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Abstract—Accurate estimators of key design metrics (power, area,
delay, etc.) are increasingly required to achieve IC cost reductions in
system-level through physical layout optimizations. At the same time,
identifying physical or analytical models of design metrics has become
very challenging due to interactions among many parameters that span
technology, architecture and implementation. Metamodeling techniques
can simplify this problem by deriving surrogate models from samples of
actual implementation data. However, the use of metamodeling techniques
in IC design estimation is still in its infancy, and practitioners need
more systematic understanding. In this work, we study the accuracy
of metamodeling techniques across several axes: (1) low- and high-
dimensional estimation problems, (2) sampling strategies, (3) sample sizes,
and (4) accuracy metrics. To help obtain more general conclusions, we
study these axes for three very distinct chip design estimation problems:
(1) area and power of networks-on-chip routers, (2) delay and output
slew of standard cells under power delivery network noise, and (3)
wirelength and buffer area of clock trees. Our results show that (1)
adaptive sampling can effectively reduce the sample size required to derive
surrogate models by up to 64% (or, increase estimation accuracy by up to
77%) compared with Latin hypercube sampling; (2) for low-dimensional
problems, Gaussian process-based models can be 1.5x more accurate than
tree-based models, whereas for high-dimensional problems, tree-based
models can be up to 6x more accurate than Gaussian process-based models;
and (3) a variant of weighted surrogate modeling [7], which we call hybrid
surrogate modeling, can improve estimation accuracy by up to 3x. Finally,
to aid architects, design teams, and CAD developers in selection of the
appropriate metamodeling techniques, we propose guidelines based on the
insights gained from our studies.

I. INTRODUCTION

In advanced technology nodes, IC product design faces tremendous
challenges of power and cost reduction even as performance and
utility continue to scale [22]. Effective design space exploration and
design optimization increasingly depend on the accurate modeling and
estimation of key design metrics (e.g., power, area or delay) throughout
the system-level through physical layout flow. Such modeling and
estimation tasks are complicated by the fact that the relevant design
metrics are affected by a tremendous number and range of parameters
- microarchitectural, design implementation, operational, technology,
and manufacturing. Moreover, the space of possible design outcomes
grows combinatorially with the number of parameters, so estimation
models must be obtained with relatively sparser numbers of data
points.

In general, derivation of physical or analytical models is very
difficult because at high dimensions, complex interactions between
parameters are hard to predict, and at low dimensions, artifacts of
the optimizations within IC design tools are hard to model accurately
[13]. Recent works (e.g., [12], [19]) have shown that metamodeling
techniques can be effective in creating surrogate models from sample
data that is obtained from the actual chip implementation tools or
flows. Moreover, metamodeling techniques have been demonstrated to
have high accuracy and low modeling overhead for several IC design
estimation applications. However, as there has yet been only limited
use of metamodeling techniques for IC design estimation, practitioners
lack systematic understanding and guidance regarding how to choose
and apply the available techniques.

In this work, we study the accuracy of three popular metamodeling
techniques [9], Multivariate Adaptive Regression Splines (MARS),
Radial Basis Functions (RBF), and Kriging (KG), for both low-
and high-dimensional modeling applications. We also study hybrid
surrogate modeling (HSM), a variant of [7], which obtains improved
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estimates by finding weighted combinations of estimates from individ-
ual surrogate models. We furthermore study two sampling strategies,
Latin Hypercube Sampling [11] and Adaptive Sampling [6], to under-
stand the impacts of training set methodology on modeling efficiency
and accuracy. Finally, we also study the impact of the number of
dimensions (D) and the sample size (N) on accuracy. Overall, the
axes of our study are

• quality-of-results metrics: maximum and average errors;
• resource metrics: number of dimensions (D), number of samples

(N);
• modeling techniques: MARS, RBF, KG, and HSM; and
• sampling strategies: LHS, AS.

To help ensure generality of our observations, we study the above
axes for three distinct types of estimation problems in IC design.

• NoC: estimation of area and power of Network-on-Chip (NoC)
routers across microarchitectural and implementation parameters.
Following the approach of [13], we formulate this as a low-
dimensional (low-D) modeling problem based on microarchitec-
tural (e.g., flit-width, number of virtual channels) and implemen-
tation (e.g., clock frequency) parameters.

