
Fast and Optimized Task Allocation Method for
Low Vertical Link Density 3-Dimensional

Networks-on-Chip based Many Core Systems
Haoyuan Ying∗, Thomas Hollstein† and Klaus Hofmann∗
∗Integrated Electronic Systems Lab, TU Darmstadt, Germany

Email: Haoyuan.Ying, Klaus.Hofmann@ise.tu-darmstadt.de
†Tallinn University of Technology, Estonia

Email: thomas@pld.ttu.ee

Abstract—The advantages of moving from 2-Dimensional
Networks-on-Chip (NoCs) to 3-Dimensional NoCs for any ap-
plication must be justified by the improvements in performance,
power, latency and the overall system costs, especially the cost of
Through-Silicon-Via (TSV). The trade-off between the number
of TSVs and the 3D NoCs system performance becomes one of
the most critical design issues. In this paper, we present a fast
and optimized task allocation method for low vertical link density
(TSV number) 3D NoCs based many core systems, in comparison
to the classic methods as Genetic Algorithm (GA) and Simulated
Annealing (SA), our method can save quite a number of design
time. We take several state-of-the-art benchmarks and the generic
scalable pseudo application (GSPA) with different network scales
to simulate the achieved design (by our method), in comparison to
GA and SA methods achieved designs, our technique can achieve
better performance and lower cost. All the experiments have been
done in GSNOC framework (written in SystemC-RTL), which
can achieve the cycle accuracy and good flexibility.

I. INTRODUCTION

Moving to advanced technologies has increased transistor
density critically, which allows the designers to implement
more complex SoCs. Interconnection infrastructure became
main bottleneck of utilizing the available transistors. NoCs
may become the replacement of the conventional intercon-
nects due to its scalability and higher bandwidth [1]. With
the increased number of cores, NoCs based communication
infrastructures will also reach the latency and power overhead
bottlenecks. To solve this problem, 3D ICs have been targeted
as one of the solutions. Many technologies like die-to-die
bonding, die-to-wafer bonding, Wafer-to-wafer bonding have
been investigated for 3D integration [2]. As an interconnect
for 3D integration, TSV technologies have got the highest
acceptance and they are reasonably understood on the aspects
of thermal, performance and yield properties [3].

According to the 2009 ITRS roadmap, TSV diameter will
be in the range from 1.5 µm to 1.0 µm between the year of
2009 and 2015 [4]. During the same period, the area of a 4-
transistor logic gate is projected to reduce from 0.82 µm2 to
0.20 µm2. This leads to the area ratio between TSVs and logic
gates in the range from 2.74 (= 2.25/0.82) to 5 (= 1.0/0.20).
If we consider the pitch of a TSV (between 3 µm and 5 µm),

TSV-to-gate-size ratio will increase further. Thus, minimizing
the TSV number saves considerable active area, which can be
utilized for transistors. The most critical challenge for 3D ICs
to be used in main stream products is cost trade-off [5], so
transition from 2D ICs to 3D ICs must be justified in terms
of performance improvement, power consumption and area.

The 3D NoCs system performance cannot be degraded
because of the TSV number reduction. Therefore, in this paper,
we develop one fast and optimized task allocation technique
for low TSV number 3D NoCs based many core system. Our
method can optimize the system performance against the TSVs
number reduction. In comparison to the classic GA and SA
based methods, our method can save task allocation computa-
tion time (linear to the network scale, overall 98% advantage
for 8x8x4 3D NoCs). The simulation results have shown that
the design (by our method) can achieve better performance and
lower cost in comparison to the system designs which achieved
by GA and SA based methods. According to the simulation
results, the 50% vertical link density setup achieved the best
design trade-off point.

This paper is organized as following: Section II will de-
scribe the state-of-the-art related works, we will present our
technique in detail in Section III, in Section IV, the SA and
GA methods that we used to compare will be introduced. The
experiment setup and results will be presented and analyzed in
Section V, and the Section VI is for the conclusion and future
work.

