
Resource-Constrained High-Level Datapath Optimization in
ASIP Design

Yuankai Chen and Hai Zhou
Electrical Engineering and Computer Science, Northwestern University, U.S.A.

Abstract—In this work, we study the problem of optimizing the data-
path under resource constraint in the high-level synthesis of Application-
Specific Instruction Processor (ASIP). We propose a two-level dynamic
programming (DP) based heuristic algorithm. At the inner level of the
proposed algorithm, the instructions are sorted in topological order, and
then a DP algorithm is applied to optimize the topological order of the
datapath. At the outer level, the space of the topological order of each
instruction is explored to iteratively improve the solution. Compared with
an optimal brutal-force algorithm, the proposed algorithm achieves near-
optimal solution, with only 3% more performance overhead on average
but significant reduction in runtime. Compared with a greedy algorithm
which replaces the DP inner level with a greedy heuristic approach, the
proposed algorithm achieves 48% reduction in performance overhead.

I. INTRODUCTION
In recent years, the ever-increasing cost of designing and manufac-

turing System-on-Chip (SOC) drives the industry to look for alterna-
tive ways that are able to achieve higher volume, if the cost cannot be
reduced [1]. Application-Specific Instruction-Set Processors (ASIPs)
have emerged to serve this need. These ASIPs are processors that
have customized instruction set and microarchitecture, so they can
fit a wider range of applications than traditional Application-Specific
Integrated Circuit (ASIC), while delivering better performance than
general purpose processors.

Presently, high-level synthesis tools such as Architecture-Driven
Languages (ADLs) are widely used to specify and synthesize
ASIPs [2][3][4][5]. The architecture can be fully tailored to the
aimed application domain. Such tools usually require the user to
input both structural and behavioral specifications. Structural spec-
ification defines the microarchitectural constraints of the processor
which usually includes the pipeline structure, register file interface,
memory interface and available functional units for synthesis. In
the behavioral specification, the user constructs the datapath of the
processor explicitly or implicitly by specifying how instructions are
implemented under those microarchitectural constraints.

Nowadays the performance is not the only synthesis objective.
Efficent techniques for exploring the design space are desired to
balance multiple system metrics such as resource usage, area, and
power consumption simultaneously [6][7][8]. Given a budget of
functional units, there are a great number of ways to construct the
datapath. Unlike general purpose processors, instruction set for ASIP
usually includes custom instructions that are designed for complex
computations. An example in [9] shows that a custom instruction
requires three multipliers and three adders. A careless design of
the datapath will directly affect the efficiency of the instructions.
Therefore the trade-off between resource usage and performance
should be optimized in the datapath synthesis.

It is worth mentioning that in some ADLs such as LISA [4] and
EXPRESSION [5], the synthesizer instantiates a new functional unit
wherever it is used in instruction specification. It eases the user from
the datapath design, but it results in significant resource overhead.
To address this problem, some work proposed resource sharing tech-
niques to combine the same functional units from different instruction
operations [6][10][11]. However in this design methodology, the
designers have little control over the resource usage. If the final
resource usage exceeds the budget, they have to go back to the very
first stage to re-design instruction set.

In this work, we study the problem of optimizing the datapath

978-3-9815370-0-0/DATE13/©2013 EDAA

of a pipelined ASIP for a given custom instruction set and a set
of functional units. We propose a two-level dynamic programming
based heuristic algorithm that achieves near-optimal solution with
short runtime.

II. PRELIMINARY AND MOTIVATION EXAMPLE
A custom instruction set for ASIP consists of base instructions

(BIs) and custom instructions (CIs). The BIs are usually simple
instructions adopted from state-of-art ISA. In the context of this work,
we assume that the BIs are RISC-like, and can always be scheduled
with one µop. The CIs are additional complex instructions that are
generated from the targeted applications to perform special compu-
tation. The CIs are represented by Dataflow Graphs (DFGs), where
each vertex represents a basic functional operation and each edge
represents the data dependency between the connected operations.

With resource constraint, CIs may need to be scheduled into
a series of µops. We assume that the synthesized datapath will
be divided into a pipeline with an appropriate clock frequency in
subsequent design steps. For simplicity, we do not consider the impact
of data hazard in the pipeline. Ideally in every clock cycle, there is one
µop completing its last pipeline stage. Therefore the total number of
µops to execute an application reflects the runtime of the application.

