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Abstract—In this paper, we approach embedded systems design

from a new angle that considers not only quality of service but also
security as part of the design process. Moreover, we also take into
consideration the dynamic aspect of modern embedded systems in
which the number and nature of active tasks are variable during
run-time. In this context, providing both high quality of service
and guaranteeing the required level of security becomes a difficult
problem. Therefore, we propose a novel secure embedded systems
design framework that efficiently solves the problem of run-
time quality optimization with security constraints. Experiments
demonstrate the efficiency of our proposed techniques.

I. INTRODUCTION

It is common today to find embedded systems controlling
safety and reliability critical applications. Recently, security
concerns in such systems are emerging rapidly as more and
more attacks occur. Moreover, the increasing interactions with
the outside world urge the need for security protections in
critical embedded systems. At the same time, applications
are often functioning under a dynamic load with the number
and functionality of active tasks changing during run-time.
This leads to the concept of dynamic task set, under which
security demands are even more difficult to be achieved. In
order to satisfy timing and security constraints, and provide
a high quality of service within limited amount of resources,
embedded systems need to be carefully designed. Therefore,
it is important to consider the security aspects, together with
other constraints, already in the early design stages.

Among the key components of information security, confi-
dentiality is of central importance. This is also valid in the em-
bedded systems domain, because the generated data, especially
those controlling safety or reliability critical applications, often
contain sensitive information which should not be disclosed
to unauthorized parties. In this paper, we focus on providing
confidentiality protection for the communication. Moreover, we
also consider intrusion detection during the design of secure
embedded systems to ensure that malicious remote access can
be detected.

Security aspects have been overlooked in most of the pre-
vious works on embedded systems design. More recently,
however, researchers started to address the issue of security
in the context of embedded systems. For example, the global
design challenges of secure embedded systems were described
in [1]. In [2], the authors presented an automatic hardware-
software design flow for detecting code injection attacks in MP-
SoCs. A hardware/software co-design technique was presented
to protect embedded systems against buffer overflow attacks
in [3]. Design of differential power analysis resistant secure
embedded systems has been approached in [4], [5]. Delivering
sound security protections under real-time constraints has been
studied and validated in [6], [7]. We have proposed techniques
for designing secure embedded systems for different scenarios,
e.g. cost minimization codesign of secure distributed embedded
systems and security optimization under various constraints
(real-time, energy, etc.), in [8], [9], [10].

None of the previous works, however, has addressed the
global, security constrained QoS optimization problem, let
alone in the context of dynamic task sets. In the present paper,
we propose an approach to this problem.

The rest of this paper is organized as follows. Section II
introduces related background. Sections III and IV present
our system model and an illustrative example, respectively.
We formally formulate the design optimization problems in
Section V. The proposed techniques and experimental results
are presented in Section VI and VII, respectively. Section VIII
concludes the paper.

II. PRELIMINARIES

We will consider three dimensions of optimization in this
paper: 1) Quality of Service (QoS) delivered by the application
tasks, 2) confidentiality protection of the communication, 3)
intrusion detection.

A. Quality of Service (QoS)
At any moment in time, a set of tasks is active, representing

the current mode M of the system. Each task ti is composed
of two parts. The first part is mandatory to be executed, if
ti is released, with a fixed execution time Emi . The second
part is optional, and its execution time eoi can be in range
[0, Eoi ]. The mandatory part provides constant QoS Qm

i , and the
optional part delivers additional QoS depending on the allocated
execution time eoi . The QoS produced by ti is then

QoSti = Qm
i + fi(e

o
i ), (1)

where fi(eoi ) is a user defined non-decreasing reward function.
We define the total QoS provided by the system in mode M as

QoSM =
∑
ti∈M

QoSti . (2)

B. Confidentiality
Confidentiality is achieved by message encryption/decryp-

tion. In this paper, we assume the use of iterated block ciphers
(IBCs), one type of symmetric-key cryptography, that arguably
are the most widely adopted message encryption algorithms.
In order to be able to adapt the system to a given context, we
need to find an efficient trade-off between protection strength
and encryption/decryption time.