II. RELATED WORKS

In [6], the authors presented a constructive heuristic IP
placement method (CMAP) which can be separated to two
parts, as LBMAP (Link-based) and SBMAP (Sort-based). The
results had shown that the CMAP could achieve less com-
munication cost and less design computation time. However,
there are two points can be optimized, one is that they had not
considered about the bandwidth constrains of the network links
while the mapping, the other is that there is no consideration
about the link direction in their model.

In [7], the authors presented a GA based NoC topology gen-
eration method. Based on their method, during the Mutation978-3-9815370-0-0 / DATE13 / c© 2013 EDAA

t1

t5t7
t8

t6t4 t3

t2

…...

896

1024

256

31

896

1024

25
541

600

68
128

256

C1

C2

C3

C4

C1C1
C2

C3

C4

1024
+

896
+
31

541

25

1024

600

…...
68

(a). TG example (b). CTG example

1

4

2

(c). PCTG example (d). Tile Architecture example

3

et1,t4 et1,t3
et2,t3 CeC1,C4

L1,3
Core Kernel
(Scheduler)

Local Memory

PE

NI
Enc Dec

NI Buffer

3D
Router

2D
Router

NoCs

Fig. 1. TG, CTG and PCTG examples

process, the maximal bandwidth capacities for all channels
were considered not to be exceeded when assigning the
network tile placements due to the communication requests.
Once the task graph is quite complex and the timing analysis
is incorrect, the method is hard to guarantee the optimization.

In [8], the authors also demonstrated GA algorithm based
high-level 3D NoC synthesis technique. The key idea of
this work is to find out the global minimal path for all
the communications. The authors consider that the length of
routing path strongly affects the power consumption, however,
this can create more congestion nodes in the network, and the
congestion can cause more power consumption and violate the
system performance.

In [9], the authors presented a SA method to place the
NoCs cores. The objective function they developed considered
link bandwidth and latency. They achieved good results as
distributing the traffic into the network as evenly as possible,
and satisfied the link bandwidth constrains and reduced the
latency.

In [10], the authors demonstrated a combined SAGA task
allocation method. They used the GA at the start phase to
explore a number of possible task allocation solutions, after
several rounds, the best solution will be passed to the SA phase
to achieve further optimization. The design computation time
will be extremely long for very large systems in comparison
to our method, and they only considered the overall execution
time, some other important design factors as power, throughput
and latency were missing.

In this paper, we will evaluate our method and the typical
SA and GA methods for allocating tasks into 3D NoCs in
terms of performance and cost.

III. FAST AND OPTIMIZED TASK ALLOCATION METHOD

In this paper, we developed a hybridize constructive heuris-
tic algorithm based (HyCH) fast and optimized task allocation
method, some terminologies and constrains should be given in
order to introduce our HyCH task allocation method.
TG(t,−→e): Task graph, which connect a number of different

tasks with a certain number of communication edges.
t: Task, which is indicated as the smallest executable unit

in the entire application.
−→e : The communication edge among tasks.

w−→e : The communication weight of the −→e , it is counted as
the number of flits.

Figure 1 (a) has shown the TG example. There are eight ts,
and 12 −→e s to connect all of them. The numbers around each
−→e indicate its communication weight.

In some applications TGs, some ts are tightly connected,
and it is inefficient to allocate the tightly connected ts into
different processing elements (PE). Therefore, in this paper,
we set some clusters to contain the tightly connected ts.
CTG(C,

−→
Ce): Cluster task graph, which represents the task

graph in a clustered view.
C: Task clusters, some tightly connected tasks should be

allocate in the same task cluster.−→
Ce: The communication edges among task clusters.
w−→

Ce
: The communication weight of the

−→
Ces. The w−→

Ce
should include all the w−→e s from the same C to another.
nC : The total number of the Cs in the CTG.
n−→
Ce

: The total number of the inter
−→
Ces in the CTG.

bw−→
Ce

: The bandwidth requirement of the
−→
Ce.

