
A Dual Grain Hit-Miss Detector for Large
Die-Stacked DRAM Caches

Michel El-Nacouzi, Islam Atta, Myrto Papadopoulou, Jason Zebchuk, Natalie Enright Jerger and Andreas Moshovos
Electrical and Computer Engineering

University of Toronto
{elnacouz, iatta, myrto, zebchuk, enright, moshovos}@eecg.toronto.edu

Abstract—Die-Stacked DRAM caches offer the promise of
improved performance and reduced energy by capturing a larger
fraction of an application’s working set than on-die SRAM caches.
However, given that their latency is only 50% lower than that of
main memory, DRAM caches considerably increase latency for
misses. They also incur a significant energy overhead for remote
lookups in snoop-based multi-socket systems. Ideally, it would be
possible to detect in advance that a request will miss in the DRAM
cache and thus selectively bypass it. This work proposes a “dual
grain filter” which successfully predicts whether an access is a hit
or a miss in most cases. Experimental results with commercial
and scientific workloads show that a 158KB dual-grain filter can
correctly predict data block residency for 85% of all accesses to
a 256MB DRAM cache. As a result, average off-die latency with
our filter is within 8% of that possible with a perfectly accurate
filter, which is impractical to implement.

I. INTRODUCTION

Die-stacked DRAM Caches (DRAMC) are projected to
have capacities at least an order of magnitude larger than
existing on-die SRAM caches. These large capacities allow
DRAMCs to capture a large portion of an application’s memory
footprint and thus can significantly improve system perfor-
mance. However, using a DRAMC is not free of challenges.
The increased capacity compared to last-level on-die caches
comes at the cost of higher access latency and energy per
access. Therefore using a DRAMC in the same way as a
conventional on-die cache may result in a considerable latency
and energy increase for some memory accesses.

As a DRAMC is faster than off-chip main memory, it
can reduce latency for those accesses that hit in the cache.
However, the latency of misses would increase compared to
a system without a DRAMC. The smaller latency difference
between a DRAMC and main memory, compared to a con-
ventional SRAM cache, makes performance more sensitive to
DRAMC hit rate. Ideally, to reap the full benefits of a DRAM
cache, one would like to know in advance if an access would
miss in the DRAMC, so that it can bypass it and directly access
the off-chip memory. Selectively bypassing a DRAMC for
those accesses that would miss in it, would not only improve
performance but also reduce energy by avoiding unnecessary
DRAMC accesses.

Besides improving performance for misses from the local
cores, bypassing the DRAMC can also benefit multi-socket

snoop-based systems. Most remote snoop accesses rarely find
their data on remote nodes, and many techniques have been
proposed to filter the corresponding snoops (e.g., [8]). A
DRAMC miss filter would avoid such unnecessary lookups
reducing the latency and energy for remote snoop requests.

This work aims at developing an energy and area efficient
miss detection filter for DRAMCs, reducing the latency and
power overhead of unnecessary DRAMC tag lookups. The
proposed Dual-Grain Filter (DUAL-GRAINF ) is comprised of
two underlying filters: the Fine-Grain Filter (FINEF ) which
keeps track of blocks in the cache at the block level, and
the Coarse-Grain Filter (COARSEF ) which does so at the
page level. DUAL-GRAINF has been designed to accurately
predict most hits and misses, using space-efficient structures
that exploit common program behavior for applications with
relatively large memory footprints.

This work demonstrates the benefits of DUAL-GRAINF

when local misses bypass the DRAMC. Experimental results
with commercial and scientific applications demonstrate that
a 158KB DUAL-GRAINF successfully predicts 85% of all
accesses resulting in an off-die latency that is within 8% of
that possible with an ideal predictor.

II. MOTIVATION

Selectively bypassing the cache for misses results in an
ideal situation where we get the energy and performance ben-
efits of hits with none of the overheads of misses. This work
proposes DUAL-GRAINF which uses a dual grain approach to
identify hits and misses for large die-stacked caches. DUAL-
GRAINF judiciously uses storage and exploits typical program
behavior to better capture DRAMC misses.

To explain the reasoning behind the DUAL-GRAINF design
let us first consider an application that streams through an array
experiencing compulsory misses. DUAL-GRAINF will try to
detect the first miss into a page by using COARSEF to track
which pages currently have blocks cached in DRAMC. For
most non-cached pages, the expectation is that COARSEF will
report a miss when the first request arrives. Once this first
miss is detected, FINEF starts tracking this page’s blocks as
they are allocated. Because programs exhibit spatial locality,
we expect that, at any given point in time, there will be few
pages per core that FINEF needs to track in order to detect
most compulsory misses.978-3-9815370-0-0/DATE13/ c©2013 EDAA



Page Block Offset

Counter
hf

Page Tag Block Presence Vector V

CoarseGrain Filter
Is any Block from this 
Page cached?

