Phcenix: Reviving MLC Blocks as SLC
to Extend NAND Flash Devices Lifetime

Xavier Jimenez, David Novo and Paolo Ienne
Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences
CH-1015 Lausanne, Switzerland
Email: {xavierjimenez, david.novobruna, paolo.ienne} @epfl.ch

Abstract—On a Multi-Level Cell (MLC) flash memory, a
flash block that is becoming unreliable to store multiple bits
per cell can be “revived” by storing only a single bit per
cell. While the revived-block capacity is halved, its lifetime is
significantly extended without jeopardizing the stored data. We
present Pheenix, a technique that benefits from this feature to
extend a device lifetime, and we evaluate its potential through
detailed trace simulation on realistic benchmarks. Phenix shows
systematic lifetime extensions ranging from 3% up to 17%,
without extra memory requirements or performance loss.

I. INTRODUCTION

NAND flash technology features low cost, low energy, high
mobility and high performance, making it the storage media
of choice for handheld devices. However this technology
comes with its share of drawbacks; flash cells require to be
erased before being written (programmed). Furthermore, the
erase process is applied at a coarser granularity (blocks) than
the read and program accesses (pages), generally enforcing
impractical out-of-place updates. Lastly, and more importantly,
flash cells have a limited endurance: they experience high
stress during the program and erase processes, which degrades
them gradually and renders them eventually unreliable.

As continuous pressure is put on the technology to develop
memories with higher densities and, hence, a smaller cost
per bit, flash cells grow multi-bit. Nowadays, Multi-Level Cell
(MLC) technology, where a single flash cell is able to store
2 bits, is well established. Unfortunately, this increase in bit
density comes with lower performances and with a severe
hit in reliability, as programming and reading become more
complex [1]. In all practical applications, the severity of those
limitations is somehow mitigated by a software abstraction
layer, called Flash Translation Layer (FTL). An FTL translates
logical to physical addresses and provides a simpler interface,
hiding physical aspects and constraints of flash. It typically
deals with garbage collection and wear-leveling.

In this paper, we present Pheenix, a novel scheme to extend
current FTL that mitigate the degradation in lifetime of MLC
flash. We propose to keep on using worn-out MLC blocks
as SLC blocks. By “reviving” these blocks, which would be
normally considered as useless, we show that the lifetime of
current flash devices can be extended by up to 17%.

978-3-9815370-0-0/DATE13/(©2013 EDAA

II. REVIVING BAD BLOCKS

Flash memory technology degrades with use, and thus,
its endurance is typically expressed in Program/Erase (P/E)
cycles. Accordingly, flash memory devices are warranted to be
functional up to a certain number of such cycles. Programming
and reading a single bit in a cell is more reliable than
multiple bits. Thus, Single-Level Cell (SLC, 1 bit per cell) can
generally experience one and two order of magnitude more P/E
cycles than MLC (2 bits per cell) and TLC (3 bits per cell),
respectively [1].

Interestingly, a typical MLC can also be managed as SLC
by storing a single bit [1], [2]. Thereby, the MLC experiences
the performance, energy and endurance benefits of SLC tech-
nology at expenses of capacity. Throughout the rest of the
paper, this will be referred as the SLC-mode of an MLC.

When a cell becomes unreliable for MLC use, it can still
be used in SLC-mode for a significant amount of extra P/E
cycles. In this paper, we propose a method using this feature
to extend the lifetime of flash storage devices that relies on a
hybrid FTL.

A. Baseline Architecture: Hybrid FTLs

Hybrid-FTL architectures [3]-[7] combine page-level and
block-level mappings. The fine-grained page-level mapping
brings more flexibility but comes with a large mapping table
compared to the coarser block-level mapping. Thus, a hybrid
mapping balances both factors by dividing the flash memory
into two regions: a large data partition addressed at the block
level, and a small log-buffer partition addressed at the page
level. The purpose is to direct random writes to the log buffer
so that they can be written back to the data partition in order as
big chunks. Thereby, the garbage collection overhead can be
kept low for a reasonable mapping-table memory (e.g., SRAM,
DRAM) requirement.