Figure 1 (a) and (b) have shown the conversion from TG
to CTG. The eight tasks have been merged into four clusters
(C1 to C4). The inter cluster communication edges should take
all the corresponding −→e s into consideration. For example, the−→
CeC1,C4 contains communication information of the −→e t1,t3,
−→e t1,t4 and −→e t2,t3, because the t3 and t4 are assigned to the
same cluster (C2). Also, the w−→

CeC1,C4
equals to the sum of

w−→e t1,t3
, w−→e t1,t4

and w−→e t2,t3
.

Figure 1 (b) and (c) have shown the allocation process of
Cs and the low vertical link density 3D NoCs topology. All
the
−→
Ces are mapped to the tile to tile links. For each network

tile, it should be a PE with either a 2D or 3D NoCs router
according to the topology (Figure 1 (c) and (d)).

In this paper, we only focus on the allocation of different
task clusters (Figure 1 (b) to (c)), the methodologies of
clustering tasks are orthogonal to be considered here.
PCTG(Tile,

−→
L , V F): Physical Communication Topology

Graph.
X,Y, Z: The total number of tiles in X , Y and Z dimension.
nTile: The total network tiles in the PCTG, nTile =

X*Y *Z.
Tile: A single network tile in PCTG, which includes the

processing element and communication infrastructure.

V F : Vertical link floor plan.
V D: Vertical link density.−→
L : NoCs link,

−−→
Li,j indicates the link from Tilei to Tilej .

|
−→
L |: The Manhattan distance (counting as hops) of the the

NoCs link
−→
L .

w−→
L

: The communication weight of the link
−→
L .

bw−→
L

: The bandwidth requirement of the the link
−→
L .

Mbw: The physical bandwidth capacity of the NoCs links.
When our HyCH method is employed, (1) can represent the

process:

HyCH(Ci) 7→ Tilej ,∀i ∈ [1, nCe
], j ∈ [1, nTile]; (1)

Assuming that

Ci ∈ Tilek, Cj ∈ Tilem,∀i, j ∈ [1, nC], k,m ∈ [1, nTile];
−→
Cei,j 7→

−→
L k,m,∀i, j ∈ [1, nC], k,m ∈ [1, nTile]; =>

w−→
Cei,j

= w−→
L k,m

,∀i, j ∈ [1, nC], k,m ∈ [1, nTile];

bw−→
Cei,j

= bw−→
L k,m

,∀i, j ∈ [1, nC], k,m ∈ [1, nTile];

(2)

According to (2), after employing the HyCH method, all
the Cs and

−→
Ces in the CTG are mapped on the PCTG as

Tiles and
−→
L s, respectively (example has shown as Figure 1).

In our HyCH method, we try to minimize the cost function
(CF) as (3) represented, and this method can achieve better
results than the GA and SA methods which are described in
the Section IV can.

CF =

nC∑
i,j=1

w−→
Cei,j

× |
−→
Cei,j | × bw−→Cei,j

=

nTile∑
k,m=1

w−→
L k,m

× |
−→
L k,m| × bw−→L k,m

,

∀i, j ∈ [1, nC], k,m ∈ [1, nTile];

(3)

In (3), if the accumulated bw−→
L k,m

is over the Mbw, the
bw−→

L k,m
should be set as the Mbw.

Instead of allocating different tasks (or clusters in this paper)
into different Tiles directly, the general idea of HyCH method
is to map different

−→
Ces in the CTG on the

−→
L s in the PCTG.

The process of the HyCH method has two steps, the first step
is to re-arrange all the

−→
Ces in the CTG and finally make an

allocation order for them, the second step is to map all the
re-arranged

−→
Ces on the

−→
L s.

