
Mutation Analysis with Coverage Discounting
Peter Lisherness, Nicole Lesperance, and Kwang-Ting (Tim) Cheng

University of California, Santa Barbara — Email: {peter,nlesperance,timcheng}@ece.ucsb.edu

Abstract—Mutation testing is an established technique for
evaluating validation thoroughness, but its adoption has been
limited by the manual effort required to analyze the results.
This paper describes the use of coverage discounting for mutation
analysis, where undetected mutants are explained in terms of
functional coverpoints, simplifying their analysis and saving
effort. Two benchmarks are shown to compare this improved flow
against regular mutation analysis. We also propose a confidence
metric and simulation ordering algorithm optimized for coverage
discounting, potentially reducing overall simulation time.

I. INTRODUCTION

Functional coverage has a significant flaw: it is sensitive to
how well the test vectors exercise the design, but insensitive to
the error detection capabilites of the testbench. This problem
has been known for some time, and many solutions have been
suggested. One solution is mutation testing, wherein an error
is inserted into the design. If the testbench is incapable of
detecting the mutation, it is inferred incapable of detecting
real design errors. Mutation testing has garnered interest for
hardware validation [1]–[3], but the resulting metric can be
difficult to interpret: 100% mutation coverage is generally not
an achievable goal, and determining which of the undetected
mutations warrant attention and how to improve their coverage
can be labor-intensive.

The primary goal of our work is to simplify this analysis
by mapping the mutation results onto functional coverage. We
will also show how our improved analysis can reduce the
overhead by prioritizing the most useful mutant simulations
and allowing early termination of the mutation testing process.

This work builds on “coverage discounting”, which is
proposed in [4] and demonstrated with a high-level functional
simulator and a manually inserted ad-hoc fault model. We ap-
ply that basic concept to a scenario that more closely resembles
what is available in today’s chip validation environments and
show how the process can be optimized for this context.

In this paper, we demonstrate for the first time:
1) The use of coverage discounting to analyze mutants
2) Automation of coverage discounting with a commercial

mutation tool
3) A metric to estimate the thoroughness of discounting
4) A coverpoint-oriented test/mutant ordering for discover-

ing discounted coverpoints faster

A. Mutation Testing and Coverage Discounting

In mutation testing, a syntactic change is made to the
design under test, potentially resulting in a functional change.
If the mutation is not detected by the testbench, then any

functionality altered by the mutation has not been sufficiently
exercised. However, determining which functions it changes
requires manual analysis by someone familiar with both the
verification environment and the design implementation.

Using coverage discounting for mutation analysis can reveal
which functions are changed in the mutant, and in turn what is
not being adequately tested if the mutation is undetected. This
is determined by comparing the coverage of both the original
and mutated designs. Any loss of functional coverage when
simulating the mutated design indicates functionality changed
by that mutation. The lost coverpoints are no longer considered
covered, but rather “discounted”.

II. RELATED WORK

The most closely related work is [4]. As explained in
the introduction, this paper extends the basic concept from
[4]. In particular, we automate discounting using a mutated
RTL design and propose a confidence metric and optimized
simulation ordering.

A. Mutation Analysis

An enormous amount of previous research has gone into
mutation analysis [5]. Typically this has focused on reduc-
ing the number of mutants inserted, either by choosing a
subset of mutation operators or by crafting mutants based
on higher-level descriptions [1], [2]. This serves the same
purpose as our work, reducing the runtime and easing the
analysis of undetected mutants, but ultimately the validation
engineer must analyze synthetic faults rather than functional
coverpoints. Moreover, there is nothing to prevent the joint
use of discounting with these models.

In [6], the authors attempt to identify equivalent mutants by
observing changes in code coverage. This solves one of the
problems addressed by using coverage discounting – filtering
equivalent mutants – but does not offer the other benefits of
discounting in analyzing mutants that are not equivalent.