The following example shows that different datapaths result in
different performances, under the same resource constraint and the
same instruction set. Consider the custom instruction 1 (CI1) in
Fig. 1(a), the operations in this instruction are 2 floating point (FP)
multiplications and 2 FP additions. For resource constraint with only
2 FP multipliers and 1 FP adder, Fig. 1(c) and (d) show two possible
datapaths, DP1 and DP2. To map CI1 to DP1, optimally 2 µops are
needed. In the first µop, fadd 1 in CI1 is mapped to fadd in DP1, and
the result of the fadd is then stored in a register. In the second µop,
fadd 2, fmul 1, and fmul 2 in CI1 are mapped to fadd, fmul 1, and
fmul 2 in DP1, respectively, to complete the instruction. Note also
that mapping CI1 to DP2 needs 3 µops, mapping CI2 (Fig. 1(b)) to
DP1 needs 2 µops and mapping CI2 to DP2 needs only 1 µop.

(a) (b)

(c) (d)
Fig. 1. (a) Custom instruction 1 (CI1). (b) Custom instruction 2 (CI2). (c)
Datapath 1 (DP1). (d) Datapath 2 (DP2).



Considering both instructions simultaneously, suppose in an appli-
cation, CI1 is executed 30 times and CI2 is executed 50 times. If
DP1 is adopted, the total number of µops for executing CI1 and CI2
is: 2 × 30 + 2 × 50 = 160. If DP2 is adopted, the total number of
µops is: 3× 30+1× 50 = 140. Thus, DP2 is a better datapath than
DP1.

III. PROBLEM FORMULATION
The input to our problem consists of a set of functional unit

OS = {Oi|i = 1 . . .m}, each of qi units, and a set of custom
instructions IS = {Ij |j = 1 . . . n}, each of frequency wj in the
applications. Each instruction Ij is modeled as a DAG (Vj , Ej),
where each vertex vjt ∈ Vj represents an operation and the type of
the operation is defined by a mapping function mfj(·) : Vj → OS,
and each edge e(vjt, vjk) ∈ Ej represents data dependency between
the two operations, i.e., the operation of vjk cannot start until vjt
finishes.

Datapath is a DAG D = (VD, ED) where each vertex vDt ∈ VD

represents an instance of functional unit with type mapping function
mfD(·) : VD → OS, and each edge e(vDt, vDk) ∈ ED represents a
physical interconnection in the datapath between the two functional
units. The datapath should meet the resource constraint: the number
of vertices that are mapped to every functional unit Oi should not
exceed qi.

To schedule an instruction Ij in the datapath, each operation in
the instruction must be mapped to a functional unit in the datapath,
which is expressed by a mapping function gj(·) : Vj → VD . For
each mapped pair gj(vjt) = vDt′ , the types of these two operations
must be equal, i.e., mfj(vjt) = mfD(vDt′).

Consider an edge e(vjt, vjk) in the instruction graph Ej , if there
exists an edge from gj(vjt) to gj(vjk) in the datapath, the computa-
tion result of vjt can reach vjk in the same µop. Otherwise, at least
two µops are needed. We define performance overhead PO(j,D, gj)
for each instruction Ij with the datapath D and mapping function
gj(·) as the number of additional µops that are needed to complete
the instruction. This can be computed as follows:

1) Let c(vjt, vjk) be the cost of edge e(vjt, vjk) in the instruction
graph Ij . c(vjt, vjk) = 0 if there exists an edge from gj(vjt)
to gj(vjk) in the datapath, otherwise c(vjt, vjk) = 1.

2) The length of a path in the instruction graph Ij , in terms of the
edge costs, is equivalent to the number of edges that cannot be
scheduled in the same µop, thus the length of the longest path
is equivalent to PO(j,D, gj).

Taking the instruction frequencies into account, the weighted
sum of the performance overheads of all instructions reflects the
performance of the datapath PO(D):

PO(D) =
n∑

j=1

wj · PO(j,D, gj) (1)

The problem is to synthesize the datapath D with the least PO(D),
for the given OS, qi’s, IS and wj’s.

