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Abstract—A methodology to optimize the area of a fixed non-
slicing floorplan is presented in this paper. Areas of transistors,
capacitors and resistors are formulated as convex functions and
area is minimized by solving a sequence of convex problems.
The methodology is practical even with many components and
variants. Moreover symmetry constraints are satisfied during
optimization.

I. INTRODUCTION

Reducing iterations between different design levels has
been suggested by the International Technology Roadmap
for Semiconductors as a major contribution towards the re-
duction of design cost. Towards this end, the integration
of physical and electrical synthesis in one single step has
been proposed, yielding the so-called layout-aware circuit
synthesis approaches, such as [1]. Most successful circuit
synthesis approaches are based on the formulation of the sizing
problem as an optimization problem, commonly solved by
iterative processes that imply hundreds or thousands of circuit
performance evaluations. It becomes obvious that integration
of physical synthesis into such circuit synthesis process is only
practical if the circuit layout can be instanced very fast. From
the existing layout synthesis approaches, layout templates meet
such speed constraint. The quality of a layout instance depends
on parameters such as matching, aspect ratio constraints and
area utilization. In this paper, a methodology to optimize
area utilization of a given floorplan is presented. Widths and
heights of analog components in the layout are realistically
modelled and areas of these components are formulated as
convex functions. This approach may be easily integrated
with the Layout Description Script [2], which is based on
Linear Programming, capable of handling placement as well as
routing, and suitable for automatic layout template synthesis.
Thus, the presented approach, combined with LDS, will allow
area optimization on an LDS template in a layout in the loop
approach.

Roughly speaking, layout quality is proportional to area
occupation, which fundamentally depends on placement of its
composing cells and the appropriate selection of the variant
of each cell. If the floorplan of a layout is fixed, optimization
is reduced only to variant selection. In general, a floorplan

is classified either slicing or non-slicing. If a floorplan is
representable by a polish expression [3], it is called a slicing
floorplan; else, non-slicing. The term non-slicing floorplan
does not represent the complement set of slicing floorplans, it
covers any type of floorplan.

Area optimization on fixed floorplans has been studied for
more than three decades. Shape curves (functions) were used
to solve the area minimization (area optimization) problem
on a slicing floorplan in [4]. The procedure is as follows.
Shape functions for all components are constructed. A shape
function is a set containing width and height pairs. All sets
are combined hierarchically, keeping only the best solutions.
The method efficiently finds the optimal sizes for the com-
ponents; however, not only the slicing structure limits the
solution space, but also symmetry constraints cannot be di-
rectly satisfied within the shape function approach. Symmetric
devices must have same dimensions; if dimension of one is
changed, the other must be simultaneously changed. Shape
function for a component is constructed by changing geometry
parameters of the component and then calling the relevant
device generator. For instance, a geometrical parameter for
a transistor is its finger count m. Transistors are generated for
different numbers of fingers, e.g. number fingers m is varied
from 1 to 20. Note that at every call to the device generator,
only one variant is generated.

It may be pointed out that by a sequence of compactions
a non-slicing floorplan may be obtained from a slicing one
[5], thus working with slicing floorplans does not effect the
solution. However, it must be pointed out that in this case area
will be optimized for a slicing floorplan not for a non-slicing
one.

Geometric programming was applied in area optimization
on non-slicing floorplans in [6]. Efficiency of the approach
was improved in [7] by reducing the number of variables
and constraints. However, geometric programming formulation
cannot handle symmetry constraints which is a must for
analog floorplans. In [8] area optimization was performed by
solving a sequence of linear programs iteratively and linear
approximations were used to approximate shape functions. For
soft, variable size, blocks these approaches assumed constant
area which is not the case for analog layouts. As an example,978-3-9815370-0-0/DATE13/ c© 2013 EDAA