FineGrain Filter
Is this Block from 
this Page cached?

Counter

LRU

Fig. 1. Structure of Dual-Grain Filter

Now let us consider the case where the array does not fit
in the cache. With an LRU replacement policy subsequent
passes of the array will result in capacity misses. By the time
a page is revisited, all of its blocks will have been evicted
and thus the COARSEF will successfully detect the first miss
to each page. This again allows a small FINEF to track all
subsequent capacity misses to the same page. With a non-LRU
policy, some part of the array might remain cache resident. In
this case, COARSEF should detect hits to pages that are cache
resident, while misses to non-resident pages are still detected
the same as compulsory misses.

In general, DUAL-GRAINF was designed with the fol-
lowing expectations: (a) Applications tend to exhibit spatial
locality so that a first access to a page will soon be followed
by accesses to other blocks in the same page. This suggests
that by tracking a few pages at any point we should be able to
detect hits and misses for most accesses. (b) At any given point
in time there will be a few pages that experience misses and in
most cases these will come soon after observing a first miss.
(c) If a page experiences a hit, then most likely, the rest of the
accesses to the page will be hits as well. (d) Very few pages
will experience a mix of hits and misses once cache resident.
Section IV demonstrates that most scientific and commercial
applications meet these expectations.

III. DUAL-GRAINF DESIGN

As Fig. 1 shows, DUAL-GRAINF comprises FINEF which
tracks all blocks in selected pages, and COARSEF which tracks
a superset of pages that have cached blocks in DRAMC. (A
page is 4KB and a block is 64B.) These two structures are
implemented using SRAM arrays on the processor die.

A. Coarse-Grain Filter

As indicated in Fig. 1, COARSEF is a counting Bloom
filter that tracks data residency in DRAMC at a coarse-grain
level. In this work, COARSEF tracks data at the page level.
An incoming request uses its page number and the hashing
functions f and h to index into two counting Bloom tables.
As blocks are allocated and de-allocated, the corresponding
COARSEF counters are incremented or decremented respec-
tively. A particular page, when hashed into different tables, has
no blocks cached in DRAMC if any of the table counters are
zero. If no aliasing exists, COARSEF would perfectly capture
first misses to pages and trigger the allocation of corresponding
entries in FINEF . In practice, however, aliasing could cause a
page with no cached blocks to have non-zero counters.

In the worst case scenario, all blocks can alias to a single
counter, requiring 22-bit counters for a 256MB DRAMC. In
practice, however, each counter is only used by the blocks
from a few pages. To handle this common case, COARSEF

uses 8-bit counters. When a counter overflows, an additional
grouped bit is set, and the counter is combined with three
adjacent counters to form a single 32-bit counter. When the
combined counter reaches zero, the grouped bit is reset and the
combined counter becomes four independent counters again.

B. Fine-Grain Filter

FINEF is a set associative structure that tracks a few
recently accessed pages at the block level. As Fig. 1 shows,
a FINEF entry contains a 36-bit tag identifying the page, a
64-bit presence vector indicating which blocks of this page
are present in DRAMC, LRU bits (or any other replacement
information), and a valid bit.

There are three possible outcomes on a FINEF probe:
(1) The block is cached (HIT), (2) the block is not cached
(MISS), or (3) there is no information about that block (X).
This last case occurs when no valid entry is found for the
page in question. Due to its limited size, FINEF tracks only a
subset of pages. Once it becomes full, allocating new entries
requires evicting and discarding information about an existing
page. The evicted page remains implicitly in the X state until
all of its blocks have been evicted and COARSEF indicates the
page is not present in the cache.

C. Dual-Grain Filter

DUAL-GRAINF is a combination of FINEF and COARSEF

and operates as follows: First we access COARSEF by hashing
the page number into two Bloom tables. If any of the counters
is 0, this means that there is a Miss. Otherwise, we have to
access FINEF to check the outcome. If no entry is found, the
outcome is unknown (X) and accordingly, we should check
DRAMC first, and if the block is not cached, then we obtain
the data from off-chip DRAM.