Considering that a significant amount of writes are directed
to the small buffer partition, previous work [8]-[10] proposed
to build the buffer partition on SLC flash, which provides high
performance but poor density, and the larger data partition on
MLC of lower performance but higher density. As a result, the
flash device exhibits performances close to SLC (particularly
for random data accesses) while keeping the area efficiency of
MLC to a great extent.



Lifetime of the baseline device Lifetime with Phoenix

ESSSSSSSSY BSSS B |me,s::iate Ry N
ST ] N fstoad SN NN S
MINETEN[ o[

Bo—> ~ P>

Wear [] Unallocated

D D
[ Healthy blocks residual lifetime 1 Revived blocks residual lifetime

Fig. 1. Pheenix compared to the baseline architecture. Each architecture
starts with a data, a buffer and a free set of size Sp, 8p and B, respectively
and a bad set initially empty. While the baseline approach discards unreliable
blocks to the bad set, Phoenix revives them as SLC and uses them in the
buffer. Reviving a bad block extends its lifetime and reduces the stress on the
remaining healthy blocks. In the end, Pheenix will benefit SLC-mode lifetime,
while better exploiting the MLC lifetime.

Interestingly, similar benefits can also be achieved in storage
systems built only on MLC chips where the buffer partition
is managed in SLC-mode [2]. We consider this system as our
baseline architecture.

B. Reviving MLC Blocks in SLC-mode

Typical flash devices stop using a block whenever it perma-
nently fails or when it becomes unreliable by showing a bit
error rate too high to be handled by the implemented Error
Correcting Code (ECC). For this reason, flash manufacturers
suggest to reserve at least 2% of the total capacity [11] for
free (or spare) blocks to replace the “bad” ones. Such a device
will die when running out of free blocks.

While a permanent failure prevents any further use of a
block, we propose to revive the unreliable blocks with high
error rates by using them in SLC-mode. Revived blocks will be
allocated to the buffer partition, where blocks typically take a
greater amount of incoming writes than data blocks. Thereby,
revived blocks are not only sparing the use of free blocks, they
also reduce the stress on remaining healthy blocks.

Revived blocks can be managed in a very similar way to
typical bad block management [11]. A list of bad block is
generally maintained in some reserved area of the flash device
and can easily be extended with a flag to differentiate bad
blocks from revived one, at practically no cost. A similar
flag could redundantly reside in the FTL memory for every
block allocated to the buffer or free set to quickly differentiate
an healthy block from a revived one, and thus, avoiding any
identification-time overhead.

Fig. 1 illustrates the difference between a typical baseline
architecture and the proposed Pheenix technique during their
lifetime. Both initially allocates four different partitions: a data
partition of size fp, a buffer partition of size Sg managed in
SLC-mode, a set of Sr free blocks, and a set of bad blocks
that we assume empty at the beginning of the device life.
Throughout its lifetime, the baseline architecture will regularly
identify blocks as broken or unreliable and move them to the
bad set, gradually emptying the free set. When the device runs
out of free blocks, it is considered dead. This is illustrated in
Fig. 1 by the last state of the baseline example (bottom left).

When using Pheenix, the buffer and the free set can now
allocate both revived and healthy blocks, while the data

partition is still restricted to healthy blocks. Blocks that are
detected as unreliable for MLC are labeled as revived and are
kept in the free set. (Permanently broken blocks are directly
moved to the bad set.) Fig. 1 shows how healthy blocks get
progressively replaced by revived blocks in the buffer. Now,
less healthy blocks are required for the device to stay alive
which results in a longer device lifetime.

With Pheenix, the buffer would ideally allocate only revived
blocks maintaining the device alive as long as enough healthy
blocks are available for the data partition. Whenever the buffer
needs to allocate a new block from the free set, it will give
priority to the revived blocks in order to minimize the stress on
the healthy blocks. Thus, a block will only be dropped into the
bad set when it is considered to be unreliable in SLC-mode.
In the next section, we discuss in detail the models used to
evaluate quantitatively the lifetime improvements that can be
expected from Phoenix.

III. DEVICE DEGRADATION MODELS

We measure empirically the block endurance distribution
from real NAND flash chips. Based on this data, we propose
two models to describe and confront the lifetime of a baseline
device against Phcenix.

