
An Automated Parallel Simulation Flow
for Heterogeneous Embedded Systems

Seyed Hosein Attarzadeh Niaki, Ingo Sander
Unit of Electronic Systems

School of Information and Communication Technology
KTH Royal Institute of Technology, Stockholm, Sweden

Email: {shan2, ingo}@kth.se

Abstract—Simulation of complex embedded and cyber-physical
systems requires exploitation of the computation power of
available parallel architectures. Current simulation environments
either do not address this parallelism or use separate models
for parallel simulation and for analysis and synthesis, which
might lead to model mismatches. We extend a formal modeling
framework targeting heterogeneous systems with elements that
enable parallel simulations. An automated flow is then proposed
that starting from a serial executable specification generates
an efficient MPI-based parallel simulation model by using a
constraint-based method. The proposed flow generates parallel
models with acceptable speedups for a representative example.

I. INTRODUCTION

One of the key steps in the design of embedded and Cyber-
Physical System (CPS) is development of executable system
models which can be used to validate systems’ functionality
via simulation. Depending on the level of details captured in
a model, its simulation may run much slower than the real
system. On the other hand, continuous increase in complexity
of such systems makes the simulation runs even longer, mak-
ing exploitation of the computation power offered by parallel,
multi- and many-core platforms a necessity.

Parallel and distributed simulation techniques have been
centers of interest for a long time especially for discrete-event
models in areas such as High Performance Computing (HPC).
Usually, a parallel simulation model of a system is developed
using libraries (e.g., MPI), compiler directives (e.g., OpenMP),
or a higher level parallel simulation environment (e.g., Parsec
[1]) and the compiled model is run on a parallel machine.

However, models of embedded systems are used not only
for simulation, but also for analysis and synthesis. Developing
separate models for these objectives is cumbersome and raises
the chance of incompatibilities between them. It is beneficial
to have a single model of a system which can be used both for
efficient parallel simulation and application of formal analysis
and synthesis techniques. To the best of our knowledge, this
problem is not addressed in the available modeling frame-
works, simulation environments, and published literature.

We propose a method for automatic construction of efficient
parallel and distributed simulation models from formal high-
level executable models. The SystemC-based implementation
of the Formal System Design (ForSyDe) modeling framework
[2] is used to capture an initial executable specification of
a system which can be validated by serial simulation using
the SystemC simulation kernel. The developed models are

able to export their own structure as an intermediate format
which is used for analysis and synthesis. We use this format
and a constraint programming-based approach to partition
a specification between different cores/machines statically,
followed by generation of the simulator code for individual
computing elements.

The contributions of this work are
• extending a formal system-level modeling framework

with new elements that enable parallel simulations;
• formulating a Constraint Satisfaction Problem (CSP) to

partition a process network for efficient parallel simula-
tion;

• introducing an automated flow for generation of parallel
simulation models from executable specifications; and

• applying the proposed flow in a case study.

II. THE MODELING FRAMEWORK

This section briefly describes the ForSyDe [3], [4] modeling
framework which is selected as the formal basis and design
entry point of our flow.

A system model is structured as a concurrent hierarchical
process network. Such a network consists of processes, con-
nected by signals. Processes communicate and synchronize
only using signals. As a result, there is no global state in the
system which leads to more inherent parallelism in the spec-
ification. Processes are either composite processes, which are
created by composing other processes, or leaf processes, which
are directly created using process constructors.An example of
a system specification is given in Fig.1 in which p123 is a
composite process formed by composition of leaf processes
p1 to p3.

Models of Computation (MoCs) describe the semantics of
computation and concurrency of the processes in the system.
We use MoCs to model the timing abstraction in each com-
ponent of a heterogeneous system model explicitly. Each leaf
process in the process network belongs to a specific MoC.
For example, in Fig.1, processes p1 to p3 could belong to the
Continuous Time (CT) MoC, which is suitable for modeling
analog systems, or the Synchronous Data Flow (SDF) MoC,
which fits best for modeling analyzable streaming applications.
ForSyDe also supports modeling of heterogeneous systems by
means of Domain Interfaces (DIs), which are processes that
relate signals belonging to different MoCs together.

In order to create a leaf process in the model, the designer
must use a process constructor. A process constructor is a978-3-9815370-0-0/DATE13/ c© 2013 EDAA

+ + =

Process Constructor Functions Initial Values Process

Signal

Leaf
Process

Composite
Process

Fig. 1. Example of a system model in ForSyDe.

formally defined construct which the designer chooses from
the ForSyDe library, provides it with side-effect-free functions
and/or initial values, and obtains a valid process. As an
example, in Fig.1, p3 is created using the mealySY process
constructor. The designer supplies the next-state function fns,
the output-decoding function fod, and an initial state s0
to mealySY and gains a process with the semantics of a
Mealy state machine in the Synchronous (SY) MoC. This key
difference compared to other approaches enables construction
of formal and analyzable models. The concept of wrappers
[5] can also be used to wrap external models e.g., a TLM IP
or an instruction-set-simulator; enabling simulation of lower-
level platform components.