TABLE I
COMPARISON OF THE METHODS IN [4], [6]–[9] AND THIS WORK

Method Solution Type Soft Blocks Analog Constraints Floorplan Type Optimization Method
[4] Global Shape Functions Not Considered Slicing Hierarchical
[6] Global Constant Area Not Considered Non-Slicing Geometric Programming
[7] Global Constant Area Not Considered Non-Slicing Similar to [6]
[8] Local Constant Area (Approximated) Not Considered Non-Slicing Linear Programming
[9] Global Enhanced Shape Functions Handled? Non-Slicing Hierarchical, Enumeration

[This Paper] Global Area Functions Handled Non-Slicing Convex Programming

Fig. 1. Area of a transistor, with fixed W and L, is not constant as the
number of fingers change.

Fig. 1 shows the area of a transistor for different numbers of
fingers.

Area minimization on a non-slicing floorplan was also
studied in [9]. Variants are combined in an enhanced shape
function by enumerating all possible solutions. Enumeration
is costly if the number of variants is high. Also, it is not clear
how to construct the enhanced shape functions for two sets of
modules having additional super constraints of symmetry.

In Table I, the methodology of this work is compared with
the methodologies of the works in [4], [6]–[9].

Contributions of this paper may be summarized as follows:
1) Realistic layout models for transistor, capacitor and

resistor layouts are presented and areas for these models
are shown to be convex.

2) Under integer relaxation, the optimum dimensions of the
layout components are found by solving a sequence of
convex problems.

3) During the optimization, symmetry constraints are sat-
isfied. Dimensions of symmetric modules are equated.
These equalities are linear constraints and are added to
the optimization problem.

The rest of the paper is organized as follow: A brief
discussion about convex functions is given in Section II.
Section III presents area functions and discusses convexity
of an area function. In Section IV, a sequential optimization
methodology is presented. Results for test circuits are given
in Section V. Finally, Section VI concludes the paper.

II. CONVEX FUNCTIONS AND OPTIMIZATION

A function (f : Rn → R) is convex, if f satisfies

f(θ ∗ x+ (1− θ) ∗ y) ≤ θ ∗ f(x) + (1− θ) ∗ f(y) (1)

for all x, y ∈ Rn and for all θ ∈ R : 0 ≤ θ ≤ 1. Thus, a
local minimum of a convex function f is in fact its global
minimum.

Solution of a convex problem may be easily obtained using
commercial solvers. The MOSEK solver [10] has been used

Fig. 2. Area is not a convex function of (width, height). Convex and
concave cuts are indicated as tick curves.

in this work. This solver supports quadratic (2) and rotated
quadratic (3) cone constraints in addition to linear optimization
problems. Conic constraints must have one of these forms:

x1 ≥

√√√√ n∑
j=2

x2j (2)

2 ∗ x1 ∗ x2 ≥

√√√√ n∑
j=3

x2j (3)

where xi ∈ R, n is an integer (n > 2 for (2) and n > 3 for
(3)) and in (3) x1 and x2 must be non-negative.

Detailed information can be found in [11].

III. AREA FUNCTIONS AND CONVEXITY

The problem of area optimization is not a convex problem.
In Fig. 2,the area of a rectangular module as function of width
and height is plotted. In this figure, convex and concave cuts
are shown to indicate the non-convexity of the problem. Non-
convexity prevents convex formulation of the problem. The
problem may be converted to a geometric program as in [6],
but then alignment and symmetric placement constraints can
not be satisfied.

In this paper, sequential convex programming is applied to
solve the problem of area optimization. Although the problem
is not convex, the width/height Pareto-Front appears to be
convex when areas of layout components are formulated as
convex functions. In Section III-A, Area Functions for tran-
sistors, capacitors and resistors are presented and in Section
III-B, convexity of the total area of the layout is investigated.