• PDN: estimation of delay and output slew of a standard cell
(inverter) in the presence of power delivery network (PDN) noise.
Extending the work of, e.g., [4], we formulate this as a high-
dimensional (high-D) modeling problem based on implementation
(e.g., load capacitance, offset of voltage noise) and technology
(e.g., threshold voltage, process corner) parameters.

• CTS: estimation of wirelength and buffer area of clock trees
obtained from a commercial clock tree synthesis (CTS) flow.
We formulate this as a high-D modeling problem based on
implementation (e.g., skew bound, max transition time) and
technology (e.g., wire widths and parasitics) parameters.

Our results reported below offer a number of practically valuable
insights. For example, we observe that RBF and KG are more accurate
than MARS for low-D problems such as NoC, whereas MARS is
significantly more accurate than RBF and KG for high-D problems
such as PDN and CTS. The HSM technique can be up to 3x
more accurate than the best surrogate model across low- and high-
D problems. We also observe that AS is always superior to LHS,
e.g., AS reduces the simulation (sample generation) overhead by up
to 64% for a given model accuracy requirement, and reduces worst-
case estimation errors by up to 77% for a given sampling budget. Our
experiments also shed light on threshold and tradeoffs related to issues
such as the “curse of dimensionality” and risk of overfitting. The key
contributions of our work are summarized as follows.

• We demonstrate the accuracy limits of metamodeling techniques
for low- and high-D modeling in IC design applications across
multiple axes. We show that at low-D, RBF and KG can be up to
1.5x more accurate than MARS, whereas at high-D MARS can
be up to 6x more accurate than RBF and KG.

• We achieve reduced sample (training set) generation overheads
by using the latest AS techniques [6]. AS achieves up to 77%
reduction in worst-case estimation error or up to 64% reduction
in N as compared to LHS with equivalent resources.

• We apply HSM, a type of weighted surrogate modeling [7], to
surrogate models generated by MARS, RBF, and KG by adding
weights to the individual estimates. HSM achieves up to 3x
reduction in the worst-case estimation error.



• We provide high-level metamodeling guidelines for estimation
problems in IC design to aid architects, design teams, and CAD
developers.

In the remainder of this paper, Section II reviews previous works,
and Section III presents background on metamodeling techniques,
multicollinearity, and measures of metamodeling accuracy in high
dimensional applications. Section IV describes our methodologies for
three types of modeling problems in IC design, namely, power and
area estimation for NoCs, standard-cell delay and slew estimation
under PDN noise, and wirelength and buffer area estimation for CTS.
Section V presents results on estimation errors across all axes of our
study for each type of problem. In Section VI, we summarize our
work and outline directions for future work.

II. RELATED WORK

Surrogate models are gaining popularity for early exploration and
characterization of the solution space for various aspects of IC design.
These models are broadly classified as (1) Gaussian process-based
models (GPM), and (2) tree-based models [9]. MARS is an additive
tree-based model, whereas RBF and KG are GPMs. Kahng et al. [12]
use MARS with linear splines to estimate NoC area and power. They
report about 60% worst-case and about 6% average errors for both
area and power. Cheng et al. [4] also report similar errors in model-
ing the worst-case performance under power supply noise variation
by using MARS. Ilumoka [10] uses RBF to estimate interconnect
crosstalk but does not quantify the estimation errors as compared to
SPICE simulations. Liu [15] uses KG to model IR drop and on-chip
temperature and reports worst-case error to be within 76%. Goel et
al. [7] propose weighted surrogate modeling instead of using the best
estimation model. Our study of HSM below applies the idea of [7]
using least-squares regression to determine the weights.

Sample selection is a key step in obtaining accurate and robust
surrogate models. LHS [11] is a popular sampling technique that
selects samples uniformly across the ranges of the input parame-
ters. However, it is not effective (1) when systems have complex
interactions such that the response changes non-monotonically with
certain input combinations, while changing uniformly with other input
combinations [6], or (2) when D increases, which can exponentially
increase the number of samples required to generate accurate surrogate
models. AS is gaining popularity as it uses fewer samples as compared
to LHS to derive surrogate models that are highly accurate. Gorissen
et al. [8] use AS to study accuracy, as well as impacts of D and
N, in various surrogate models for low-noise amplifier (LNA) gain
estimation. Although they quantify the root mean square error (RMSE)
in each experiment, it is difficult to assess when some metamodels
will perform better than others from the characteristics of the input
parameters; thus, they propose to try all models and choose the best
one. Zhu et al. [20] use AS to demonstrate significant reduction in
size of lookup tables to store PVT-sensitive I-V characteristics. They
report average error of 6%, but do not mention the worst-case error.