There are two phases to re-arrange all the
−→
Ces in the CTG

to a better allocation order.
Phase 1. In this phase, the mapping order of the

−→
Ces will

be re-arranged.
WtotC : The total communication weight which has the

direct relation to the cluster C. For example, the WtotCi

should include all communication data volume received by the
cluster Ci and all the communication data volume injected by
the Ci.

ndep: The total number of
−→
Ces which are connected to the

C. For example, in Figure 1, the ndepC4
equals to six, because

C4 connects six
−→
Ces.

The order factor of Cs (OC) will be calculated as:

OCi
=
WtotCi

ndepCi

, i ∈ [1, nC]; (4)

According to (4), we re-arrange all the
−→
Ces in the order from

the high OCi
to the low ones which the

−→
Ce contains.

Phase 2. Although the higher dense Cs will be allocated
first, there are still some potential optimization points. For
example, if there is a

−→
Ce belongs to a high OCi C, however

the w−→
Ce

is very low, then this
−→
Ce can be mapped in a low

priority and release its priority to other
−→
Ces which has low

OC but high w−→
Ce

. Therefore, in this phase, we maintain the
order that set up by the phase 1, and slightly modify the order
according to the w−→

Ce
s.

wavg−→
Ce

: The average communication weight for all the
−→
Ces

in the CTG.

wavg−→
Ce

=

∑nC

i,j=1 w−→Cei,j

n−→
Ce

; (5)

By modifying the order phase 1 made, we set the wavg−→
Ce

as a
threshold value, if the w−→

Ce
is less than the threshold, it should

be assigned a lower priority, and as versa.

C1 → C5, 7467
C1 → C8, 97
C3 → C7, 8094
C5 → C1, 7539
C5 → C7, 570
C5 → C1, 3317
C6 → C8, 12
C6 → C5, 6226
C6 → C8, 8586
C7 → C8, 1434
C7 → C5, 378
C8 → C7, 2902
C8 → C1, 6652

C1 → C5, 7467
C1 → C8, 97
C5 → C1, 7539
C5 → C1, 3317
C8 → C1, 6652
C6 → C8, 12
C6 → C8, 8586
C6 → C5, 6226
C5 → C7, 570
C3 → C7, 8094
C7 → C5, 378
C7 → C8, 1434
C8 → C7, 2902

C1 → C5, 7467
C5 → C1, 7539
C8 → C1, 6652
C3 → C7, 8094
C6 → C8, 8586
C6 → C5, 6226
C1 → C8, 97
C5 → C1, 3317
C6 → C8, 12
C5 → C7, 570
C7 → C5, 378
C7 → C8, 1434
C8 → C7, 2902

Phase 1

CTG Ce Mapping Order

Ce: From C8 → C1, with weight of 6652 flits

Phase 2

Fig. 2. Example of the Re-arrange Process (Phase 1 and 2)

Figure 2 has shown the example of the
−→
Ce re-arranging

phase 1 and 2. After phase 1, the
−→
Ces are arranged according

to the value of OC , and after phase 2, the
−→
Ces order is re-

arranged according to the previous order (phase 1) and the
wavg−→

Ce
value. For example, the C1 has the highest OC , and

at phase 1 the C1 related
−→
Ces are arranged as the top priority

to be mapped. The
−→
Ce C1 − > C8, 97 has the small volume

of communication data, and it is should be assigned a lower
mapping order at phase 2.

IV. GA AND SA BASED TASK ALLOCATION METHOD

Many researchers have studied the SA and GA based task
allocation methods for low power NoCs based many core

Algorithm 1 HyCH Task Allocation Algorithm Flow
HyCH starts:
Read Application (CTG) and NoCs Information;
Re-arrange the CTG

−→
Ce Phase 1;

Re-arrange the CTG
−→
Ce Phase 2;

while m < n−→
Ce

do
Assuming:

−→
Cei is the

−→
Ce from Cj to Ck;

if Cj and Ck are neither allocated then
Randomly Search the Free NoCs Position for Cj ;
Allocate Ck in another NoCs Position with the Least
CF value;

else if One of the Cj and Ck is not allocated then
Allocate Cj (or Ck) in another NoCs Position with the
Least CF value;

else if Cj and Ck are both allocated then
n = 0;
while n < nC do

if Cn is not allocated then
Jump to Next

−→
Ce;

end if
n++;

end while
end if
Next

−→
Ce: m++;

end while
End: Output the PCTG (With CTG Allocated);

system design [7] [8] [9] [10]. In this paper, we implement
both the GA and SA according to several literatures, and
compare the efficiently between the HyCH, GA and SA.

Cost Function
We used the well-known energy model as the cost function

in GA and SA, since using this model is the most direct way
to reduce the NoCs system power consumption.

Ebit = nrouter × Erouterbit + (nrouter − 1)× Ewirebit ; (6)

(6) has shown the single bit communication energy con-
sumption model for one communication edge (

−→
Ce in CTG).

nrouter is the number of hops that the
−→
Ce has to cross

the network (the |
−→
L | after the mapping). Assuming that the

channel width (flit bit-width) is nw, and we already knew
the communication weight of this

−→
Ce is w−→

Ce
, the overall

communication energy can be modeled as:

E =

nt∑
i,j=1

nw×w−→e i,j
×Ebit =

nTile∑
k,m=1

nw×w−→L k,m
×Ebit (7)

For all of the parameters in (6), we extracted them from
SYNOPSYS design compiler with TSMC 65 nm LP library.

GA Flow and Parameters:
npopulation: The number of chromosomes in each genera-

tion. In this paper, we set the npopulation as 100.

ngen: The total number of the generations in the GA
algorithm. In this paper, we set the ngen as 100.
nbest: The number of the chromosomes with better cost

values can be fetched to next generation directly. In this paper,
we set the nbest as 25.
Mutation: Mutation process in GA. This process will

change the mapping of several Cs in the NoCs. In general,
we simply exchange the positions of two Cs based on the
randomly generated probabilities.
pex: The randomly generated position exchanging probabil-

ities of the Cs.
pexT

: The position exchanging threshold of all the Cs,
which is the same for all the Cs in the same generation, but
it is randomly generated for each different generations.

Mutation(Ci) 7→ Tilerandom().[1,nTile],∀pexi
> pexT

(8)

The certain new chromosomes are generated firstly by
the crossover to fulfill the remained positions for the next
generation (after passing nbest chromosomes directly from the
current generation).

The crossover process has to select the parents first. The
selection is based on the cost values of all the chromosomes.
We fix a number of the chromosomes with the better cost
values (in this paper, we fix the number as 50% of the
population) in the current generation as the crossover parents
candidates, and the crossover process will randomly select two
candidates for one new chromosome.

Algorithm 2 GA Algorithm Flow
GA starts:
Read Application (CTG) and NoCs Information;
Load GA parameters;
Generate the First Generation (npopulation);
while n < ngen do

Calculate cost values of all the chromosomes;
Fetch best nbest chromosomes directly to next generation;
while m < npopulation - nbest do

Crossover; Mutation; m++;
end while
Construct the next generation;
m = 0; n++;

end while
End: Output the PCTG (With CTG Allocated);

SA Flow and Parameters:
Temp: Temperature. In this paper, we set the initial Temp

as 10000.
ETemp: Ending Temperature, once the temperature reaches

this value, the SA should be finished. In this paper, we set
ETemp as 100.
CS: Cooling Step, which helps the temperature to be

reduced, in the range between 0 to 1. In this paper, we set
CS as 0.9.

IT : Iteration Times, for each temperature, the SA must run
IT times iteration to find a better result as the worst case. In
this paper, we set IT as 100.
SIT : Stable Iteration Times, once the SA cannot find

a better result for continuous SIT times at the particular
temperature, the SA should reduce the temperature directly
and search the result in the new round (at new temperature).
In this paper, we set SIT as 50.