B. Coverage Metrics

This work focuses on functional coverage metrics, which are
becoming the dominant coverage methodology in large-scale
modern validation environments, superseding code coverage
metrics such as statement coverage. To our knowledge, [4] is
the only attempt to add propagation or checker sensitivity to
functional coverage. Previous attempts have been made to add
propagation sensitivity to statement coverage, most of them
related to [7]. The primary difference between these works
and ours is their reliance on statement coverage; there is no
clear way that their “observability coverage” concept could
be adapted to functional coverage. Also, these previous works978-3-9815370-0-0/DATE13/ c©2013 EDAA

Metric ⇓ \ DUT ⇒ CPU - Original CPU - Improved UART
Functional Total 4816 – 846

Covered 2091 (44%) – 842 (99%)
Mutation Total 9027 – 1588

Disabled 844 (9%) – 309 (19%)
Not activated 1188 (13%) – 7 (<1%)

Not propagated 1267 (14%) – 106 (7%)
Not detected 2641 (30%) 2595 (29%) 33 (2%)

Detected (Killed) 3087 (34%) 3133 (35%) 1133 (71%)
Discounting Total 4816 – 846

Covered 1439 (30%) 1566 (33%) 839 (99%)
Discounted 652 (14%) 525 (11%) 3 (<1%)

TABLE I
COVERAGE RESULTS FOR THE BENCHMARKS UNDER FUNCTIONAL,

MUTATION, AND DISCOUNTED COVERAGE ANALYSIS.

evaluate only whether potential error effects can propagate to
checkers, but not whether the checkers are of sufficient quality
to detect errors.

III. COVERAGE VS. MUTATION VS. DISCOUNTING

In this section, we contrast functional coverage, mutation
analysis, and discounted coverage for two benchmark designs.
The overall metrics are summarized in Table I. Mutation
analysis is performed using Certitude [3].

A. OpenRISC CPU

This experiment uses the OpenRISC SoC from OpenCores
[8]. There are 16 functional test programs packaged with
the CPU. Coverpoints are created from the CPU’s top-level
signals, and also for each OpenRISC opcode.

1) Functional Coverage: Simulation of all testcases results
in 44% coverage. Note that these coverpoints were not care-
fully scrutinized, and some may be uncoverable. That being
said, it is also likely that the tests packaged with this design
are inadequate, and the gaps in functional coverage suggest to
a validation engineer what additional testing is needed.

2) Mutation Analysis: In total, there are 9027 mutants.
Certitude breaks these into 5 categories, as shown in Table
I:
Disabled mutants are those considered uninteresting by the

mutation tool or statically determined to be untestable.
Not activated mutants never produce a result differing from

the unmutated design under the given tests.
Not propagated mutants are those whose error effect did not

propagate to the top level of the CPU.
Not detected mutants propagated, but were not detected.
Detected mutants were detected by the testbench. These are

commonly referred to as “killed” in mutation literature.
In general, 100% coverage is achieved only if there are

no mutants in the not– activated/propagated/detected cat-
egories. But some of these mutants may be functionally
undetectable: for example they may only affect a signal during
a “don’t care” cycle or cause irrelevant simulation artifacts.
There are a total of 5096 such mutants that fall into these
categories and require additional analysis.

ex
t

lin
kr

eg
te

st cy sf
m

ac
si

m
pl

e
ffl

1
tic

ks
ys

ca
ll

tic
k ov

ex
ce

pt
m

m
u

flo
at

cb
as

ic
ba

si
c

dc
te

st al
l0

500

1,000

1,500

2,000

Test

C
ov

er
ag

e
(#

of
bi

ns
)

Original Coverage
After Discounting

After Checker Debug

Fig. 1. Discounted coverage of the functional tests with different checkers.
The original checker was inadequate, leading to a lower discounted coverage
score. By improving the checker, the discounted coverage score was improved.

3) Discounted Coverage: Discounting revealed 652 cover-
points among those originally considered “covered” (2091 in
total) that have not been tested thoroughly enough. Many of
these are data bus or register value bins, which are not often
carefully targeted by validation engineers (additional pseudo-
random seeds are used to hit them). Yet others are associated
with functions activated by all tests but explicitly tested by
none of them (such as reset functions).