III. METAMODELING BACKGROUND

We apply metamodeling techniques1, MARS, RBF, and KG, to three
types of problems in IC design. At a high level, these techniques
model the response as a weighted sum of functions of input parameters
plus noise. Formally, suppose we have N values of D parameters for
which we know the response, we denote a vector of parameters as
~x =< x1,x2, ...,xD >, and its response as y(~x). The set of N values of
D parameters and their responses is called a training set, each value
and its corresponding response is referred to as a sample. We derive
surrogate models from the training set to predict future response as

ŷ(~x) = f (β,~x)+ ε(~x) (1)
where ŷ(~x) is the predicted response, f (β,~x) expresses the determin-
istic part of the response, and ε(~x) is a random noise function. f (β,~x)

1Metamodeling is also referred to as non-parametric regression modeling and surrogate
modeling in statistical literature. We use the term “metamodeling” to refer to the modeling
techniques and the term “surrogate models” refers to the models derived by these
techniques.

is a linear combination of D known functions and is a realization of
the regression model given by

f (β,~x) = β0 +β1 f (x1)+β2 f (x2)+ · · ·+βD f (xD) (2)
where β0,β1, ...,βD are the regression coefficients determined by the
regression function, f (xi). β0 is typically set to 1 by most models.
The metamodeling techniques use different forms of the regression
function, f (xi), where i = 1,2, ...,D, and the random noise function,
ε(~x), to minimize the estimation errors.

Surrogate models are more accurate than ordinary linear fit using
least-squares regression (LSQR) because they are generalizable, that
is, they minimize errors on future input. This is achieved by minimiz-
ing the generalized cross validation (GCV) error instead of minimizing
only the sum of squared errors in the training set. GCV is a mean
squared error of the samples in the training set multiplied by a penalty
to account for increased variance with increasing model complexity
and to prevent overfitting. It is given by

GCV =
1
N
·
[

1− C
N

]−2
·

N

∑
i=1

[yi − ŷi]2 (3)

where yi and ŷi denote the response y(~x) and predicted response ŷ(~x),
respectively, to the ith sample, and C is a penalty to avoid overfitting
which is typically equal to D.

The “curse of dimensionality” imposes three important requirements
for accurate modeling [19] – (1) more samples are required as D
increases, (2) the range of parameters must describe the fitted response
surface, and (3) the samples should be independent and identically
distributed (iid), that is, they should be minimally correlated. We use
two sampling strategies – (1) LHS [11], and (2) AS with lola-Voronoi
technique [6]. While LHS selects new samples to uniformly cover
the ranges of parameters, AS uses a combination of exploitation- and
exploration-based methods to select new samples where the residuals
are the largest as well as in uncovered ranges of the parameter space.

A. Multivariate Adaptive Regression Splines (MARS)
Multivariate Adaptive Regression Splines are additive tree-based

regression methods. The regression function, f (xi), is a product of
spline basis functions which are constructed by using iterative forward
and backward steps [9], where basis functions are initially added and
pruned later to minimize the GCV error. These steps determine the
number of basis functions, number of interactions between parameters,
and the knot2 locations. f (xi) is given by

f (xi) =
Ii

∏
j=1

[
b ji ·

(
xv − t ji

)]
+ (4)

where Ii is the number of interactions between parameters in the ith
basis function, b ji =±1, xv is the vth parameter, t ji is the knot location
on each of the corresponding parameters, and the subscript “+” denotes
the positive part of a truncated power function.

B. Radial Basis Functions (RBF)
Radial Basis Functions use kernel functions which are symmetric

and centered at each parameter in the training set [9]. RBF models in
two phases – (1) the forward selection phase repeatedly adds kernel
functions until the sum of squared errors cannot be minimized, and
(2) the backward selection phase that prunes these kernel functions
such that the GCV error is minimized. The model is represented as

f (xi) =
N

∑
j=1

a j ·K(µ j,r j,xi) (5)

where r j are scaling factors, K(.) is a kernel function, µ j are centroids,
and a j are coefficients of the kernel function. Popular choices of kernel
functions are Gaussian, cubic, and multiquadrics [27].