Quantifying the strength of different IBCs is still an open
problem. We propose a solution in which the protection strength
of an IBC is quantified as the logarithm of the number of
plaintext-cipher pairs that are required to break the algorithm
by the best known cryptanalysis attack. We have conducted
extensive studies on four representative IBCs, i.e. RC5, RC6,
Rijndael and Blowfish [11], [12], [13], [14], [15]. In this paper,
we selected the RC6 algorithm because of the sound protection
strength, high flexibility, and fast encryption speed on embed-
ded processors [16] that we observed in our studies. Seven vari-
ants of RC6 that are assumed to be used in the system are listed
in Table I. The first row presents the referred RC6 variants.
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RC6 variant 4 6 8 10 12 14 16
Strength 29 45 61 78 94 110 118
Time 17 26 35 44 52 61 70

TABLE I
THE STRENGTH AND ENCRYPTION TIME OF SELECTED CIPHERS

They correspond to increasing number of encryption/decryption
rounds employed (4, 6, 8, etc). The second and third rows
list the protection strength and execution time (cycles/16Bytes)
of the corresponding variant, respectively. The encryption and
decryption time are very similar for RC6 according to [17],
so we assume them equal for simplicity of the presentation.
Note that our proposed design framework is general enough to
be applied to other quantification methods and cryptographic
algorithms too, if similar strength/time relations can be derived.

Assuming that the selected RC6 variant to encrypt/decrypt
message mij generated by task ti is Cmij

, then the quality of
confidentiality (QoC) protection for mij is quantified as

QoCmij =
eStrength(Cmij

)/MAX − 1

e− 1
∗ lij ∗ wij , (3)

where
lij = d

mij length in bits
block length in bits

e

is the length (in number of blocks) of mij , and wij is the
importance weight of mij . MAX is the highest protection
strength value provided in the system, i.e. 118 in Table I. The
QoC delivered by the system in a mode M is:

QoCM =

∑
ti∈M

∑
mij∈Li

QoCmij∑
ti∈M

∑
mij∈Li

lij ∗ wij
, (4)

where Li is the set of all messages over which task ti interacts
with the environment.

C. Intrusion detection
Intrusion detection (ID) is realized as a host-based indepen-

dent task [18]. It monitors the system calls and the changes
to system status, e.g. variables and log records, for potential
risks. It has a constant execution time EID for examining all
necessary information, but with variable periods pID depending
on the available resources and on the estimated level of threats.
The intrusion detection accuracy (0 < IDA ≤ 1) of mode M
is calculated based on the period pID as follows,

IDA =
PID
min

pID
, (5)

where PID
min is the shortest period that the ID task needs to

adopt in case of the highest threat level.

III. SYSTEM MODEL

The hardware platform considered in this paper has a central
processor that handles all computations and a communication
module via which it communicates (by wire or wireless) with
other peers or service centers. The set of active tasks that
is running in the system is dynamically changing at run-
time. The set of active tasks, at a certain time, defines the
current mode M ∈ M (similar to the definition in [19]). At
each task arrival or task termination, the system switches to
a new mode. The whole set of tasks T = {t1, t2, ..., tn} that
might occur in the system is known, and referred to as the
root mode Mr. The complete set of modes is the power set
M = 2T having cardinality of |M| = 2|T |. Certain modes
are excluded due to functionality constraints. We shall refer
to the modes that can occur at run-time as functional modes
Mfunc. Mode M is called a supermode of M ′, if M,M ′ ∈M
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Fig. 2. The hasse diagram of modes
for tasks of Fig. 1

Task P Em Eo L Qm
i Reward function

t1 1500 600 800 {m11} 5
√

eo1/50
t2 1300 300 700 {m21} 7 0.015 ∗ eo2
t3 2100 500 900 ∅ 3 (eo3)

2/20000

TABLE II
TASK ATTRIBUTES

and M ′ ⊂ M . Similarly, M ′ is a submode of M . The set of
supermodes and submodes of M are denoted as M(M) and
M(M) respectively.

The tasks are preemptable and independent from each other.
A task ti is composed of a mandatory and an optional part,
and is associated with several attributes (Pi, Emi , Eoi , Li, Qm

i ,
fi). Pi is the period and deadline of ti. Emi is the execution
time of the mandatory part. Eoi is the maximal amount of
time for the optional execution. Li is the set containing all
messages by which task ti interacts with the environment.
Each message mij is characterized by its length lij (in number
of blocks) and a weight wij representing its confidentiality
importance. In addition, for each message mij , a minimum
level of required confidentiality QoCmin

mij
is indicated. Qm

i is
the constant QoS value from the mandatory execution of ti. fi
is the reward function as introduced in Section II-A, expressing
the amount of additional QoS produced with increasing the
execution time eoi of the optional part. The execution time and
minimal period of the ID task is given as EID and PID

min. We
consider the encryption/decryption operations for the messages
mij as an additional load for task ti. Assuming that the system
is scheduled by EDF, the schedulability constraint in a certain
mode M is the following

UM =
EID

pID
+

∑
ti∈M

(
Emi + eoi
Pi

+
∑

mij∈Li

EEij ∗ lij
Pi

) ≤ 1, (6)

where EEij is the encryption/decryption time (per block) of the
chosen RC6 variant on the output/input message mij .