A. Block Endurance Distribution

In order to measure how P/E cycles affect the different
blocks in the device, we run a synthetic test on a set of
50 blocks for a couple of MLC NAND flash chips. The
test repeats the following cycle: each block is erased and
then programmed with random data, which is read back and
checked for correctness. The test monitors the evolution of
erroneous bits per page for several thousands of cycles.

A particular block is considered to be unreliable whenever a
given error threshold is reached in any of its pages. The actual
threshold will depend on the ECC capabilities of a particular
device. A stronger ECC extends significantly the lifetime of a
block but requires more complex hardware, increases access
latency and adds some storage overhead. Accordingly, Fig. 2
plots the block endurance cumulative distribution measured in
one of our chips for 4- and 8-bit error thresholds. The chip
is organized in blocks made of 128 pages of 8 kBytes. The
distribution curves for our other NAND flash chips vary mainly
in the average endurance, but keeps the same distribution
shape.

We fit the measured endurance distribution with the follow-
ing inverse hyperbolic tangent function:

f(p)=a-artanh (2-p—1)+b for O0<p<1l, (1)
with f(p) being the largest endurance in P/E cycles within
the p weakest blocks, and a and b being the parameters of the
distribution. Parameter b corresponds to the average endurance,
while a is function of the variance. We provide the parameter
set for each fitted curve in Fig. 2.



10000 T T T T
8 bits
4 bits

g 8000 a=637 7]

s b=8062

W 6000 |- -

o

£

@

2 4000

©

5

o

[ =4

w2000

Block set

Fig. 2. Block endurance measured in a real NAND flash chip. We report
the endurance of a set of blocks measured from a real NAND flash chip,
assuming four and eight faulty bits as error thresholds. The blocks are ordered
from the smallest endurance (on the left) to the largest (extreme right). Each
solid line is the model function of Equation 1 fitted to the measured data
(markers). For each, we provide the corresponding parameters a and b.

B. Analytical Model of Baseline Device Lifetime

Next, we present an analytical model to compute the
expected lifetime of a typical flash device given its block
endurance distribution and it partitions size. We refer to
lifetime as the total amount of data that can be written in
a block or a device before wearing it out. In a previous
work [2], we studied the MLC- and SLC-mode mixed usage
and observed empirically that programming a block once in
MLC or twice in SLC-mode applies practically the same wear
to the block. Conservatively, we assume an equal wear per
written bit for SLC- and MLC-mode.

Let’s p; be the maximum ratio of blocks that can wear out
for a flash device before it dies. The integral of f(p) from O to
pt gives us the lifetime exploited by weakest blocks, while the
remaining healthy blocks are limited to f(p;) cycles. Hence,
the MLC lifetime component Lyr,c of a flash device is

Larc(pd) = [F(p)lo" + f(pt) - (1 — pr). 2)

This lifetime is illustrated in Fig. 3 by the surface of the dark
area. The model assumes a perfect wear-leveling algorithm
that evens the P/E counts of every healthy blocks.

The baseline device reaches its lifetime limit when PSg
blocks wear out. As its lifetime is limited to the MLC lifetime,
it is equal to Lyc with p, = Br/f, and with § being the
total amount of block in the device.

C. Analytical Upper Bound of Pheenix Device Lifetime

In order to evaluate the lifetime extension brought by
Pheenix, we must describe a relationship between the lifetime
of MLC and SLC-mode. We use a parameter y such that
v - Im = lg, with ly; and lg being the lifetime of MLC and
SLC-mode, respectively. While [y is provided in manufacturer
datasheets, lg is typically not. However, Im and Shin [9]
relate the endurance for a specific flash device that explicitly
provides SLC and MLC modes. Specifically, the device blocks
could sustain either 10K MLC-erase cycles or S0K SLC-erase
cycles. Therefore, a block in SLC-mode could be written 2.5x

3 T T T
MLC endurance
S : ¥ Maximum SLC-mode T
3 ' lifetime exploitable
2 1
o] 2 - ! dashed box —
.g /—~/ ( )
5 i Exploited SLC-mode _ -
° 5F /_L/ lifetime (light area) Exploited MLC lifetime 7
N : (dark aru
S H
E 1F 1 / —
S K"!—k
z 1
0.5 : E
0 ; 1 1 1 1
0o p 02 0.4 06 0.8 1

Block set

Fig. 3. Lifetime breakdown. The solid line shows the block MLC endurance
normalized to the average. The dark region represents the exploited MLC
lifetime given a maximum p¢ bad blocks. The light region is an example of
the additional SLC-mode lifetime that could be exploited by Pheenix. Using
the maximum SLC-mode lifetime delimited by the dashed box is challenging,
because, as more blocks get revived, the time to exploit them gets shorter.

more than in MLC. Thereby, for our experiments, we assume
~ to be 2.5.