IV. ALGORITHM
We first study the sub-problem of instruction mapping where we

assume the topological order of the datapath is fixed, and we present
an algorithm that maps instructions optimally. Then we proceed to
solve the datapath optimization problem. We show that a simplified
problem where the instructions are chain graphs and all functional
units are distinct can be solved optimally by a dynamic programming
(DP) algorithm. The DP algorithm is then extended to a two-level
heuristic algorithm to solve the general problem: at the inner level, the
DP procedure is followed by a greedy algorithm that inserts additional
functional units; at the outer level, the topological order space of each
instruction is explored to improve the solution iteratively.

Related proofs are omitted from this paper due to space limitations.
They are presented in a technical report [12].

A. Instruction Mapping Problem
In this sub-problem, we assume that the topological order of the

datapath is fixed. It means that the functional units are arranged in
one-dimensional order, and no interconnection is allowed to be made
from a functional unit to previous functional units in that topological
order.

The complete datapath can be constructed from the topological
order by adding necessary edges based upon the mapping functions
of the instructions. For edge e(vjt, vjk) in instruction graph Ij , the
corresponding functional units are gj(vjt) and gj(vjk). If gj(vjt) is
placed before gj(vjk) in the topological order, an edge is allowed to
be inserted from gj(vjt) to gj(vjk), otherwise those two operations
need to be scheduled in two different µops.

Since the topological order of the datapath is fixed, the mappings
of the instructions do not interfere with each other. To minimize the
performance overhead of the instruction set is equivalent to minimize
the performance overhead of each instruction individually.

In a chain graph, the nodes are arranged in a chain structure, and
edges only exist between adjacent nodes. We first show an algorithm
that optimally solves the instruction mapping problem for chain-graph
instructions. Then we extend the algorithm to general instructions.

The algorithm for chain-graph instructions is presented in Algo-
rithm 1. It maps one operation at a time in the chain order. The
algorithm walks through P from the starting position pos, finds the
first matched functional unit, and chooses it to map to the current
operation. The next position of the chosen functional unit will be the
starting point for the mapping of the next operation. If no matched
functional unit is found until the end of P , it starts over from the
beginning of P and increases performance overhead by one. The
correctness of this algorithm is straightforward. Choosing the first
matched functional unit leaves more resources for the subsequent
operations. It increases the chance of mapping the subsequent opera-
tions in the same µop. The solution should be at least no worse than
that if the first matched functional unit is not chosen.

The full instruction mapping procesure extends Algorithm 1 to
general instruction. We examine all possible topological orders of the
instruction, treat each topological order as a chain graph, and then
apply Algorithm 1 to the chain graph. The minimum performance
overhead among all topological orders is the optimal performance
overhead for the instruction. The proof of the correctness of the
instruction mapping procesure is presented in [12].
Algorithm 1 Mapping algorithm for chain-graph instruction
Input: Chain-graph instruction I and the topological order of data-

path P
Output: Minimum performance overhead

1: PO = 0
2: pos = 0
3: for each operation o in I in the chain order do
4: repeat
5: starting from position pos, walking down along P to find

the first FU of the same type with o
6: if no FU can be found until the end of P then
7: start over from the beginning of P , pos = 0
8: PO = PO + 1
9: end if

10: until FU is found
11: map FU to o
12: pos = position of the mapped FU + 1
13: end for
14: return PO

B. Optimizing Topological Order of Datapath
1) A Simplified Problem and DP Algorithm
We first study a simplified problem where all functional units are

distinct, that is, qi = 1, i = 1 . . .m, and the input instructions are



all chain graphs.
We partition the functional unit set VD into two subsets LVD

and RVD , where the functional units in LVD are placed before the
functional units in RVD in the topological order of datapath. Because
no two functional units are of the same type, for every instruction
operation there is only one functional unit that it can be mapped to.
We say the operation is mapped to LVD if the matched functional
unit is in LVD , otherwise the operation is mapped to RVD .

Consider a pair of consecutive operations oa and ob in some
instruction. If oa is mapped to RVD and ob is mapped to LVD ,
these two operations cannot be scheduled in the same µop, thus
a performance overhead occurs. We call such a performance over-
head is caused by the partition. We define the cost of a partition,
c(LVD, RVD), to be the total performance overhead of all instruc-
tions (weighted by instruction frequencies) that is caused by the
partition.

