.30 / 4.63 13.56 / 8.98
125 9.72 / 4.71 8.41 / 4.29 13.44 / 8.73

TABLE II: Energy consumption and EDP of the speculative and
non-speculative based processors

Fig. 9: Percentage improvement in (a) energy consumption and (b)
EDP, over the Razor-based speculative technique
speculative technique over the speculative approach. As can be seen
from the results, the non-speculative based processor fared better than
the speculative based processor in terms of both energy and EDP. This
is because the power overhead for the speculative processor offsets its
benefit of short execution time due to higher operating frequency than
that of the non-speculative processor.

Our technique shows a 13.5% improvement in energy consumption
and 9% improvement in EDP at the high voltage operating points. On
average, our technique shows a 12% energy and 6% EDP improvement
across all operating points. As shown in the table, the improvement
is more pronounced at the higher voltage levels. As we go down to
lower voltages, the variability of the critical path delays increases and a
larger safety margin is needed to ensure a low system error rate. This
increases the processor execution time reducing the energy efficiency of
the processor.

Fig. 9 shows the percentage improvement in energy consumption and
EDP over the Razor-based speculative technique as a function of the
timing margin (in terms of path delay variance (σ)). As we increase
the timing margin, the execution time for the applications increases,
decreasing the percentage performance benefit of our technique. As
previously noted, the path delay variation occurs more often for the lower
voltages, leading to a faster drop in EDP for such cases.

V. CONCLUSIONS

In this paper, we have introduced a novel technique that utilizes a
processor’s excessive timing slack during run-time. Our double-sampling
technique enables the processor to execute in a non-speculative fashion
without requiring any modifications of the original processor architecture.
This in-path non-speculative approach provides high timing-error pre-
diction accuracy and is suitable for high-performance processor designs.
On average, when compared to a Razor-based speculative technique, this
technique results in 6% lower EDP and 12% lower energy consumption.

REFERENCES

[1] K. Bowman, et al., “Circuit Techniques for Dynamic Variation Tolerance,”
DAC, pp. 4-7, 2009.

[2] D. Ernst, et al., “Razor: A Low-Power Pipeline Based on Circuit-Level
Timing Speculation,” MICRO, pp. 7-18, 2003.

[3] D. Blaauw, et al., “Razor II: In Situ Error Detection and Correction for PVT
and SER Tolerance,” ISSCC, pp. 400-622, 2008.

[4] K. Bowman, et al., “Energy-Efficient and Metastability-Immune Resilient
Circuit for Dynamic Variation Tolerance,” JSSC, vol. 44, no. 1, pp. 49-63,
2009.

[5] A. K. Uht, “Uniprocessor Performance Enhancement Through Adaptive
Clock Frequency Control,” TC, vol. 54, no. 2, pp. 132-140, 2005.

[6] A. Drake, et al., “A Distributed Critical-Path Timing Monitor for a 65nm
High-Performance Microprocessor,” ISSCC, pp. 398-399, 2007.

[7] C. Lefurgy, et al., “Active management of timing guardband to save energy
in POWER7,” MICRO, pp. 1-11, 2011.

[8] J. Park, et al., “A Fast, Accurate and Simple Critical Path Monitor for
Improving Energy-Delay Product in DVS Systems,” ISLPED, pp. 391-396,
2011.

[9] T. Austin, et al., “SimpleScalar: An infrastructure for computer system
modeling,” TC, vol. 35, no. 2, pp. 59-67, 2005.

[10] M. Agarwal, et al., ”Optimized circuit failure prediction for aging: Practi-
cality and promise,” ITC, pp. 1-10, 2008.