C. Kriging (KG)
Kriging is a special kind of interpolation model that models the

random noise, ε(~x), with a weighted correlation model between
neighboring values in~x. This is a distinguishing feature of KG because
other models treat ε(~x) as a Gaussian random variable with zero mean
and a constant variance [15]. The correlation model is given by

2Knot is the value of a parameter where a piecewise line segment changes its slope.



R(θ,xi,xk) =
N

∏
j=1

R j(θ, xk − xi) (6)

where θ is a correlation function parameter. Popular choices of
R j(θ, xk − xi) are exponential, Gaussian, linear, spherical, cubic, or
spline [16]. Popular choices for the regression function, f (xi), are
linear or quadratic polynomials.

D. Multicollinearity at high dimensions

The vectors of parameters and their responses are also represented
as matrices, X , and y, respectively. The dimension of X is N×D, and
the dimension of y is N×1. Matrix β̂ has estimates for the regression
coefficients and is given by

β̂ =
(
X ′X

)−1 (
X ′y

)
= R−1

xx Rxy (7)
where Rxx is a matrix containing correlations between parameters, xi
and x j, (i, j = 1,2, ...,D), and Rxy is a matrix containing correlations
between~x and y(~x). The estimate of variance of β̂ is σ̂2 ( 1

N R−1
xx

)
, where

σ̂2 is the conditional variance of y given X , and is expressed as [17]

σ̂
2 = var(y|X) =

(
N

N−D

)
·
|Rxy|
|Rxx|

(8)

R2 = 1− SSE
SST

= 1− σ̂2(N−D)
N

= 1−
|Rxy|
|Rxx|

(9)

Multicollinearity arises when parameters are linearly dependent. The
matrix X has less than full column rank, is ill-conditioned, and the
product X ′X is almost singular. The variance of regression coefficients
and the coefficient of determination increase according to Equations
(8) and (9) when X is ill-conditioned and/or if the responses and
vectors of parameters are highly correlated. Various diagnostic tests
such as F-test, condition number, analysis of variance, and variance
inflation factor (VIF) [1], [2], [9] are used to detect ill-conditioned
matrices X . In our work, we use the VIF test.

Multicollinearity often occurs in high-D modeling because the
probability of linear dependence between parameters increases. Fur-
thermore, it is hard to generate a training set that can avoid this
phenomenon. We cannot drop parameters, because for problems in IC
design, understanding interactions between parameters may be neces-
sary. For example, given a load (C`), we need to determine the right
sizes (S) of drivers so that delay and slew are minimized. Techniques
that use (X ′X)−1 as a factor (e.g., RBF and KG) may be inaccurate
and may result in large estimation errors. Ridge regression is a way
to “cure” multicollinearity by penalizing large regression coefficients
with a factor α [9]. The regression coefficients are estimated by
(X ′X +αI)X ′y, where I is the identity matrix.

IV. MODELING METHODOLOGIES

We now describe our modeling methodologies for each type of
problem – NoC, PDN, and CTS. Table I describes the input parameters
and their ranges used to generate the golden data points. The number
in parentheses within the “Problem type” column denotes the number
of parameters or D of the problem. NoC is an instance of a low-
D problem with D = 5, whereas PDN and CTS are instances of
high-D problems with D = 11 and D = 10 respectively. The range
is represented as [LB,UB], where LB and UB represent lower and
upper bounds of parameters.

For the NoC problem, we use the Netmaker [28] RTL, configure
the microarchitectural parameters in the RTL by using values from the
ranges described in Table I, and run synthesis, place-and-route (SP&R)
simulations by using commercial tools, Synopsys Design Compiler
vF-2011.09-SP4-64 [23] and Cadence SOC Encounter vEDI10.1 [21].
We extract the total area of standard cells and total power from these
simulations. We generate a total of 1024 data points; some of these
are used for training and the remainder are used as test data points.
We use TSMC65PLUS and TSMC45GS cell libraries in our flows.

For the PDN problem, we use voltage parameters to study the
complex interactions between these parameters on cell delay and
output slew at nominal as well as near-threshold (NTV) regions of
operating voltages. Accurate modeling of delay at NTV is still an
open problem [14]. Devices operate at NTV when VDD values are
close to but slightly larger than VT H values, e.g., 0.5V, 0.6V, etc.