In designing DUAL-GRAINF , we observe that some infor-
mation is duplicated in both COARSEF and FINEF . We can
exploit this to reduce aliasing in COARSEF . Specifically, as
long as an entry for a page exists in FINEF we do not modify
the COARSEF counters upon allocation/eviction of blocks from
that page. On an eviction of a FINEF entry, these counters are
incremented by the number of blocks indicated by that entry.
Since the two filters are now exclusive we have to wait for both
before deciding to bypass the DRAMC. This configuration,
exclusive DUAL-GRAINF , provides better accuracy for a large-
sized FINEF , but for a small FINEF it has almost no effect.
In the evaluation section, we will consistently be using the
exclusive DUAL-GRAINF version.

IV. EVALUATION

The evaluation section is organized as follows: Sec-
tion IV-A presents the evaluation methodology. Section IV-B
shows how DUAL-GRAINF coverage and accuracy change
with the size of FINEF and COARSEF . Section IV-C shows
that a 158KB DUAL-GRAINF results in DRAMC performance
that is within 8% to that possible with a perfect predictor.



TABLE I. SYSTEM PARAMETERS

Processor 16-cores, 3.2GHz

Private L1i, L1d 32KB, 64B blocks, 4-way

Private L2 256KB, 64B blocks, 8-way

Shared L3 16MB, 6B blocks, 16-way

Die-stacked
DRAMC L4

256MB w/ tags, 29-way, 64B blocks,
1.6GHz DDR, tCAS 9, tACT 9, tBUS 4

Off-chip DRAM 800MHz DDR, tCAS 9, tACT 9, tBUS 4, 15ns offchip delay

TABLE II. WORKLOADS (MEMORY FOOTPRINT)

SPLASH-2 Em3d (131MB), Ocean (209MB), Sparse (203MB)

Parsec (Native) Blackscholes (271MB), Canneal (307MB), X264
(70MB), Ferret (90MB), Swaptions (1.5MB)

Decision Support Sys. TPCH-qry1 (926MB), TPCH-qry2 (889MB),

Online Trans. Proc. DB2 (252MB), Oracle (295MB)

SpecWEB 99 Apache (617MB), Zeus (183MB)

Java Server SpecJBB (370MB)

A. Methodology

We model a 16-core SPARCv9 chip-multiprocessor as
described in Table I. We use Flexus simulator [3], which
builds on WindRiver Simics, a full system simulator. The tags
are stored directly in the DRAM array with the data [5]. We
assume a 2KB DRAM row in the DRAMC with 32 × 64B
blocks per row. Using 6B tags, the row is partitioned into
29 blocks for data, and 3 blocks for tags. We simulated 1
billion instructions per core for each of the benchmarks listed
in Table II, except for Sparse and TPCH qry2 which finished
at 485 and 386 million instructions respectively. The memory
footprints shown in parentheses in Table II indicate that these
workloads make use of the 256MB DRAMC, and experimental
results not included here indicate that a larger DRAMC does
not provide significant benefits. Thus, we chose a 256MB
DRAMC for our evaluation.

B. Filter Accuracy

This section demonstrates how accurate DUAL-GRAINF is
at detecting DRAMC misses. Inaccuracy occurs only when
a request hits in COARSEF and fails to find a FINEF entry.
In this scenario (the X case), DUAL-GRAINF provides no
information about whether the block is in the DRAMC or
not. Fig. 2 shows the accuracy of different DUAL-GRAINF

configurations, where the accuracy is measured as the fraction
of requests that do not result in the X case. Increasing the
COARSEF beyond 132KB has little effect on overall accuracy.
The accuracy is much more dependant on FINEF size, with
significant improvements as the size increases up to 1664KB.
At that size, DUAL-GRAINF can achieve an accuracy of 98%,
but this requires significant storage overhead. However, the
accuracy shown in Fig. 2 pessimistically assumes that all X
cases are inaccurate. In practice, the DRAMC is accessed for
all X cases, and some of these accesses will hit in the DRAMC,
indicating an accurate prediction from the DUAL-GRAINF .

Fig. 3 shows a breakdown of the predictions made by
a DUAL-GRAINF with a 132KB COARSEF and a small,
26KB 8-way set associative FINEF . As expected X outcomes
now dominate; however, with the exception of SpecJBB and
Blackscholes, most of these X outcomes are for DRAMC hits.

66KB 132KB 264KB 528KB

0%

20%

40%

60%

80%

100%

COARSEF size

A
cc

ur
ac

y

FINEF size: 26KB 104KB 416KB 1664KB

Fig. 2. Accuracy of DUAL-GRAINF as a function of COARSEF and FINEF
size. All COARSEF configurations use two equally sized tables, and all FINEF
configurations are 8-way set associative.