ForSyDe is also implemented as a C++-based class library
on top of the IEEE standard SystemC Domain Specific Lan-
guage (DSL). In this case, an inermediate execution model
(more precisely, simulation model) based on a Kahn Process
Network (KPN) with blocking write to bounded FIFOs is used
to map heterogeneous models of computation on top of the
SystemC kernel [2]. Signals are mapped to SystemC FIFOs
and processes are realized by SystemC modules that include a
single SystemC process which invoke user-provided functions.

In order to perform further analysis and synthesis on a
model specified in ForSyDe, there is a need for a tool which
exports structural and behavioral aspects of the system to
appropriate formats. Following [6], we call the ability of an
executable specification to query its own specification using
a reflective mechanism, introspection. In ForSyDe-SystemC,
processes collect the structural information, such as intercon-
nection of the components and channel types, automatically
before starting the simulation. On the other hand, in ForSyDe,
the behavioral aspects of a model are mainly isolated as func-
tions passed to process constructors, which makes them easy to
access automatically by means of simple user annotations and
naming conventions. In this way, a ForSyDe-SystemC model
can inspect its own behavior and structure, and export it as
suitable formats to be read by external tools and flows. This
method is presented in [2] and is used also in this work.

sim1 sim2

C
om

m
unication Link

Fig. 2. A partitioned process network for parallel simulation.

III. EXTENDING THE FRAMEWORK FOR PARALLEL
SIMULATION

Process networks, especially the way they are defined in
ForSyDe, are inherently parallel due to the fact that commu-
nication and synchronization are performed only using signals.
Theoretically, every single process can be simulated on a
separate processing element provided that it can communicate
with other processes via FIFOs with blocking semantics.
However, this can easily become inefficient because of the
communication overhead or unfeasible due to the limitation
of available processing elements. We would like to partition
the complete process network of the system model into
sub-networks and run sub-simulations for each sub-network.
Special sender/receiver processes need to be defined in the
framework which communicate with the corresponding re-
ceiver/sender processes on the cutting points of the process
network. In this way we can control the granularity of the
simulation parallelism explicitly. Fig.2 depicts the idea for the
process network of Fig.1 which is partitioned into two sub-
networks pn1 and pn2, simulated using simulator instances
sim1 and sim2.

We extend the modeling framework by defining two new
process constructors. The sender constructs processes appears
as a sink in a sub-network of a parallel simulation model but
packs its input events as transmission packets. Similarly, the
receiver-based processes which look like a source process and
unpack the received packets as a signal of events in ForSyDe.
Despite the syntactical resemblance, both of the processes are
semantically equivalent to a combinational process (comb)
with identity function (see Fig.2). In addition, we require
that an implementation of these constructors in a parallel
simulation environment ensures that the semantics of the
communication (and synchronization) between a sender and
receiver process using a communication link adheres to the se-
mantics of communication (and synchronization) between two
ordinary processes using signals. This method of synchroniza-
tion among sub-simulations is commonly called “conservative
synchronization” in the parallel simulation terminology [7].

We chose to implement the sender and receiver process
constructors in the SY MoC of ForSyDe-SystemC using the
Message Passing Interface (MPI) library as the communication
and synchronization mechanism between the sub-simulations.
Given a rank r and a tag t, a sender/receiver communicates
its output/input and synchronizes with a receiver/sender
in a sub-simulation with MPI rank r using the message
tag t. The message tag is unique for each communication
link and is used to distinguish between other send and
receives in a sub-simulation. A sender/receiver uses the

Executable
Serial Model

Interospection

Intermediate
Representation XML + CPP

CSP Problem

Constraint Solver (Gecode)

Partitioned PN

Parallel Intermediate
Representation XML + CPP

Code Generation

sim1 sim2

Parallel
Simulation

Model

Model & Platform
Properties

Analysis &
Synthesis

Flows

Simulation &
Profiling

Fig. 3. A parallel simulation flow for embedded systems starting from formal
executable models. The partitioning problem is formulated as a Constraint
Satisfaction Problem (CSP).

MPI_Send/MPI_Recv command with blocking semantics
in the implementation of prod/prep phase of its abstract
semantics internally.