In this paper, we use the Mutation function in GA as the
Cs mapping refine function in the SA.

Algorithm 3 SA Algorithm Flow
SA starts:
Read Application (CTG) and NoCs Information;
Load SA parameters;
if Temp > ETemp then

while k < IT do
k = 0;
Refine all the Cs mapping;
Calculate the iteration cost value (I−cost);
Generate the random probability P ;
if I−cost < H−cost or P < exp [(−1)*(I−cost −
H−cost)/Temp] then

Mapping accepted, H−cost = I−cost, m = 0, k++;
else

if m < SIT then
m++;

else
goto Cool Temp;

end if
end if
Cool Temp, Temp = CS * Temp;

end while
end if
End: Output the PCTG (With CTG Allocated);

V. EXPERIMENTAL RESULTS ANALYSIS

We engaged the all experiments by using GSNOC Simulator
with XHiNoC router [11], assuming the length of single-bit
link (wire) on XY planar as 2.5 mm, the length of single-
bit TSV is 20 µm, 1 GHz clock frequency, 25% bandwidth
injection rate, with SBSM [12] routing algorithm, differently
in 8x8x4 and 4x4x4 network. All the physical power param-
eters are extract from SYNOPSYS using the TSMCs 65 nm
technology.

Generic Scalable Pseudo Application (GSPA)
In our previous work [11], we have generated a random

based generic scalable pseudo application (GSPA) test sce-
nario, which can provide a complex and fully random task
graph. The generated GSPA can provide designers the generic,
scalable test scenarios for large systems. In this paper, we
set the GSPA as 1000 tasks, maximal communication weight
for each communication edge is 1000 flits, maximal execution
time for each task is 100 clock cycles, and randomly generated
the task dependencies.

Execution Time (ns) Average Throughput (Gbps)

Average Latency (ns) Communication Energy (mJ)

Performance Factor

12
.5

%
 V

D

25
.0

%
 V

D

37
.5

%
 V

D

50
.0

%
 V

D

62
.5

%
 V

D

75
.0

%
 V

D

87
.5

%
 V

D

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

HyCH
SA
GA

12
.5

%
 V

D

25
.0

%
 V

D

37
.5

%
 V

D

50
.0

%
 V

D

62
.5

%
 V

D

75
.0

%
 V

D

87
.5

%
 V

D

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

3.00E+05

3.50E+05

HyCH SA GA

12
.5

%
 V

D

25
.0

%
 V

D

37
.5

%
 V

D

50
.0

%
 V

D

62
.5

%
 V

D

75
.0

%
 V

D

87
.5

%
 V

D

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

HyCH SA GA

12
.5

%
 V

D

25
.0

%
 V

D

37
.5

%
 V

D

50
.0

%
 V

D

62
.5

%
 V

D

75
.0

%
 V

D

87
.5

%
 V

D

0.00E+00
1.00E+03
2.00E+03
3.00E+03
4.00E+03
5.00E+03
6.00E+03
7.00E+03
8.00E+03
9.00E+03
1.00E+04

HyCH SA GA

12
.5

%
 V

D

25
.0

%
 V

D

37
.5

%
 V

D

50
.0

%
 V

D

62
.5

%
 V

D

75
.0

%
 V

D

87
.5

%
 V

D

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

HyCH SA GA

12
.5

%
 V

D

25
.0

%
 V

D

37
.5

%
 V

D

50
.0

%
 V

D

62
.5

%
 V

D

75
.0

%
 V

D

87
.5

%
 V

D

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

HyCH
SA
GA

Computation Time (s)

Fig. 3. GSPA Experimental Results

In the GSNOC platform, referring to Figure 1, we assume
that at each network tile there is one piece of distributed
memory (Local memory) and once the simulation started, we
waited for a period of clock cycles to let the application
information (TG) be booted into the system, and according
to the traffic profile, the kernel would transmit/receive and
execute the application data.