With the partition of functional units, we can decompose each
instruction into alternating segments where operations are either all
mapped to LVD or all mapped to RVD . LI denotes the set of
segments, from all instructions, where all operations are mapped to
LVD , and RI denotes the set of the rest of the segments. These
segments can be viewed as smaller chain-graph instructions to be
implemented by the functional units in LVD and RVD respectively.

We denote f(VD, IS) as the performance overhead of the optimal
topological order of datapath for the given functional units VD

and instruction set IS. The following theorem gives the dynamic
programming recursive equation for finding f(VD, IS).

Theorem 1: Let PA be the set of all possible partitions for the
given set of functional units VD , the minimal performance overhead
f(VD, IS) can be computed by:
f(VD, IS) = min

PA
[f(LVD, LI) + f(RVD, RI) + c(LVD, RVD)]

(2)
The number of possible partitions is exponential to the number of
functional units. However, in the ASIP synthesis problem, the number
of functional units is usually small. We can use one bit to mark
each functional unit, therefore a single integer to mark each subset
of functional units. With integral marking, the DP equation Eq. 2
can be efficiently computed as shown in Algorithm 2. f(i) is the
minimum performance overhead for the subset of functional units
represented by integer i with corresponding instruction segments. The
inner loop goes through each functional unit j in subset i, partitioning
set i into two subsets: LVD with the functional units in set i except
j, and RVD with j only. For each partitioning, the performance
overhead is computed. f(i) is the minimum performance overhead
from all possible partitionings. The optimal partitioning is recorded
in an array prev(i). The partition cost of j in set i, c(i, j), can be
easily computed by examining the edges from j in all instructions.
If the ending functional unit is in LVD , c(i, j) is increased by a
performance overhead weighted by the instruction frequency.

Computing each c(i, j) requires O(n ·ML) runtime where ML
is the maximal length of instructions. The complexity of the whole
DP algorithm is O(MAX ·m ·n ·ML), given by the complexity of
computing c(i, j) multiplied by the complexity of the two loops.

2) Extension to Two-Level Heuristic Algorithm
To extend Algorithm 2 to the original problem, one needs to

consider: the quantity of each functional unit is not limited to 1 and
the input instructions are general DAGs.

We extend the DP algorithm to a two-level heuristic algorithm. At
the inner level, all instructions are sorted in topological order, and
treated as chain graphs. We first assume that the quantities of all
functional units are 1, and apply Algorithm 2 to find the minimum
performance overhead. For functional units whose quantities are
greater than one, we insert one additional instance at a time in a
greedy manner: For each position in the topological order of datapath,

Algorithm 2 DP Algorithm
Input: OS, chain-graph IS and wj’s
Output: The topological order of datapath with minimum perfor-

mance overhead
1: MAX = 2m − 1
2: mark(i) = 2i, i = 0..m− 1
3: initialize f(i) =∞, i = 1..MAX and f(0) = 0
4: for i = 1 to MAX do
5: for j = 0 to m− 1 do
6: if mark(j)&i 6= 0 then
7: if c(i, j) + f(i−mark(j)) < f(i) then
8: f(i) = c(i, j) + f(i−mark(j)) and set prev(i) = j
9: end if

10: end if
11: end for
12: end for
13: return f(MAX) and traceback in prev to obtain the optimal

topological order of the datapath.

Algorithm 3 Two-level Heuristic Algorithm
Input: OS, qi’s, IS and wj’s
Output: The optimal topological order of the datapath

1: sort instructions in topological order
2: repeat
3: call Algorithm 2
4: greedy insertion
5: topology order switch
6: until no improvement is achieved in recent N iterations
7: return The optimal topological order of the datapath

we insert the instance and compute the new performance overhead by
re-performing the instruction mapping. The instance is finally inserted
to the position where the new performance overhead is minimal.

The outer level switches the topological order of each instruction.
Using the current topological order of datapath, for each instruction,
we can evaluate the performance overhead for each topological order.
The topological order is then switched to the one with the least
performance overhead. If multiple topological orders have the same
least performance overhead, a random one is chosen from them.
The randomness prevents the algorithm from getting stuck in a local
minimum. The outer level explores the spaces of topological order
of instructions. The updated topological orders are used in the next
iteration. It guarantees that the total performance overhead is non-
increasing through iterations.