IV. THE PARALLEL SIMULATION FLOW

The proposed flow for parallel simulation is illustrated in
Fig.3. In this section we present a general overview of the flow
followed by a detailed description of the challenging steps.

The designer starts the modeling using ForSyDe-SystemC
library and constructs an executable model which runs over
the serial SystemC simulation kernel. Using the introspec-
tion feature of the library, an intermediate representation is
generated which can also be used for analysis and synthesis.
Given a set of simulation environment characteristics such as
the communication cost per unit of data and the number of
available processing cores, and the intermediate representation
of the system, a Constraint Satisfaction Problem (CSP) is set
up to identify a partitioning of the process network which leads
to an optimal parallel simulation performance. In this work,
we use the Gecode [8] constraint solver to find a solution
for the CSP problem (See Sec.V for more details). Having
a solution for the process network partitioning problem, an
intermediate representation of the parallel simulation model is
generated. This is achieved by setting a separate simulation
model for each partition of the process network and inserting
the newly introduced sender and receiver processes on each
of the cut signals. This step is discussed in more detailed later
in this section. Finally, the ForSyDe-SystemC code for each of

the sub-simulations is generated which can be compiled and
executed in parallel on the parallel platform.

During insertion of the sender and receiver processes, the
communication parameters passed to their process constructor,
namely the rank of the source/target and the message tag,
should be properly set. More formally, assume pi is originally
connected to pj via a signal sij . For a partitioning that assigns
pi to simk and pj to siml, pi will be connected to a sender
process that communicates to rank = l with a unique tag
tij . Similarly, pj will be connected to a sender process that
communicates to rank = k with the same tag tij .

V. PARTITIONING THE PROCESS NETWORK

The missing piece of the simulation flow presented in Fig.3
is the formulation of a CSP problem for partitioning a system
process network into sub-networks for parallel simulation.
First, we introduce what are the inputs and outputs of the
problem and then the problem variables are defined. We
specify a set of constrains which separate valid partitioning
and a cost function which is used for evaluating the solutions
against each other. Finally, we state which searching and
branching strategies are used for the constraint solver.

a) Inputs and Outputs: The inputs of the problem consist
of 1) the maximum number of available parallel processors M ;
2) Number of processes N ; 3) ei (with 1 ≤ i ≤ N) denoting
the average execution time of each process pi; and 4) ci,j the
average communication time from pi to pj , assuming pi and
pj belong to different sub-simulations. If pi is not connected
to pj in the original specification, then ci,j = 0.

b) Constraint Variables: 1) n is an integer variable
denoting the number of network partitions (sub-simulations)
with a domain of [1,M]; 2) mis (with 1 ≤ i ≤ N) are a set
of integers with the domain [1,M] where mi states to which
sub-network the process pi is assigned; and 3) cost which is
the associated cost to be minimized for each partitioning and
is used for optimization.

c) Constraints: The first constraint limits the mis to the
number of available partitions:

mi ≤ n; 1 ≤ i ≤ n (1)

In order to break the symmetry and reduce the size in the
design space, we fix the first process to the first sub-network:

m1 == 1 (2)

The cost function for which the optimization is performed
is an estimation of the total execution time after partitioning.
Here, we assume that the communication cost of the processes
in the same partition is negligible compared to the execution
time of the processes and the communication overhead be-
tween the partitions.

cost == avge +

∑n
i=1 |

∑N
j=1 ej |mj=i − avge|

n

+

∑N
i=1

∑N
j=1 ci,j |mi 6=mj

|{ci,j 6= 0|mi 6= mj , i, j ∈ [1, N]}|

(3)

where avge =
∑N

i=1 ei
n is the average execution time of sub-

simulations. The equation sums the average computation time

Read Frames

Chanule Right 0Chanule Left 0Chanule Right 0Chanule Left 0

Merge

Granule 0 Granule 1

p1

p2 p3

p4 p5 p6 p7

p8

Fig. 4. The process network of the MP3 decoder system.

of each sub-network plus a penalty for unbalanced distribution
of processes and the average communication overhead for
communication between the sub-networks.

Implementation decisions might impose additional con-
straints. For example, the current implementation of ForSyDe-
SystemC represents signals in the CT MoC as functions over
time [2]. C++ does not support serialization of function objects
for communication and thus, we need to restrict the mapping
of CT process clusters to the same sub-simulation.

We chose to branch first on the number of partitions n
starting from the minimum value, and then on mis with
smallest domain and minimum value. A branch and bound
algorithm is used for searching the design space.