Apa
ch

e

Blac
ks

ch
ole

s

Can
ne

al
DB2

Em3d
Fe

rre
t

Oce
an

Ora
cle

Spa
rse

Spe
cJ

BB

Swap
tio

ns

TPCH
qr

y1

TPCH
qr

y2
X26

4
Zeu

s

Ave
ra

ge
0%

20%

40%

60%

80%

100%

%
of

D
R

A
M

C
A

cc
es

se
s Hit (FINEF ) Miss (FINEF ) Miss (COARSEF ) X (Hit) X (Miss)

Fig. 3. Detailed breakdown of predictions - 158KB DUAL-GRAINF

TABLE III. PRACTICAL FILTER CONFIGURATIONS

Filter Configuration Total Storage

DUAL-GRAINF 158KB

COARSEF
2 tables, each with 64K 8-bit counters, one
grouped bit for each 4 counters 132KB

FINEF 8-way set associative, 256 sets, 104 bits/entry 26KB

MISSMAP 12-way set associative, 1K sets, 104 bits/entry 156KB

When these hits are included in the accuracy calculation, the
average accuracy for this design is 85%, making it a much
more promising design point. This behavior confirms the
expectations from Section II that if one block in a page hits in
the DRAMC, other blocks from the same page will also hit.

C. Benefits for Off-Die Accesses

This section shows that DUAL-GRAINF , when compared
to a similarly sized MISSMAP, can avoid a reduction in
DRAMC hit rate and reduce average latency for off-die ac-
cesses. We use similarly sized MISSMAP and DUAL-GRAINF

configurations as described in Table III.

Fig. 4 shows the DRAMC miss rate for both DUAL-
GRAINF and MISSMAP. When a MISSMAP entry is evicted,
all DRAMC blocks tracked by that entry are evicted from the
DRAMC to keep the MISSMAP precise. As Fig. 4 demon-
strates, these evictions significantly increase the DRAMC miss
rate for most workloads when using a small MISSMAP design.
There are a few exceptions, such as swaptions, which has
a very small working set, but on average MISSMAP has a
DRAMC miss rate that is 117% higher than DUAL-GRAINF .

Fig. 5 shows how off-die (post L3) memory latency varies
for three configurations. The first uses a perfect predictor,



Apa
ch

e

Blac
ks

ch
ole

s

Can
ne

al
DB2

Em3d
Fe

rre
t

Oce
an

Ora
cle

Spa
rse

Spe
cJ

BB

Swap
tio

ns

TPCH
qr

y1

TPCH
qr

y2
X26

4
Zeu

s

Ave
ra

ge

0%

20%

40%

60%

80%

100%

D
R

A
M

C
M

is
s

R
at

e
DUAL-GRAINF MISSMAP

Fig. 4. Effect of forced evictions on DRAMC miss rate.

Apa
ch

e

Blac
ks

ch
ole

s

Can
ne

al
DB2

Em3d
Fe

rre
t

Oce
an

Ora
cle

Spa
rse

Spe
cJ

BB

Swap
tio

ns

TPCH
qr

y1

TPCH
qr

y2
X26

4
Zeu

s

Ave
ra

ge

50

100

150

La
te

nc
y

(C
P

U
cy

cl
es

) Perfect Predictor DUAL-GRAINF MISSMAP

Fig. 5. Post-L3 latency.

the second is a 158KB DUAL-GRAINF , and the third is a
MISSMAP that uses 156KB. As estimated by CACTI 6.5 [9],
DUAL-GRAINF and MISSMAP require 4 and 5 cycles re-
spectively in 32nm technology, but we do not include this in
Fig. 5. The latencies in Fig. 5 are estimated using fixed latency
numbers derived from those in Table III. As expected, DUAL-
GRAINF reduces off-die latency compared to a similarly sized
MISSMAP. Moreover, the off-die latency with DUAL-GRAINF

is only 8% higher, on average, compared to a perfect predictor.

V. RELATED WORK

The emergence of stacked-DRAM as a last level cache
brings new challenges, such as long latency tag lookups and
increased power consumption. MISSMAP [5] and CHOP [4]
are two recent proposals that alleviate some of these penalties.
MISSMAP is a precise data structure which provides cache
residency information for a given address. Although the
authors mention the option of an imprecise MISSMAP with
the use of Bloom filters, they do not explore the intricacies of
such a design. CHOP proposes a set of filter-based caching
techniques for DRAM at the page level. Our work, however,
focuses on caching at the block level.