Figure 3 has shown the experimental results for the GSPA
simulation. We set seven different V D as from 12.5% to
87.5% with symmetric V F s. In comparison to the GA method,
our HyCH can save 5% overall execution time (Exe.Time),
achieve 9% more average throughput (Avg.Tpt), save 5% and
4% average latency (Avg.Lat) and network communication
energy (NCE), in average. In comparison to SA, our HyCH
can save 11% Exe.Time, achieve 18% Avg.Tpt, save 12% and
7% Avg.Lat and NCE, in average.

We assumed the diameter of one single bit TSV pitch
(dTSV) as 5 µm, therefore the AreaTSV can be directly
calculated as

AreaTSV = V D ×X × Y × nw × d2TSV ; (9)

With different V D, the area of the NoCs systems are different.
Here we model the area as

Area = AreaR3D
+AreaR2D

+AreaTSV +AreaWires (10)

AreaR3D
and AreaR2D

indicates the area of 3D and 2D
NoCs routers, respectively. We synthesized all of the router
components (in VHDL) and the interconnect wires using

TABLE I
NORMALIZED BENCHMARK EXPERIMENTAL RESULTS

Normalized Exe.Time Exe.Time Avg.Tpt Avg.Tpt Avg.Lat Avg.Lat NCE NCE PF PF
Application HyCH/GA HyCH/SA HyCH/GA HyCH/SA HyCH/GA HyCH/SA HyCH/GA HyCH/SA HyCH/GA HyCH/SA
blackscholes 1.00 1.00 1.00 1.00 1.02 1.02 1.16 0.91 1.09 1.12

bodytrack 0.99 0.95 0.96 1.08 1.01 0.94 1.03 1.01 0.94 1.20
fluidanimate 0.93 0.97 1.16 1.10 0.97 0.96 1.03 1.03 1.23 1.15

plsa 0.99 0.99 1.10 1.15 0.92 1.00 1.14 1.18 1.07 0.98
mpeg2enc 0.98 1.06 0.96 0.89 0.93 1.04 0.82 0.72 1.28 1.11

lu 0.93 0.91 1.10 1.13 0.96 0.91 1.02 1.10 1.19 1.23
Average 0.97 0.98 1.05 1.06 0.97 0.98 1.03 0.99 1.09 1.12

SYNOPSYS design compiler with TSMC 65 nm LP library
and we obtained the first estimated area number.

We defined another concept to deliver the system perfor-
mance factor (PF), which can be calculated as

PF =
Avg.Tpt

Exe.T ime×Avg.Lat×NCE ×Area
; (11)

According to (11), we can easily evaluate the PF of the
systems which employed HyCH, GA and SA. As shown on
Figure 3, the HyCH can achieve in average 20.4% and 58%
more PF value than the GA and SA method can, respectively,
and the 50% V D with the certain setup achieved the most
PF value and it matched the best trade-off point with all the
constrains.

Regarding to the design time, we ran the HyCH, GA and
SA on a Linux Debian 64 bit machine with Intel Xeon CPU
(2.67G Hz), the HyCH calculation time is only 1% to 2% of
the GA and SA calculation time (for example, with 87.5%
V D and 256 Tiles 3D NoCs, HyCH cost 64 s, GA cost 4090
s and SA cost 3288 s).