Improved Checker: Fig. 1 shows the coverage on a per-test
basis, where Original Coverage is the functional coverage
before discounting, and After Discounting is the discounted
coverage. “All” refers to the aggregate coverage. Note that
most of the tests experienced about the same loss in coverage
from discounting, save one: dctest.

Analysis of the checker packaged with these tests reveals
the culprit: the checker simply searches the debug output for
a specific “passing” value of 8000000d, and considers the
test as passing if it is present. This is sufficient for most of the
test programs, which perform numerous internal consistency
checks before outputting the passing value.

“dctest” outputs large amounts of debug data but does
not perform as many internal consistency checks. Presumably
the author of this test expected that the output checker would
check the entirety of the output against the golden output. Be-
cause of this apparent miscommunication, significant portions
of the CPU are untested by this test, despite their showing up
as being covered in the original functional coverage score.

The checker is then modified to compare the entire debug
output with the correct response. This leads to the new cov-
erage shown on Fig. 1 as After Checker Debug. Improving
the checker increases the discounted coverage for many tests,
but particularly for the one that relies heavily on the debug
output.

Note that the checker improvement is also reflected in the
mutation scores, but the difference is negligible. Moreover, the
test-by-test comparison that revealed the inadequate checker
is not directly possible with the mutation analysis results: the
mutations are a completely different set of features than the
functional coverpoints, and per-test mutant detection informa-

tion is incomplete due to fault dropping1.

B. 16550 UART

This experiment uses a UART (universal asynchronous
receiver/transmitter), also available from OpenCores [9]. The
testbench is a proprietary OVM-based suite provided by an
EDA tool vendor. This testbench includes 75 test sequences
of directed pseudo-random test stimuli, a functional checker,
and a hand-written set of 846 functional coverpoint bins.

1) Functional Coverage: As shown in Table I, the UART’s
functional coverage was in excess of 99%. This is expected:
the UART has a hand-pruned set of functional coverpoints,
so the score is not reduced by irrelevant or invalid bins. It
also has a more thorough testbench, 75 tests compared to the
CPU’s 16, despite being a smaller design.

2) Mutation Analysis: Mutation analysis of this design
produces higher scores than the CPU, again due to better
testbench quality. Still, 146 mutants are classified not– acti-
vated/propagated/detected, and manual analysis is required
to determine if any of these indicates a testbench deficiency.

3) Discounted Coverage: Discounting identifies 3 of the
originally covered functional coverpoints that are not thor-
oughly checked. These are sufficiently few, and can be ana-
lyzed individually. One is related to the timeout interrupt. The
testcases activate this function, but do not properly compare
the interrupt identification register to see that it contains
the correct value. A mutant changing this register’s value is
undetected, in turn causing this coverpoint to be discounted.

The two other discounted coverpoints are related to the
loopback function of the UART. This function is activated by
multiple testcases, and even explicitly tested by three of them.
Discounting tells us that while the loopback test sequences
activate the loopback feature, write some data and read it out,
the checkers and test sequences do not ensure that the correct
data is read back out. These tests would still pass even if the
loopback functionality were not implemented (or incorrect),
rendering them effectively useless.

IV. CONFIDENCE METRIC

One open question with discounting is whether or not
the faults are sufficient to adequately challenge the quality
of the testbench. This issue is avoided in [4], where the
authors use an ad-hoc fault model that was guaranteed capable
of discounting all coverpoints. With a general-purpose fault
model such as mutation, it is possible that some coverpoints
may never have the opportunity to be discounted. In this
section we propose a metric to determine how thorough the
fault insertion has been, and in turn how confident we can
be that the discounted coverage reflects the true quality of
the testbench. Such a metric can identify coverpoints that are
neither discounted nor confidently covered, as well as guide
test selection, as described in Sec. IV-B.