A. Area Functions

An area function returns the area of a component given
its geometrical parameters. For instance, number of fingers,



metal width, W , L are some of the geometrical parameters
of a transistor. Resistors and capacitors also have similar
geometrical parameters. Some of these parameters depend on
the technology process and are fixed for a device generator.
Some of them are input parameters such as W and L of
a transistor, and the rest are free parameters and affect the
geometry of the layout such as the number of fingers of a
resistor.

We present functions for transistors, capacitors and resistors.
Although parameter values in these functions are specific
for a device generator. Parameters may be easily extracted
by investigating a few instances of a device generator. We
extracted the parameters for AMS 0.35µm CMOS technology.
Given the template, device generators, and input parameters,
area optimization is performed by varying the free parameters.

1) Transistors: A model for a single transistor is shown in
Fig. 3a. Formulas for the height and width are given in (4)
and (5).

height(m) =
W

m
+ α1 (4)

width(m) = m ∗ (L+ α2) + α3 (5)

where m is the number of fingers, W is the channel width,
L is the channel length, αis are constants. For a given device
generator, the parameters (αi) are fixed.

The transistors in Fig. 3a and Fig. 3b are synthesized by
different device generators; thus, the values of the parameter
αi are different. However the formulation in (4) and (5)
is general enough to cover both device generators. In other
words, α parameters contain all the required information about
orientation, guard-ring, dummies, routing, etc...

Given the parameters αi, W and L, area of the transistor
will be a function of the number of fingers m. Area is simply
height ∗ width and equals to:

area(m) =

(
W

m
+ α1

)
∗ (m ∗ (L+ α2) + α3) (6)

By eliminating m, the width in (5) may be rewritten as a
function of height as in (7), where for a valid transistor (m ≥
1), height is always greater than α1. Then the area function
given in (6) may be reformulated as in (8).

width(height) =
W ∗ (L+ α2)

height− α1
+ α3 (7)

area(height) = height ∗
(
W ∗ (L+ α2)

height− α1
+ α3

)
(8)

The condition in (1) boils down to the expression in (9)
when f is replaced by the area function in (8). For all θ
satisfying 0 ≤ θ ≤ 1 and for all x and y greater than α1,
the expression in (9) is true. Thus, the area function in (8)
satisfies the convexity condition in (1) and it is a convex
function. Similarly, convexity may be shown by writing (8)
as a function of width.

0 ≤ W ∗ α1 ∗ θ ∗ (L+ α2) ∗ (x− y)2 ∗ (1− θ)
((x− α1) ∗ (y − α1) ∗ (y ∗ (1− θ) + θ ∗ x− α1))

(9)
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Fig. 3. Transistor parameters are shown on two different transistors: (a)
Simple Transistor, (b) Transistor with Guard-ring and Routing

2) Capacitors: Dimensions for capacitors are modeled via
the formulas in (10) and (11):

height(w) =
C

Cx ∗ w
+ β1 (10)

width(w) = w + β2 (11)

where C is total capacitance, Cx and βis are parameters of the
device generator, w is the width of the overlap region between
the capacitor plates. A capacitor and its parameters are shown
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Fig. 4. Parameters of a Capacitor
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Fig. 5. Parameters of a Resistor

in Fig. 4. The area function of a capacitor is:

area = height ∗ width =

(
C

Cx ∗ w
+ β1

)
∗ (w + β2) (12)

and it may be shown to be a convex function.
3) Resistors: The dimensions of a resistor are shown in

Fig. 5 and modeled by the following formulas:

height(m) =
R
Rx
∗ (wr − γ1)
m

+ γ2 (13)

width(m) = (m− 1) ∗ (wr + ws) + wr + γ3 (14)

where R is the resistance. Parameters wr , ws, Rx and γi
are the device generator parameters and m is the number of
fingers.