TABLE I
INPUT PARAMETERS AND THEIR RANGES

Problem type Parameter Description Range
NoC P # ports [3, 9]
(5) V # VCs [2, 7]

B # buffers [2, 7]
F flit-width [16, 64]
C frequency [400, 1000]MHz

PDN S cell size x[1, 20]
(11) C` load [0.9, 84.2]fF

Slewin input slew [0.56, 7.09]ps
Namp noise amplitude [0.0, 0.27]V
Nslew noise slew [10, 90]ps
No f f noise offset [−150, 150]ps

T temperature [233.15, 398.15]K
VDD source voltage [0.5, 1.0]V
VT H threshold voltage [0.14, 0.47]V
VBB body bias [0.05, 0.15]V

Pcorner process corner [FF, SS, TT]
CTS Msinks # sinks [3, 100]K
(10) Mskew max. skew [25, 120]ps

Mdelay max. delay [0.6, 1.5]ns
Btype buffer type [INV, BUF]
Bsize max. buffer size x[8, 24]
Btran buffer transition [180, 400]ps
Stran sink transition [150, 380]ps

Mlevels max. levels [7, 25]
Mww max. wire-width x[1, 2, 3]
Carea core area [2, 20]mm2

We create SPICE netlists of inverters configured with the parameters
from Table I and observe delay and output slew for each input
combination. To derive surrogate models, we combine VDD and VT H
as one parameter VDD −VT H , the overdrive voltage, instead of using
both VDD and VT H . We generate three million data points by using
Synopsys HSPICE vE-2010.12 [24] simulations and the device models
in the TSMC65GPLUS design kit.3

For the CTS problem, Carea and Mlevels are dependent on Msinks.
Carea is calculated by assuming that 5% of the total instances are
flip-flops, and Mlevels is calculated as logFO Msinks, where FO is
the average fanouts and is assumed to be 10. We generate Design
Exchange Format (DEF) [29] files with sinks placed uniformly within
Carea. We use only DFQD4 cells as sinks. The clock entry point is
fixed at the left-bottom corner of the die. We set up the wire width
constraints by creating non-default rules (NDR) for all the metal layers
in the technology Library Exchange Format (LEF) file [29], and the
remaining constraints in the clock tree specification file [30]. We
load the design from the DEF, perform clock tree synthesis followed
by global and detailed routing by using Cadence SOC Encounter
vEDI10.1 [21]. We extract the clock tree wirelength and total buffer
area from these simulations. We use TSMC65PLUS and TSMC45GS
cell libraries during clock tree synthesis and routing, and generate a
total of 1024 data points.

Figure 1 shows our metamodeling flow. For each type of problem,
the golden data points are generated by using the methodology
described above. Some of these data points are used to generate
samples for the training set; the remainder are used as test data points.
We use both LHS and AS to generate the training set. Next, we fit
the training data points using the metamodeling techniques. We use
academic MATLAB [25] toolboxes for MARS [26], RBF [27], and KG
[16]. The surrogate models generated by these techniques are used to
estimate the responses from the parameters in the test data points.
The estimated and the golden responses are compared to calculate
the maximum (or worst-case) and average estimation errors for each
metamodeling technique and for each response of the three problems.

We describe hybrid surrogate modeling (HSM), a variant of
weighted surrogate modeling [7]. In this technique the response is
estimated by adding weights to the estimated response from each of
the surrogate models. We express this formally as

ŷ(~x) = w1 · ŷ(~x)MARS +w2 · ŷ(~x)RBF +w3 · ŷ(~x)KG (10)

3We could not run HSPICE using the TSMC45GS libraries because the device models
were not available in the design kit.



where w1, w2, and w3 are the weights of estimated responses of
surrogate models for MARS, RBF, and KG respectively. We use least-
squares regression to fit the hybrid model to 75% of the training
data points which are randomly selected [9]. We perform GCV on
the remaining 25% of the training data points to estimate the GCV
error. The fitting is repeated 10 times. The weights that give the
minimum GCV error out of these 10 tries are used to generate the
hybrid surrogate model.

 

Fig. 1. Metamodeling flow.

V. RESULTS

We conduct experiments according to the methodologies described
for each type of problem (NoC, PDN, and CTS) in Section IV. We
use the results to study three issues.