We also took several applications from four benchmark
suits (PARSEC [13], SPLASH−2 [14], ALPBench [15] and
NU−MineBench [16]) for experiments in this subsection. We
set the V D as 50% for all the benchmark experiments, and
according to application constrains, we set the NoCs scale as
4x4x4 with 64 PEs. The experimental results have shown as
TABLE I.

bl
ac
ks
ch
ol
es

bo
dy
tra
ck

flu
id
an
im
at
e

pl
sa

m
pe
g2
en
c lu

0.00

0.01

0.02

0.03

0.04

0.05
HyCH/SA HyCH/GA

Fig. 4. Normalized Design Time Comparison between HyCH, GA and SA
Methods against Different Benchmark Applications

VI. CONCLUSION

In this paper, we developed a Hybridize Constructive
Heuristic (HyCH) method to allocate tasks on low vertical link
density 3D NoCs based many core systems. In comparison

to the classic SA and GA methods, our HyCH provides
better performance, less communication overhead (in GSPA
experiment, up to 23% and 15% less execution time, up to
36% and 18% higher average throughput, up to 21% and
11% lower average latency, up to 11% and 8% less network
communication energy than SA and GA, respectively) and less
design computation time.

REFERENCES

[1] L. Benini, G. De Micheli, “A New SoC Paradigm,” IEEE Computer,
pp. 70–78, January, 2005.

[2] G. Philip, B. Christopher, P. Ramm, Handbook of 3D Integration:
Technology and Applications of 3D Integrated Circuits. Wiley-VCH,
2008.

[3] M. Motoyoshi, “Through-Silicon Via (TSV),” 2009.
[4] International Technology Roadmap for Semiconductors (ITRS),

www.itrs.net.
[5] A. Hsieh, T. Hwang, M. Chang, M. Tsai, C. Tseng, H. Li, “TSV redan-

duncy: Architecture and design issues in 3D IC,” Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2010.

[6] Y. Chen, L. Xie, J. Li, “An energy-aware heuristic constructive mapping
algorithm for Network on Chip,” IEEE 8th International Conference on
ASIC (ASICON), 2009.

[7] N. Choudhary, M. Gaur, V.Laxmi, V. Singh , “GA Based Congestion
Aware Topology Generation for Application Specific NoC,” IEEE Inter-
national Symposium on Electronic Design, Test and Application, 2011.

[8] X. Jin, T. Watanabe , “An Efficient 3D NoC Synthesis by Using Genetic
Algorithms ,” IEEE Region 10 Conference (TENCON), 2010.

[9] B. Hredzak, O. Diessel, “Optimization of placement of dynamic
network-on-chip cores using simulated annealing,” 37th Annual Con-
ference on IEEE Industrial Electronics Society (IECON), 2011.

[10] Y. Zhou, W. Sheng, X. Liu, W. He, Z. Mao, “Efficient temporal task
partition for coarse-grain reconfigurable systems based on Simulated
Annealing Genetic Algorithm,” IEEE 9th International Conference on
ASIC (ASICON), 2011.

[11] H. Ying, A. Jaiswal, M. El-Ghany, T. Hollstein, K. Hofmann , “A Sim-
ulation Framework for 3-Dimension Networks-on-Chip with Different
Vertical Channel Density Configurations ,” 15th IEEE Symposium on
Design and Diagnostics of Electronic Circuits and Systems (DDECS),
2012.

[12] H. Ying, A. Jaiswal, K. Hofmann , “Deadlock-Free Routing Algorithms
for 3-Dimension Networks-on-Chip with Reduced Vertical Channel
Density Topologies ,” International Conference on High Performance
Computing & Simulation, Workshop Dynamic Reconfigurable Network-
on-Chip (HPCS-DRNoC), 2012.

[13] G. Bienia, Benchmarking Modern Multiprocessors, PhD Thesis. Prince-
ton University, 2011.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta, “The SPLASH-
2 Programs: Characterizing and Methodological Considerations,” 22nd
International Symposium on Computer Architecture, 1995.

[15] S. Adve, M. Li, R. Sasanka, Y. Chen, “The Alpbench Benchmark Suit
for Complex Multimedia Applications,” IEEE International Symposium
on Circuits and Systems, 2010.

[16] W. Liao, J. Pisharath, Y. Liu, A. Choudhary, “Nu-MineBench 2.0,”
Center for Ultra-Scale Computing and Information Security Technical
Report, CUCIS-2005-08-01,, 2005.