An illustrative system is depicted in Fig. 1. Three applica-
tion tasks may occur in the system, and the corresponding
partial order capturing the relations of all potential modes is
shown as a Hasse diagram in Fig. 2. Modes M13 = {t1, t3}
and M3 = {t3} are functionally excluded, and the rest are
functional modes. Table II presents the attributes of the three
application tasks. We assume that only two messages, m11 and
m21, are generated in the system by t1 and t2, respectively, and
to be sent over the communication module. They have l11 = 2,
l21 = 3, w11 = 0.7, and w21 = 0.3.

IV. MOTIVATIONAL EXAMPLE

Now let us consider the situation when the system in Fig. 1
runs in mode M12 = {t1, t2}, in which task t3 is not active.
The ID task has execution time 390, and its period delivering
maximal security protection (IDA = 1) is 1200 time units.
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With the given attributes in Table II, the processor utilization
of the mandatory parts of task t1, t2 is Em1 /P1+Em2 /P2 = 0.63.
So we have 37% free processor load without doing any optional
task executions or security protections. If only considering
the maximization of the generated QoS, the optimal resource
allocation is to give eo1 = 30 and eo2 = 454 time units
respectively as optional execution times of tasks t1 and t2.
Then we obtain a QoS = 19.58. However, there is absolutely
no security protection in this case, since the total processor load
is dedicated to the application tasks and no message encryption
or ID operation is performed.

Alternatively, we can achieve the highest possible confiden-
tiality protection by encrypting both m1 and m2 with the RC6
variant that provides the highest protection level in Table I
leading to QoC = 1. In this case, 140 and 210 time units are
spent on encrypting m1 and m2, respectively. By this, we have
already utilized U = 88.6% of the processor. Consequently, we
can only perform very limited optional application executions
or carry out the ID task with a long period leading to poor
QoS and IDA. Similarly, if the highest ID level (IDA = 1)
is demanded, we need to carry out the ID task with period
PID
min, i.e. 1200 time units. By this, the processor is almost

fully utilized (U = 95.6%) leaving no resources for either QoS
or QoC improvements.

The three scenarios outlined above represent cases in which
either security is completely ignored, or one security service is
provided at the very highest possible level, leaving an small
fraction of resources to the actual application. In reality, a
reasonable balance between the amounts of resources assigned
to application tasks, confidentiality protection and intrusion
detection should be achieved. What we are facing is a multi-
objective optimization problem along these three dimensions.
The solutions to this problem is captured as a Pareto surface1.
The Pareto surface corresponding to mode M12 = {t1, t2} is
depicted in Fig. 3. The points representing the three extreme
situations outlined above are marked with circles. Note that the
second scenario is related to a set of points that correspond to
different allocations of the small free processor load (11.4%).

Based on the current status of the system and threat level
from the environment, a security monitor determines the re-
quired security level as QoCR and IDAR. When entering a
new mode, the operation point is determined which corresponds
to the values eo1 and eo2 that produce the highest QoS under
the given circumstances with respect to the QoCR and IDAR

constraints. For example, if the current QoCR = 0.6 and
IDAR = 0.6, then we can decide on a resource allocation

1We refer to a finite set of the solutions as the Pareto surface in the rest of
this paper.

defined by the point (13.38, 0.61, 0.61) (marked in the red
square in Fig. 3). In fact, 13.38 is the maximal achievable
QoS satisfying both security constraints. Assuming that Pareto
surfaces are available at run-time for all functional modes, the
above procedure will allow determining the optimal operation
points based on the actual security requirements on-line.

Producing the Pareto surfaces at run-time is infeasible due to
the large overhead. Instead, they can be generated off-line, and
utilized on-line. However, there are two problems that have to
be considered:

1) Due to the huge complexity of the optimization problem,
and the potentially very large number of functional modes
(growing exponentially with the number of tasks), it
might be impossible, at design time, to generate Pareto
surfaces for all functional modes.

2) The available memory space at run-time limits the num-
ber of Pareto surfaces that can be stored.

Thus, Pareto surfaces can be stored only for a limited amount
of functional modes. If the system enters a mode for which
there is no available Pareto surface, the operation point has to
be extrapolated at run-time based on the available surfaces. For
example, let us assume that the system enters mode M1 = {t1},
but no Pareto surface is available for this mode. The system then
tries to use the Pareto surfaces of its implemented supermodes
M ′ ∈ (M(M1) ∩Mimpl) in order to find an good operation
point for M1 efficiently.