• Impact of sampling strategies and sample sizes. We compare
accuracies of AS over LHS with different N. We also show that
increasing N does not always improve accuracy. We empirically
show that estimation errors can increase when too many samples
are used to derive the model because of overfitting.

• Impact of dimensionality. We compare accuracies of metamodels
at low- and high-D for the axes outlined in Section I.

• Metamodeling guidelines for IC design. Based on our observa-
tions, we provide metamodeling guidelines for low- and high-D
modeling problems in IC design.

We calculate error by comparing model estimations with golden results
from commercial tools. Corresponding correlation coefficients can be
estimated as (100− error%)/100.
A. Impact of sampling strategies and sample sizes

To study the impact of model accuracy on sampling strategies and
the number of samples (N), we consider delay estimation of cells
under PDN noise at 65nm.4 We use seven parameters (D = 7) in the
study to demonstrate the accuracies of MARS, RBF, KG, and HSM
techniques. When D > 7, KG and RBF have large estimation errors, so,
for a fair comparison across all techniques we use seven parameters.
We use sampling strategies, LHS and AS, to generate training sets
with N = {600,650,700,750,800,850,900}. We use 5000 data points
for testing. Figures 2(a) and (b) show the maximum and average
estimation errors of LHS and AS as N varies for each technique.
In Tables II and III, we show the percentage reduction in N for the
same estimation errors and percentage reduction in estimation errors
for the best-case estimates from LHS to AS across all the techniques.

TABLE II
% REDUCTION IN SAMPLE SIZE FOR THE SAME ERROR FROM LHS TO AS

MARS RBF KG HSM
Max. Avg. Max. Avg. Max. Avg. Max. Avg.

NoC 52.94 52.94 64.71 64.71 52.94 52.94 64.71 64.71
PDN 21.43 21.43 21.43 21.43 11.76 11.76 21.43 21.43
CTS 26.32 26.32 26.32 26.32 24.19 24.19 26.32 26.32

TABLE III
% REDUCTION IN ESTIMATION ERRORS FROM LHS TO AS

MARS RBF KG HSM
Max. Avg. Max. Avg. Max. Avg. Max. Avg.

NoC 77.42 80.07 72.53 82.63 71.10 66.56 74.82 68.23
PDN 2.63 33.09 34.47 3.48 1.34 10.77 6.83 11.16
CTS 54.70 30.45 52.15 8.25 1.82 5.24 52.53 24.15

Observation 1: AS is always better than LHS as it gives smaller
estimation errors across metamodeling technique as seen in Table III.
The maximum estimation error of AS can be up to 77% less than LHS.
This is because uniform sampling by LHS cannot capture nonlinear
changes that occur in response to changes in parameters. By using an

4We observe similar trends in estimating output slew under PDN noise, wirelength and
buffer area of clock trees, and area and power of NoCs. Owing to space constraints we
cannot show all these results.

 
Fig. 2. Comparison of LHS vs. AS across all metamodeling tech-
niques for cell delay estimation under PDN noise with D = 7 and N =
{600,650,700,750,800,850,900}. (a) Maximum and (b) average estimation
errors. Observe that (1) with N = 650, AS gives 33% smaller estimation errors
as compared to LHS across all techniques; (2) minimum error occurs with
N = 700 for AS and N = 850 for LHS; and (3) adding samples such that
N > 700 for AS and N > 850 for LHS causes the estimation errors to increase.

exploitation-based approach, AS is better able to capture these such
nonlinearities in the response in the training set because it uses an
exploitation-based approach.
Observation 2: AS reduces N by up to 64% to achieve the same
estimation errors as LHS as seen in Table II. AS uses exploitation-
and exploration-based approaches to add new samples to the training
set. It adds samples when the response is sensitive to small changes
in the parameters; it does not add samples when the sensitivity of the
response is almost constant to changes in the parameters.
Observation 3: Maximum and average estimation errors increase
across all techniques for both LHS and AS after reaching a minimum.
Adding more than the required number of samples increases the
variance in the training set which leads to overfitting in the surrogate
models, and causes the GCV errors of the models to increase. As a
result, estimation errors increase when test data points are used to
predict responses using the surrogate models. The minimum occurs
with N = 700 for AS, and N = 850 for LHS.
B. Impact of dimensionality

To study the impact of dimensionality on model accuracy we
demonstrate area and power estimation of NoCs as an instance of
low-D modeling problem. We also demonstrate cell delay and output
slew estimation under PDN noise, and wirelength and buffer area
estimation of clock trees as instances of high-D modeling problems.
Here, we report results with only AS since the results in Section V-A
empirically demonstrate that AS is always better than LHS.