The area function of a resistor is given in (15) and it may
also be proven to be a convex function.

area =

(
R
Rx
∗ (wr − γ1)
m

+ γ2

)
∗

((m− 1) ∗ (wr + ws) + wr + γ3)

(15)

 

      
 

 
 
 

 
   

       
 

 
 

 

   
 

 

      
 

 
 
 

 
   

       
 

 
 

 

   
 

 

 
  
  
 
  
 
  
 
 

 

  
  
  
 
 
 
  

 

 

      
 

 
 
 

 
   

       
 

 
 

  

   
 

(a) (b)

Fig. 6. (a) A Placement and Functions for Dimensions, (b) Area Plot:
obtained by varying all ms in (a) from 1 to 5, Pareto-Front (width/height)
in (b) is observed to be convex.

B. Convexity of the Layout Area

Although the presented area functions are convex, convexity
of the total layout area must be investigated. As an intro-
duction, a floorplan of four components and their dimension
models are shown in Fig. 6a. For this layout, the number of
fingers m for all components are the free parameters. Keeping
the floorplan fixed and sweeping all m’s from 1 to 5, the
area plot in Fig. 6b is obtained. In this plot, the Pareto-Front
(width/height) may be observed to be a convex function of
(width, height). Lemma 1 and the following discussion states
the convexity.

Lemma 1: If all the components in a layout have convex
area functions and there is no dead space in the layout, the
total area is going to be convex.

Proof: If there is no dead space, then the total area of the
layout is going to be the sum of the component areas. If there
are n blocks, the total area is going to be:

areatotal =

n∑
i=1

areai (16)

The sum in (16) is convex, due to the fact that non-negative
weighted sum of convex function is convex [11].

In case when the layout has dead space, the Pareto-Front
appeared to be convex. We tested the convexity using the
ami33 circuit from the MCNC benchmarks. We have generated
hundreds of random placements and investigated the convexity.
Component areas in the benchmark are kept constant and the
aspect ratios are allowed to be free in the interval [2/3, 3/2].
Pareto-Fronts are plotted and all of them are observed to be
convex. A placement and the corresponding Pareto-Front is
shown in Fig. 7.

IV. AREA OPTIMIZATION

Although layout area appears to be a convex function on the
Pareto-Front, the objective function height ∗ width, alone, is
not a convex function. Thus the area minimization problem can
not be formulated in MOSEK [10]. Fortunately, it is possible
to optimize the problem by solving a sequence of convex
problems. The procedure is as follows:
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Fig. 7. (a) A Placement of ami33 from MCNC Benchmark, (b) Pareto Frontier
for the Placement in (a)

Fig. 8. Changes in perimeter and area are plotted, where width is swept
from 0 to 1 and height ∼= width. If perimeter is minimized, area is also
minimized.

1) For the first iteration, the perimeter is used as the
objective function which is convex.

2) Iteratively, solutions for width and height are used to
weigh the objective function.

3) When the solution converges, the optimization is termi-
nated.

A. Approximation for Area

Due to the fact that the non-convex objective function
area = height ∗ width can not be formulated in a convex
program, the objective function is approximated by the affine
function

objective = λ ∗
(
width

r̃
+ height

)
(17)

where r̃ is an approximation for the aspect ratio r, λ ∈ R is
a constant and may be chosen as 1.

The gradient for area = height ∗ width is:

∇area =

(
∂area

∂width
,
∂area

∂height

)
= (height, width) ∼= (height, r̃ ∗ height)

(18)

Similarly, the gradient for the objective function in (17) is:

∇objective =
(
∂objective

∂width
,
∂objective

∂height

)
=

(
λ

r̃
, λ

) (19)

Although the magnitudes of the two gradients in (18) and
(19) are different, their directions are close to each other. If
aspect ratio is close to r̃, minimizing (17) will also minimize
the area.

Fig. 9. Change in Objective Function

For example, if r is known to be close to unity, then (17)
can be written as

objective = 2 ∗ (height+ width) (20)

which is simply the perimeter. Minimizing the perimeter will
also minimize area which can be seen from the plot in Fig. 8.