We keep iterating through these two levels until no improvement
is achieved in recent N iterations. The two-level algorithm is sum-
marized in Algorithm 3.

V. EXPERIMENTAL RESULTS

We selected a set of six benchmarks from a wide range of
embedded applications featured with heavy computation to evaluate
the proposed algorithm. The selected benchmarks are: FFT, LMS
and SHA from SNU-RT [13], JPEG and GSM from mibench [14],
and MESA from Express benchmarks [15]. For each benchmark, we
first used LLVM [16] to obtain the DFG for every basic block and
its execution times by profiling. We implemented algorithm in [17]
to identify custom instructions from the DFGs of each benchmark.
Note that the complexity of the input to our algorithm is not directly
correlated to the complexity of the input benchmark, but correlated
to the complexity of the identified custom instructions. We set 10
as the maximum number of primary inputs, and 4 as the maximum
number of primary outputs. The execution times of each instruction
is the occurrence of the instruction in the DFG times the execution
times of the DFG. The frequency of an instruction is its execution
times normalized against the whole instruction set.



TABLE I
FAMILIES OF OPERATIONS

Families Operations
Integer operations add, sub, mul, div, shift left and shift right

FP operations fadd, fsub, fmul and fdiv
Logic operations and, or and xor

Comparisons Int compare and FP compare
Type conversions FP to Int and Int to FP

TABLE II
STATISTICS OF BENCHMARKS

Benchmarks FFT LMS SHA JPEG GSM MESA
Number of CIs 11 17 15 46 118 109

Max Number of operations 11 9 9 7 9 9
Number of types of FUs used 8 9 7 10 9 16

In our experiment, the resource constraint for each benchmark is
determined as follows. We first classify operations into six families, as
in Table I. An instruction is tagged by a family if it has an operation in
that family. An instruction can be tagged by multiple families. For a
family F , we denote S(F ) as the set of instructions that are tagged
by F . And we denote num(Ij , Oi) as the times of operation Oi

appearing in instruction Ij . The number of instances of Oi is given
by the weighted average appearance in S(F ) if Oi ∈ F , ceiled to
the nearest integer:

qi = ceil(

∑
Ij∈S(F ) num(Ij , Oi)× wj∑

Ij∈S(F ) wj
) (3)

Because there is no existing work that formulates similar problem
to ours, to demonstrate the efficiency of our proposed algorithm,
we implemented an optimal algorithm and a greedy algorithm for
comparison. The optimal algorithm exhaustively enumerates all pos-
sible orders of functional units. The complexity of this algorithm
grows in factorial with respect to the total number of functional
units. A pruning technique is applied to reduce the runtime: after
each insertion, we evaluate the performance overhead of the current
sub-sequence by running instruction mapping. If the performance
overhead is greater than the currently achieved minimum, this branch
is eliminated. The greedy algorithm replaces the inner level with a
simple heuristic approach. It removes the DP algorithm, and greedily
inserts all functional units one at a time.

The algorithms are implemented in JAVA, and run on an Linux
machine with 2.8GHz Intel Pentium Dual-core and 2GB RAM.
The statistics of the benchmarks is listed in Table II. We set the
termination condition to be 10 iterations with no improvement, for
both the proposed algorithm and the greedy algorithm.

The performance of the algorithms is shown in Table III. The
second column of each benchmark lists the types of functional unit
that have more than one instance for that benchmark, followed by the
number of additional instances. For each algorithm, the performance
overhead (PO) of the generated datapath and corresponding runtime
are listed. It can be observed from the table that the proposed
algorithm achieves near-optimal solution, with only 3% increase
in performance overhead on average, compared with the optimal
algorithm. For three out of six benchmarks, the proposed algorithm
generates optimal datapath. The runtime of the proposed algorithm
is much less than the optimal algorithm. Compared with the greedy
algorithm, which is able to generate a solution within short runtime,

the proposed algorithm achieves 48% less in performance overhead.

VI. CONCLUSION
In this paper, we proposed a two-level dynamic programming

(DP) based heuristic algorithm that efficiently solves the problem
of optimizing the performance of pipelined datapath under resource
constraint in ASIP synthesis. Compared with optimal brutal-force
algorithm, the proposed algorithm achieves near-optimal solution,
with only 3% more performance overhead on average but significant
reduction in runtime. Compared with a greedy algorithm which
replaces the DP inner level with a greedy heuristic approach, the
proposed algorithm achieves 48% less in performance overhead.