1. Low-D modeling: NoC
In the NoC power and area estimation problem, we have D = 5. We
observe that estimation errors are similar at 45nm and 65nm with AS.
Hence, we report the average of the maximum and average estimation
error values across the two technologies. Figures 3(a) and (b) show
the maximum and average estimation errors in area and power.
Observation 4: GPMs are highly accurate for low-D modeling as
compared to tree-based models. The maximum estimation error is
about 20% for GPMs such as RBF and KG, whereas it is about 30%
for tree-based models such as MARS. This is because at low-D, the
correlation between parameters is small. We observe VIF values are
less than 0.33 for all parameters.5

5When VIF values are < 0.33, it indicates the parameters are well-conditioned [2].



 

Fig. 3. Comparison of estimation errors for NoC area and power with N =
{36,48,64,102} generated using AS. (a) Maximum and (b) average.

Observation 5: HSM, in general, outperforms individual surrogate
models. For example, HSM can reduce the maximum estimation
errors by up to 1.5x as compared to individual surrogate models. For
example, HSM reduces the maximum estimation errors in area and
power by 8% and 12%, respectively, with N = 36.

2. High-D modeling: PDN
In the problem of cell delay and output slew estimation under PDN
noise, we have D = 11. Each process corner, FF, TT, SS, etc.,
is characterized by several process parameters such as gate-oxide
thickness, channel length, etc. It is difficult to create a unified model
that uses the process corner as one parameter because the detailed
interactions between process parameters within each corner become
obscure. So, we create three models, one for each process corner, and
report the average of maximum and average estimation error values.
We further use the overdrive voltage, VDD −VT H , as one parameter
instead of using both VDD and VT H . So, we effectively use D = 9 to
model this problem. Figures 4(a) and (b) show the maximum and
average estimation errors for each technique as D varies. We show
these results for N = 700 data points generated using AS, and a test
set of 5000 data points.
Observation 6: MARS, in general, outperforms RBF and KG in
high-D problems. For example, when D > 7, multicollinearity [1]
significantly increases the variance of the regression coefficients as,
and it causes accuracy of RBF and KG to degrade significantly [3],
[5], [18]. We observe that VIF values [2] for certain combinations
of parameters can be as high as 0.994! More specifically, S, C`, and
(VDD−VT H ) are highly correlated because increase (resp. decrease) in
S can be compensated by increase (resp. decrease) of C`, or decrease
(resp. increase) of (VDD −VT H ) to give roughly the same cell delay
and output slew. RBF and KG are highly sensitive to multicollinearity,
whereas MARS is not, because it fits the change in response using
piecewise splines. We use ridge regression (RBF+RR in figures) to
“cure” multicollinearity, however, as seen from the plots, it is only
marginally effective in reducing the large estimation errors of RBF.
Observation 7: Similar to Observation 5, HSM can reduce the
maximum and average estimation errors by 20% when D = {6,7},
and the maximum estimation errors of individual surrogate models
are around 35% and have variance larger than 52%. However, when
D = {8,9}, the average estimation errors of the RBF, RBF+RR, and
KG are very high as compared to that of MARS. Therefore, the
weight of surrogate model for MARS dominates the weights of other
surrogate models. This is the reason the estimation errors of HSM
and MARS are the same.

 

Fig. 4. Comparison of estimation errors for cell delay and output slew under
PDN noise at different D with N = 700 generated using AS. (a) Maximum and
(b) average.

3. High-D modeling: CTS
In the problem of wirelength and buffer area estimation of a clock
tree, we have D = 10. We observe similar estimation errors at 45nm
and 65nm, so we report the average of the maximum and average
estimation error values. Figures 5(a) and (b) show the maximum and
average estimation errors for wirelength and buffer area. We show
these results for N = 84 data points generated using AS, and a test
set of 1024 data points.