Coverage discounting requires that two things happen. First,
a coverpoint that was covered in the original DUT must be

1In mutation testing, a “killed” mutant will not be tested any further. This
is analogous to “fault dropping” in manufacturing test.

“suppressed”, or prevented from being covered, in a mutated
design. Second, that mutation must be undetected.

The first requirement, coverpoint suppression, is strictly
related to the interactions of the mutations and the coverpoints.
The second requirement, that the mutation be undetected, is
a function of the checker and the mutation. The goal of this
confidence metric is to measure the thoroughness of meeting
the first requirement; the quality of the checker is independent
of the coverpoints and is not considered in this metric.

To understand our emphasis on suppression of coverpoints,
consider the following pathological scenario: Suppose we have
a DUT with many testcases and coverpoints, but absolutely no
checking. Regardless of what fault is inserted or which testcase
is simulated, the fault is undetected. By extension, any actual
design errors that are activated by the testcases are not detected
either. Intuitively, the lack of checking means that none of the
coverpoints have been meaningfully covered, so all of them
should be discounted if sufficient faults are inserted.2

But what if sufficient faults (either in quality or quantity)
are not inserted? Suppose instead that we inadvertently insert
only faults that do not change the functional coverage. That
is, they suppress no coverpoints. Even if all of these faults are
undetected, no coverpoints will be discounted.

A. DECO Score

Based on these observations, we propose a DEtection COn-
fidence metric, hereafter abbreviated as DECO:
Given:

• T , a set of testcases
• P , the set of functional coverpoints
• P (t); t ∈ T , the set of coverpoints covered by test t
• Fs, the set of faults that have been simulated
• Pf (t); f ∈ Fs, t ∈ T , the set of coverpoints covered by

testcase t in the presence of fault f
Definitions:

• Sf (t) := P (t)−Pf (t) is the set of coverpoints suppressed
by fault f in testcase t.

• Sf,p := ∃t ∈ T : p ∈ Sf (t) is a suppression test, which is
true if fault f has suppressed coverpoint p in any testcase.

• Fp := {f ∈ Fs : Sf,p} is the set of faults that have
suppressed coverpoint p in any testcase.

• |Fp|, or “point confidence”, is the number of faults that
have suppressed coverpoint p.

• Dn := {p ∈ P : |Fp| ≥ n} is the set of coverpoints with
point confidence of at least n. The size of this set as a
portion of all coverpoints is the “DECO score”.

Setting a higher threshold n will require that more mutants
be inserted to achieve a given DECO score. This is very
similar to the n-detection concept used in manufacturing test;
as with n-detection, the suitable threshold n is a heuristic
and should be determined empirically. Such a determination
requires additional case studies and is beyond the scope of this
paper.

2Note that this pathological case was demonstrated in [4], and produced
the expected discounted coverage score of zero.

B. Test and Mutant Selection

While discounting incurs a manageable amount of overhead
with respect to mutation analysis, mutation analysis itself is
still relatively costly. The most direct way to reduce this cost
is to limit the number of mutants simulated or the number of
tests simulated per mutant. Some existing techniques that limit
the number of simulations are discussed in Sec. II-A.

All of these prior works focus on accurately approximating
the mutation metrics. When coverage discounting is used to
analyze the mutation results, the goal shifts from selecting
tests/mutants that approximate the final mutation coverage
metric to selecting tests that help the discounted coverage
converge faster. In this section we propose a method for
selecting tests and mutants for simulation when discounted
coverage is the desired result.

Each time another mutant simulation begins, the test and
mutant are chosen (from the set of those not yet simulated)
based on the following two criteria:

1) Select the test covering the greatest number of cover-
points with low point confidence |Fp|.

2) Of the mutants activated by this test, select the mutant
activated by the fewest tests.

This test selection criterion is intended to maximize the
DECO score: a test must normally cover a coverpoint for it
to be suppressed by a mutation. Therefore, the test covering
the most low confidence coverpoints has the best opportunity
to suppress them and in turn increase the overall confidence.