VII. ACKNOWLEDGEMENT
This work is supported by the NSF under CCF-0811270 and CCF-

1115550.

REFERENCES

[1] K. Keutzer, S. Malik, and A. R. Newton, “From ASIC to ASIP: The
next design discontinuity,” IEEE Proc. ICCD, pp. 84–90, 2002.

[2] M. Imai, “ASIP Meister: A configurable processor core development
system,” Proc. Intl. Conf. on Information and Communication, 2005.

[3] S. Basu and R. Moona, “High level synthesis from Sim-nML processor
models,” IEEE Proc. VLSI Design, pp. 255–261, 2003.

[4] A. Hoffmann, H. Meyr, and R. Leupers, Architecture Exploration for
Embedded Processors with LISA. Kluwer Academic Publishers, 2002.

[5] P. Mishra, A. Kejariwal, and N. Dutt, “Synthesis-driven exploration of
pipelined embedded processors,” IEEE Proc. VLSI Design, pp. 921–926,
2004.

[6] M. Zuluaga and N. Topham, “Design-space exploration of resource-
sharing solutions for custom instruction set extensions,” IEEE Trans.
on CAD, vol. 28, no. 12, pp. 1788–1801, 2009.

[7] Y. Lu and H. Zhou, “Efficient design space exploration for component-
based system design,” IEEE Proc. ICCAD, 2012.

[8] V. Zaccaria, G. Palermo, F. Castro, C. Silvano, and G. Mariani, “Multi-
cube explorer: An open source framework for design space exploration
of chip multi-processors,” Architecture of Computing Systems (ARCS),
2010 23rd International Conference on, pp. 1 –7, feb. 2010.

[9] Q. Dinh, D. Chen, and M. D. Wong, “Efficient ASIP design for con-
figurable processors with fine-grained resource sharing,” ACM/SIGDA
Proc. Symposium on FPGA, pp. 99–106, 2008.

[10] P. Brisk, A. Kaplan, and M. Sarrafzadeh, “Area-efficient instruction set
synthesis for reconfigurable system-on-chip designs,” IEEE Proc. DAC,
pp. 395–400, 2004.

[11] E. Witte, A. Chattopadhyay, O. Schliebusch, D. Kammler, R. Leupers,
G. Ascheid, and H. Meyr, “Applying resource sharing algorithms to
ADL-driven automatic ASIP implementation,” IEEE Proc. ICCD, pp.
193–199, 2005.

[12] Y. Chen and H. Zhou, “Resource-constrained high-level datapath opti-
mization in ASIP design,” NU-EECS-12-05, 2012.

[13] SNU-RT, www.cprover.org/goto-cc/examples/snu.html.
[14] Mibench, www.eecs.umich.edu/mibench/.
[15] Express benchmarks, express.ece.ucsb.edu/benchmark/.
[16] LLVM, www.llvm.org.
[17] P. Biswas, S. Banerjee, and N. Dutt, “ISEGEN: Generation of high-

quality instruction set extensions by iterative improvement,” IEEE Proc.
DATE, pp. 1246–1251, 2005.

TABLE III
EXPERIMENTAL RESULTS OF COMPARING TO GREEDY ALGORITHM AND OPTIMAL ALGORITHM

Benchmarks Additional FUs. (Qty) Greedy Algorithm Optimal Algorithm Proposed Algorithm
POg runtime (sec.) POopt runtime (sec.) POprop runtime (sec.) POprop/POopt POprop/POg

FFT fmul(1) 0.795 0.45 0.233 6.26 0.233 0.07 1.00 0.29
LMS fmul(1) 0.835 0.11 0.298 6.57 0.298 0.09 1.00 0.36
SHA add(2), xor(1) 1.000 0.40 0.621 12.70 0.621 0.03 1.00 0.62
JPEG add(1) 0.451 0.40 0.338 2.82 0.384 0.37 1.14 0.85
GSM add(1), mul(1) 0.835 0.89 0.503 1868 0.515 0.66 1.02 0.57

MESA or(2), shr(1), shl(3), fmul(1) 0.92 1.43 0.352 53 hours 0.361 9.87 1.03 0.39
Average 1.03 0.52