 

Fig. 5. Comparison of estimation errors in wirelength and buffer area of clock
trees at different dimensions with N = 84 generated using AS. (a) Maximum
and (b) average.

Observation 8: Similar to Observation 6, when D≥ 8, high collinear-
ity between the CTS parameters causes VIF values to be as high as
0.93, and result in large estimation errors for RBF and KG. More
specifically, Mskew, Mlevels, Btran, and Bsize have VIF values larger
than 0.75 when D = {9,10}.
Observation 9: Similar to Observation 5, HSM reduces the maximum
estimation error by up to 3x when the average errors of individual
surrogate models are around 30% and have variance of around 46%.



For example, with certain parameters, RBF+RR is more accurate than
MARS, and vice versa. Therefore, we obtain weights that minimize
the sum of squared errors and the GCV errors ≥ 20% as compared to
those of the individual surrogate models.

C. Metamodeling guidelines for IC design

From our observations in Sections V-A and V-B, we provide
metamodeling guidelines for IC design that may be useful to architects,
design teams, and CAD developers for fast and accurate design
space exploration. We propose to always use AS. Figure 6 shows
our guidelines in the form of a flowchart. We classify an estimation
problem as low-D if D ≤ 5, else it is high-D. Parameters exhibit low-
collinearity if their VIF values are at most 0.33, else they exhibit high-
collinearity. For highly collinear parameters, if the average errors of
estimates of the surrogate models are at most 30% and the variance in
errors is at most 50%, then the problem is classified as small µ and σ2,
else it is classified as large µ and σ2. Based on these classifications
our guidelines are as follows

1) Low-D, low collinearity: Try RBF and KG. Try HSM with the
estimates of these surrogate models.

2) Low-D, high collinearity: Try only MARS.
3) High-D, low collinearity: Try MARS, RBF, and KG. Try HSM

with the estimates of these surrogate models.
4) High-D, high collinearity, large µ and σ2: Try only MARS.
5) High-D, high collinearity, small µ and σ2: Try MARS,

RBF+RR, RBF, and KG. Try HSM with the estimates of these
surrogate models.

We validate these guidelines by using our NoC and CTS problems.
The NoC problem with D = 4 ends up in the second box in Figure 6
because all the parameters have VIF of 0.27. In the CTS problem,
we select D = 7 such that all these parameters have VIF values
less than 0.33. We obtain wirelength and buffer area estimates from
MARS, RBF, and KG models. We then use these estimates in HSM
to achieve estimates of wirelength and buffer area that are ∼ 18%
more accurate than the estimates from the original surrogate models.
This corresponds to the third (from left) box in Figure 6. Our
ongoing studies seek further confirmations that our methodology is
generalizable to other problems of varying dimensions.

 

Fig. 6. Metamodeling guidelines for IC design. µ is the mean, and σ2 is the
variance in the estimation errors of each surrogate model.

VI. CONCLUSIONS

Metamodeling techniques have recently emerged as effective, low-
overhead means for deriving surrogates of physical models in IC
design applications. In this work, we use three separate application
contexts (NoC, PDN, CTS) to study accuracy limits of the MARS,
RBF and KG metamodeling techniques with varying D and N, and
with respect to both maximum and average estimation errors. We
provide nine observations and insights into the behavior of each
modeling technique. Specifically, we observe that for low-D modeling
RBF and KG are highly accurate, with worst-case estimation errors
less than 30%. However, in high-D contexts these techniques become
highly inaccurate, whereas MARS continues to be accurate with worst-
case estimation errors within 50%. We also show that newer adaptive
sampling strategies are very effective in reducing overheads of sample
generation, and in reducing the estimation errors of metamodeling
techniques (by at least 20%, when compared against LHS with
identical resources). We also document overfitting phenomena (i.e.,
that having more than the required number of samples in the training
set increases variance and adversely affects model accuracy).

We further study HSM, a variant of the method described in [7],
which uses weighted combinations of individual surrogate models;
our results show that HSM can reduce worst-case estimation errors
by up to 3x. Finally, we also provide high-level guidelines for the
application of metamodeling techniques to other IC design modeling
and estimation problems. Our future work seeks methods to transform
ill-conditioned samples to well-conditioned samples, so as to improve
accuracies of all metamodeling techniques. We also plan to apply
newer machine learning techniques for dimensionality reduction, such
as partial least-squares regression, to estimation problems in IC design.
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