The chosen mutant is contingent on the test selected,
because inserting a mutation that is not activated by that test is
a waste of simulation time. Of these activated mutants, the one
activated by the fewest tests is selected due to the following
heuristic: when a fault is activated by fewer tests, this indicates
that it is modifying less commonly exercised functionality.
Such a mutant may be useful for discounting the coverpoints
also associated with that functionality.

C. Experimental Results

Fig. 2a shows the effect of the proposed ordering method
on the DECO scores in the CPU benchmark. As intended, the
DECO scores of the directed ordering quickly surpass those of
the Certitude ordering. More importantly, this increased con-
fidence is matched by accelerated discounting of coverpoints,
as shown in Fig. 2b.

Incidentally, the directed test/mutant ordering also arrives at
the final mutation testing score with slightly fewer simulations
than the original Certitude ordering. Recall that fault dropping
is used, so the ordering will affect how many tests are
simulated with a given mutant before it is detected (if at all).

This ordering also allows for early termination of mutation
testing. The choice to terminate could be based on a DECO
threshold being reached or a sufficient number of discounted
coverpoints being identified for further analysis: both of these
are achieved faster with the proposed ordering.

Note also that at the end of simulation, a greater number of
discounted coverpoints are identified using the new ordering.

0 10,000 20,000 30,000 40,000
0

20

40

60

80

100

Mutant/Test Simulations (count)

D
E

C
O

Sc
or

e
(%

)

D1 - Certitude D1 - Directed
D100 - Certitude D100 - Directed

(a) CPU DECO scores based on test/mutant ordering

0 10,000 20,000 30,000 40,000

0

200

400

600

Mutant/Test Simulations (count)

D
is

co
un

te
d

(#
)

Certitude Directed

(b) CPU discounted coverpoints based on test/mutant ordering

Fig. 2. DECO scores and discounting progress with Certitude’s original
test/mutant ordering and the proposed confidence–directed ordering.

This discrepancy is also due to fault dropping: a coverpoint
can be discounted in one test by a mutation that is detected
by a different test. If the order of these tests is reversed, the
mutant will be dropped before it has a chance to discount
the coverpoint. Therefore, when discovering discounted cov-
erpoints is more of a concern than simulation time, it may
be best not to perform fault dropping. Instead, every mutant
should be simulated with every test that activates it.

V. CONCLUSION

In this paper we automated coverage discounting by using
it for mutation analysis of an RTL design. We also proposed
a confidence metric and confidence-directed simulation order-
ing. The two benchmarks we demonstrated are quite different
in size, quantity/quality of tests, and type of design. In spite
of this, coverage discounting was able to reveal gaps in both
verification environments, and the proposed test ordering was
able to reveal those gaps faster than regular mutation testing.

REFERENCES

[1] N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton, and F. Letombe,
“Functional qualification of TLM verification,” in DATE, 2009.

[2] A. Sen and M. Abadir, “Coverage metrics for verification of concurrent
SystemC designs using mutation testing,” in HLDVT, 2010.

[3] “Certitude,” http://www.springsoft.com/, 2012.
[4] P. Lisherness and K. T. Cheng, “Coverage Discounting: A Generalized

Approach for Testbench Qualification,” in HLDVT, 2011.
[5] Y. Jia and M. Harman, “An analysis and survey of the development of

mutation testing,” IEEE Trans. on Software Engineering, 2010.
[6] D. Schuler and A. Zeller, “(Un-)Covering Equivalent Mutants,” in Intl.

Conference on Software Testing, Verification and Validation, 2010.
[7] F. Fallah, S. Devadas, and K. Keutzer, “OCCOM-efficient computation

of observability-based code coverage metrics for functional verification,”
IEEE Trans. CAD-ICS, 2001.

[8] “OpenRISC Platform SoC,” http://opencores.org/project,orpsoc, 2012.
[9] “UART 16550 Core,” http://opencores.org/project,uart16550, 2012.