VI. CASE STUDY

The presented design flow is tested on an MP3 decoder sys-
tem model. The system’s process network is shown in Fig.4.
It consists of 8 key functional processes which implement the
decoding algorithm. First, an executable ForSyDe-SystemC
model of the system is run under the profiler to extract the
average execution time of each actor. We used the Callgrind
profiler [9] which can report the inclusive execution time of
each function. Looking at the results we see that around 93%
of the simulation time is spent in the computational functions,
which supports our decision in neglecting the communication
delays of the processes in the same sub-simulation. The
parallel simulation platform in our case is a Linux workstation
powered by an Intel Quad core CPU running the OpenMPI
environment. The average communication overhead of an MPI
send-receive pair per byte is measured separately using a
simple program which was 7 × 10−9sec/Byte in our case.
This is used together with the profiling results to estimate the
inter-process communication delay between sub-simulations.
These results were printed as the inputs to a Gecode script
which we use to solve our CSP. Running the Gecode script
for this problem was instantaneous and resulted for optimal
partitonings for 2- to 4-processor parallel simulations. The
results are presented in Table I as the constraint variables
mi. For each case, the corresponding sub-simulation systems
were generated, compiled and executed under the MPI runtime
as an MIMD program. A speed-up of 1.7x was observed for
the 2-core solution but there was no performance gain in the
simulation time for the 4-core case.

TABLE I
OPTIMAL PARTITIONINGS FOR THE MP3 DECODER EXAMPLE.

of sub-sims mis
2 {1, 2, 2, 1, 1, 2, 2, 1}
3 {1, 2, 2, 1, 2, 3, 3, 1}
4 {1, 2, 3, 1, 2, 3, 4, 4}

VII. RELATED WORK

Some of the related works such as Parsec [1] provide a
dedicated input languages and execution environments. [7]
gives a good overview on these works. These approaches
do not provide sufficient means for modeling heterogeneous
systems and their input models are not suitable application of
analysis and synthesis methods. Modification of the SystemC
kernel for distributed simulation based on the Parallel Discrete-
Event Simulation (PDES) model has also been performed.
Approaches like [10] modify the simulation kernel, take a
conservative approach for synchronization, and add new Sys-
temC construct to the language to explicitly control the level
of parallelism. Also in [11], the kernel is modified but the
distribution is done automatically and is hidden from the user.
Unlike the aforementioned approaches, we do not modify the
SystemC kernel and use an offline method for distributing the
processes among the computing nodes.

VIII. CONCLUSION

We have presented a parallel and distributed simulation flow
to be integrated in the design flow of heterogeneous embedded
systems. It partitions a verified serial model by solving a Con-
straint Satisfaction Problem (CSP) and generating simulation
code for the partitioned system. The advantages of the flow
are that it starts from the same model that is used also from
analysis and synthesis; it is ready for automation and no user
intervention is required; it uses the inherent parallelism in the
original specification and hence, does not require any parallel
programming expertise.

REFERENCES

[1] R. Bagrodia, R. Meyer, M. Takai, Y.-A. Chen, X. Zeng, J. Martin, and
H. Y. Song, “Parsec: a parallel simulation environment for complex
systems,” Computer, 1998.

[2] S. Attarzadeh Niaki, M. Jakobsen, T. Sulonen, and I. Sander, “Formal
heterogeneous system modeling with systemc,” in Proc. of FDL, 2012.

[3] I. Sander and A. Jantsch, “System modeling and transformational design
refinement in ForSyDe,” IEEE TCAD, 2004.

[4] A. Jantsch, Modeling Embedded Systems and SoCs. Morgan Kaufmann,
2004.

[5] S. H. Attarzadeh Niaki and I. Sander, “Co-simulation of embedded
systems in a heterogeneous moc-based modeling framework,” in Inter-
national Symposium on Industrial Embedded Systems (SIES), 2011.

[6] H. D. Patel and S. K. Shukla, Ingredients for Successful System Level
Design Methodology, 1st ed. Springer, Jun. 2008.

[7] A. Sulistio, C. S. Yeo, and R. Buyya, “A taxonomy of computer-
based simulations and its mapping to parallel and distributed systems
simulation tools,” Software: Practice and Experience, 2004.

[8] C. Schulte, G. Tack, and M. Lagerkvist, “Modeling and Programming
with Gecode,” 2012.

[9] J. Weidendorfer, “Sequential performance analysis with callgrind and
kcachegrind,” Tools for High Performance Computing, 2008.

[10] B. Chopard, P. Combes, and J. Zory, “A conservative approach to Sys-
temC parallelization,” in Computational Science ICCS 2006. Springer
Berlin / Heidelberg, 2006.

[11] D. R. Cox, “RITSim: distributed systemC simulation,” master’s thesis,
2005.