While the baseline lifetime is bounded by p; = Br/f,
Pheenix extends this limit with p, = (8¢ + 8g)/3. Further-
more, Pheenix revives the weakest p; blocks, which can now
expect a maximum endurance of . Hence, the maximum
Pheenix lifetime corresponds to the union of the dark region
with the dashed box from Fig. 3 and is equal to

LPmax(pt) =7 Pt + f(pt) ' (1 - pt) (3)

As revived blocks are exclusively allocated to the buffer, when
it is underutilized, the extra lifetime provided by the SLC-
mode cannot be exploited. We define another bound to the
maximal reviving lifetime, Lpp,¢(cv, pt), that is function of a
ratio o of writes to the buffer with

Lyvinc(pr)
l—a

Lpput (o, pr) = €]

This function returns the MLC lifetime plus the total amount
of writes to the buffer, which corresponds to the maximum
SLC-mode lifetime exploitable. Combined with Lp.x, We
get Lppound(@, pt), the global upper bound, which is the
minimum of both functions,

LPbound (O[, Pt) = min(LPmax (Pt)a LPbuf (CK, Pt)) (5)

This upper bound is plotted in Fig. 4 for two different device
configurations that we will discuss later. In practice, this bound
is very unlikely to be reached: it disregards any sequentiality
constraint in the accesses into the buffer and data partitions.
Thus, in the next section we produce the expected lifetime
gain from simulations.

IV. RESULTS

In this section, we show how Pheenix behaves on a simulated
FTL executing realistic application traces. In order to evaluate
Pheenix, we implement ROSE [7], a state-of-the-art hybrid
FTL, on a flash simulator that we developed. For the simulator



T T T T T T T
upper bound
Pheenix
baseline — —
12 | -

[}

£

2

811 =

N

©

£

2 fin2 alix fin2 alix

1 - = = - - - =4 F = = = - - R —
buffer: 2% buffer: 5%
free: 2% free: 5%
0.9 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1
Write ratio to the buffer Write ratio to the buffer
Fig. 4. Lifetime extension using Phenix for two configurations. The

configuration for the left figure uses a buffer and a free set of 2% the total
capacity each, while the right one 5% each. The lifetime is normalized to the
baseline. The upper bound represents the maximal lifetime that could possibly
be exploited by Pheenix. Although the efficiency of Pheenix depends on the
amount of writes directed to the buffer, it is systematically larger.

input, we use two traces, namely Financial 2 [12] and Alix
8d [2], which show a good balance of large sequential writes
with small updates. At the beginning of the simulation, the
endurance of every block is randomly set according to the
distribution of Equation 1, with parameters a = 637 and
b = 8062. We repetitively input the same trace until the
simulated flash device eventually dies. We generate results for
two different buffer/free set size (2%/2% and 5%/5%) with
and without Pheenix.

Pheenix does not hamper the performance of the FTL,
actually it reduces slightly the wear-leveling overhead when
approaching the end of the device lifetime, which increases
marginally the performance by less than 1%. From our simu-
lations output, we report the ratio of writes to the buffer and the
average amount of time that each block was programmed. The
generated points are plotted in Fig. 4, while the curves were
generated from simplified simulations assuming a constant
ratio of write to the buffer. We systematically measured an
error lower than 0.1% between the full and simple simulation.
Therefore, for a specific application or FTL, if the average
buffer write ratio is known, we can quickly get a good estimate
of the lifetime outcome.

We illustrate the final state of the simulated device config-
ured as 5%/5% after executing the Alix 8d trace in Fig. 3.
The surface of the light grey area on the left represents the
total SLC-mode lifetime that could be exploited by Phcenix,
in this case roughly half of the full potential translating in a
12% improvement. While the current improvement might be
humble, we know that more variability in the block endurance
amplifies the potential of our scheme, which will inevitably
be happening with the future technology nodes.