The most recent studies on DRAM caches try to balance
the traffic between DRAMC and main memory [11], or try to
optimize for latency by using a direct-mapped DRAMC [10].
Both use a small predictor to further optimize their design,
but these predictors cannot be used for snoop filtering or other
optimizations that rely on miss detection.

Cache filtering techniques have also been proposed in
the past for SRAM caches. Memik et al. proposed a
set of techniques that predict misses for different caches,
bypassing the respective cache-levels [6], and Zebchuk and

Moshovos used dual-grain tracking to avoid tag lookups for
SRAM caches [13]. Bloom filters have been proposed for
filtering snoops [8], [7], and for coarse-grain tracking of blocks
in last-level caches [12]. Ghosh et al. proposed using a
segmented counting Bloom filter to avoid accessing all ways
in a tag-lookup of a large set-associative cache, thus reducing
dynamic energy [2]. In our work, we use Bloom filters along
with a combination of coarse-grain and fine-grain address
tracking to predict cache residency information for die-stacked
DRAM. The large capacity of the DRAM caches requires a
re-evaluation of prior-art as the reach of a Bloom filter is now
an order of magnitude larger.

VI. CONCLUSION

We have demonstrated that a dual-grain approach can be
used to successfully predict most misses prior to accessing
a large die-stacked DRAM cache for both commercial and
scientific workloads. DUAL-GRAINF avoids accessing the
DRAMC for misses, thus improving performance and energy.
We demonstrate that a DUAL-GRAINF design requiring ap-
proximately 158KB of storage achieves an accuracy of 85%,
and results in an average off-die latency that is almost as low
as with a perfect miss detector.

REFERENCES

[1] B.H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable
Errors. In Commun. ACM 13, 7, July 1970.

[2] M. Ghosh, E. Ozer, S. Ford, S. Biles, and H. S. Lee. 2009. Way guard:
a segmented counting bloom filter approach to reducing energy for set-
associative caches. In Proc. of the 14th ACM/IEEE Int’l Symp. on Low
power electronics and design, 2009.

[3] N. Hardavellas, et al. SimFlex: a Fast, Accurate, Flexible Full-
System Simulation Framework for Performance Evaluation of Server
Architecture. In SIGMETRICS Perform. Eval. Rev. 31, 4, March 2004.

[4] X. Jiang, et al., CHOP: Integrating DRAM Caches for CMP Server
Platforms, In IEEE Micro Top Picks, 2011.

[5] G.H. Loh and M.D. Hill. Efficiently Enabling Conventional Block Sizes
for Very Large Die-Stacked DRAM Caches. In Proc. of 44th Int’l Symp.
on Microarchitecture, 2011.

[6] G. Memik, G. Reinman, and W.H. Mangione-Smith. Just Say No:
Benefits of Early Cache Miss Determination. In Proc. of 9th Int’l Symp.
on High-Perf. Comp. Architecture, 2003.

[7] A. Moshovos. RegionScout: Exploiting Coarse Grain Sharing in Snoop-
Based Coherence. In Proc. of 32nd Int’l Symp. on Comp. Architecture,
2005.

[8] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. JETTY:
Filtering Snoops for Reduced Energy Consumption in SMP Servers.
In Proc. of 7th Int’l Symp. on High-Perf. Comp. Architecture, 2001.

[9] N. Muralimanohar, R. Balasubramonian, and N.P. Jouppi. CACTI 6.0:
A Tool to Model Large Caches. HP Laboratories, Tech. Rep. HPL-
2009-85, 2009.

[10] M.K. Qureshi and G.H. Loh. Fundamental Latency Trade-offs in
Architecting DRAM Caches. In Proc. of 45th Int’l Symp. on Microar-
chitecture, 2012.

[11] J. Sim, et al. A Mostly-Clean DRAM Cache for Effective Hit Spec-
ulation and Self-Balancing Dispatch. In Proc. of 45th Int’l Symp. on
Microarchitecture, 2012.

[12] J. Zebchuk, E. Safi, and A. Moshovos. A Framework for Coarse-Grain
Optimizations in the On-Chip Memory Hierarchy. In Proc. of 40th Int’l
Symp. on Microarchitecture, 2007.

[13] J. Zebchuk, and A. Moshovos. RegionTracker: Using Dual-Grain
Tracking for Energy Efficient Cache Lookup. Presented at the Workshop
on Complexity Effective Design, co-located with the Int’l Symp. on
Computer Architecture, 2006.