B. Methodology

Unfortunately, we do not know the exact aspect ratio before
optimization so we can not use the objective function in (17).
Therefore, we applied an iterative approach. First, the aspect
ratio r in (17) is initialized to unity (r0 = 1) and the problem
is optimized. Resulting dimensions (width1 and height1) are
used to calculate the aspect ratio (r1 = width1/height1)
for the next iteration. Next iterations use the solution of the
previous ones. When the algorithm converges, the resulting
dimensions are the optimal ones. The objective function may
be formulated as:

objectiven =
width

rn−1
+ height (21)

where rn−1 is:

rn−1 =
widthn−1

heightn−1
(22)

For the bottom component in Fig. 6a, changes in the
objective function, according to (21), are plotted in Fig. 9. For
this component, optimal area is obtained when m = 3 and this
may be also be observed from Fig. 9, where the minimum of
the objective function shifts to 3.

Lastly, the objective in (21) is modified as (23) to improve
the convergence of the method. Detailed discussion is given
in Section IV-D.

objectiven =
width

rn−2 + k ∗ (rn−1 − rn−2)
+ height (23)

where k ∈ R and 1 ≤ k. Objective in (23) boils down to (21)
for k = 1.

C. Solving the Iterations

Iterations are solved using the MOSEK [10] optimizer.
Below, the formulation of a transistor for MOSEK is given.
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Fig. 10. (a) Convergence of r to ropt = 3, (b) Percentage Error

The height in (4) is formulated via an inequality and rotated
cone constraints:

height ≥ xrq + α1 (24)

2 ∗ xrq ∗m ≥
√
x2c (25)

xc = 2 ∗W (26)

where α1 and W are constants; height, m are variables and
xc and xrq are intermediate variables. The width in (5) is
formulated as an equality constraint:

width = (m ∗ (L+ α2) + α3) (27)

where α2, α3 and L are constants; width and m are vari-
ables. Capacitors and resistors are reformulated for MOSEK,
analogously.

D. Convergence Analysis
Convergence of the method is tested for several examples.

The number of iterations mainly depends on the optimal aspect
ratio ropt; the closer ropt to unity, the less number of iterations.
For the bottom component in Fig. 6a, ropt = 3, convergence
of the method and percentage error are plotted in Fig. 10 for
different k values in (23). By experience, k = 1.3 is a good
choice for k. Convergence is observed to be fast initially;
however, slows down when the error is small. Our algorithm
stops when change in the dimensions heightn − heightn−1

and widthn − widthn−1 are smaller then 100nm.

V. RESULTS

We tested the methodology on a fully differential amplifier
in Fig. 11a and on ami33 circuit from MCNC benchmarks.
For the differential amplifier, area functions were extracted
from device generators implemented on AMS 0.35µm CMOS
technology. Resulting layout is shown in Fig. 11b. The
optimization terminated after 8 iterations and optimization
took 20msec. The component areas for ami33 benchmark
circuit are kept constant at their original values in MCNC
benchmarks. Aspect ratio r for all components are left free in
the range [1/3 ≤ r ≤ 3] and the floorplan in Fig. 7a is used.
Optimization terminated after 2 iterations and took 13msec.
All the tests were done on an Intel i7-3610QM processor with
6GByte RAM.
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Fig. 11. Fully Differential Amplifier
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Fig. 12. A Placement for ami33 Circuit

VI. CONCLUSION

This paper presents layout models for transistors, capacitors
and resistors, where areas of these models are shown to be
convex functions. Also a discussion about the convexity of the
layout area is presented. Under integer relaxation, optimum
dimensions of the layout components are found by solving
a sequence of convex problems. During the optimization
also analog constraints, such as symmetry and alignment are
satisfied. The methodology is tested on a fully differential
amplifier and on a benchmark floorplan. Computation times
are promising and we are improving the methodology to
handle integer constraints, e.g., number of fingers must be an
integer number. This methodology may be easily integrated
with the template description language in [2].
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