V. PREVIOUS WORK

So far, most of the efforts invested to extend the lifetime
focus on reducing garbage collection overhead or improving
the wear-leveling techniques. Each of those techniques that
uses an SLC-mode buffer and MLC data can benefit from our
technique.

To the best of our knowledge, the only proposal that extends
flash lifetime reusing bad blocks is provided by Wang and
Wong [13]. The authors made the observation that when a
block is considered as bad, most of its pages are still healthy.
They propose to combine the healthy pages of a set of bad
blocks together to form a smaller set of virtually healthy
blocks. The lifetime of the device is then extended for a
reasonable cost, although it not clear by how much.

VI. CONCLUSION

NAND flash cell storage reliability becomes challenging
as cells get smaller and more bits are written to them. We
presented Pheenix, a technique that revives bad blocks using
the fact that MLC blocks becoming unreliable can still reliably
be used to store a single bit per cell. This technique does
not cause any direct or indirect extra cost: interestingly, it
even reduces slightly the wear-leveling overhead. Phoenix can
easily be implemented on top of any existing hybrid FTL and
does not require any additional resource—hence, any lifetime
benefit comes for free. Using actual flash chips characteristics,
we showed up to 17% lifetime extension and we are convinced
that future chip technology with higher variance in the block
endurance will significantly amplify the advantages of the
presented contribution.

REFERENCES

[1] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of NAND
flash memory,” in USENIX conf. on File and Storage Technologies, San
Jose, CA, Feb. 2012.

[2] X.Jimenez, D. Novo, and P. Ienne, “Software controlled cell bit-density
to improve NAND flash lifetime,” in Design Automation Conf., San
Francisco, California, USA, Jun. 2012.

[3] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-
efficient flash translation layer for CompactFlash systems,” IEEE Trans.
Consumer Electronics, vol. 48, no. 2, pp. 36675, May 2002.

[4] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song,
“A log buffer-based flash translation layer using fully-associative sector
translation,” ACM Trans. Embedded Computing Systems, vol. 6, no. 3,
Jul. 2007.

[5] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: Locality-aware sector
translation for NAND flash memory-based storage systems,” ACM
SIGOPS Operating Systems Review, vol. 42, no. 6, pp. 36-42, Oct.
2008.

[6] H. Cho, D. Shin, and Y. I. Eom, “KAST: K-associative sector translation
for NAND flash memory in real-time systems,” in Design Automation
and Test in Europe, Nice, France, Apr. 2009, pp. 507-12.

[7]1 M.-L. Chiao and D.-W. Chang, “ROSE: A novel flash translation layer
for NAND flash memory based on hybrid address translation,” IEEE
Trans. Computers, vol. 60, no. 6, pp. 753—66, Jun. 2011.

[8] L.-P. Chang, “A hybrid approach to NAND-flash-based solid-state disks,”
IEEE Trans. Computers, vol. 59, no. 10, pp. 1337-49, Oct. 2010.

[9] S. Im and D. Shin, “ComboFTL: Improving performance and lifespan
of MLC flash memory using SLC flash buffer,” Journal of Systems
Architecture, vol. 56, no. 12, pp. 641-53, Dec. 2010.

[10] J.-W. Park, S.-H. Park, C. C. Weems, and S.-D. Kim, “A hybrid flash
translation layer design for SLC-MLC flash memory based multibank
solid state disk,” Microprocessors & Microsystems, vol. 35, no. 1, pp.
48-59, Feb. 2011.

Micron. (2010, Oct.) Bad block management in NAND flash memory.
[Online]. Available: http://www.micron.com/products/support/technical-
notes/

K. Bates and B. McNutt. (2007, Jun.) OLTP application I/O. [Online].
Available: http://traces.cs.umass.edu/index.php/Storage/Storage

C. Wang and W.-F. Wong, “Extending the lifetime of NAND flash
memory by salvaging bad blocks,” in Design Automation and Test in
Europe, Dresden, Germany, Mar. 2012, pp. 260-63.

[11]

[12]

[13]