Let us assume that there exist available Pareto surfaces for
modes M12 and M123. As a first step, the run-time system
will construct the surface that can be derived from M12 and
M123 by ignoring the component produced due to tasks in
M12\M1 = {t2} and M123\M1 = {t2, t3} respectively. Fig.
4 and 5 depict the obtained surfaces for M1 in these two cases.
The surface obtained from M12 (Fig. 4) provides higher quality
points for M1 which in this case is easily observable from the
two figures. Thus, it will be used to find a first approximation
of the operation point for the new mode. For example, if the
current QoCR = 0.85 and IDAR = 0.6, then we can select
the solution producing the point (6.16, 1, 0.6) (marked in Fig.
4) on the derived surface, since it delivers the highest QoS, and
satisfies both security constraints. This point, however, since it
is derived from a surface produced for M12 by ignoring task
t2 and corresponding resource allocation, is sub-optimal. The
current processor utilization is U = 73.3%. By allocating, in
the next step, the full amount of available processor load to t1,
we extend eo1 to 400.6 time units, and improve the QoS of the
system to QoS = 7.83 accordingly. The on-line and off-line
phases of the above procedure will be discussed in Section VI.



V. PROBLEM FORMULATION

At design time, we formulate the design process for each par-
ticular mode as a multi-objective optimization problem. There
exist O(2|T |) instances of the problem to be solved, which
becomes infeasible as |T | grows. Thus, we want to explore only
a subset of M, depending on the available optimization time
and run-time memory needed to store the generated solutions.
At run-time, the system needs to adapt to a new mode, meeting
the current security requirements such that the provided QoS
is as high as possible.

A. Design Time

For a given mode, we have considered three objectives,
i.e. QoS (Eq. 2), QoC (Eq. 4) and IDA (Eq. 5). The set of
optimal solutions can be produced as a Pareto surface. An
implementation IM of a mode M consists of a set of solutions
on the Pareto surface, and is stored in memory. An individual
solution s ∈ IM is characterized by a certain delivered QoS (as
result of the allocated optional execution cycles to application
tasks), QoC (as result of the encryption/decryption cycles
allocated), and IDA (due to the assigned period of the ID task).

Before going further, let us introduce a relation between two
surfaces Ii and Ij . It is based on their hypervolumes [20]H(Ii)
and H(Ij) calculated using the method developed in [21]. If
H(Ii) > H(Ij), then Ii outperforms Ij . If M ∈ Mimpl,
where Mimpl is the set of implemented modes (for which a
Pareto surface has been generated and stored at design time),
then the hypervolume HM of M is calculated as H(IM ) from
IM . If M /∈ Mimpl, then HM is calculated as H(IM ′

M ),
where IM ′

M is the derived solution surface for M from M ′ ∈
(M(M) ∩ Mimpl) providing the highest hypervolume after
removing the resources occupied by redundant tasks M ′\M .

We divide our design phase optimization into two subprob-
lems. The first subproblem is to find the Pareto surface IM for
one given mode M . The second subproblem is to explore the
Hasse diagram efficiently to obtain the subset Mimpl ⊂ M,
and use the solution to the first subproblem to obtain the Pareto
surfaces for all modes M ∈Mimpl.

Subproblem I: We take the following parameters as input,
• the active tasks in mode M ,
• attributes (Pi, Emi , Eoi , Li, Qm

i , fi) for all ti ∈ M , as
well as lij , wij , and Qmin

mij
corresponding to all messages

mij ∈ Li,
• execution time EID and period PID

min for the ID task,
• a designer provided strength/time tradeoff table of selected

cryptographic algorithms as Table I.
The desired output is the Pareto surface corresponding to the
optimization objectives QoS, QoC, and IDA. Schedulability, as
described in Eq. 6, must be satisfied in all M ∈Mimpl.

Subproblem II: The inputs to this subproblem are
• the set of all functional modes Mfunc,
• the top functional modes Mfunc

↑ that do not have any
functional supermodes, and thus must be implemented.

Our desired output is implementations of selected modes
{M ∈ Mimpl : Mimpl ⊂ Mfunc}. Each functional mode
M ∈ Mfunc must have its own implementation or an imple-
mentation of at least one of its supermodes, i.e.

∀M ∈Mfunc, ({M} ∪M(M)) ∩Mimpl 6= ∅. (7)
The design objective for this problem is to implement a set

of modes Mimpl such that the total hypervolume value H of

all functional modes is maximized, i.e.
maxH =

∑
M∈Mfunc

HM , (8)

where

HM =

{
H(IM ), if M ∈Mimpl

H(IM ′

M ), otherwise.

The number of modes |Mimpl| that can be explored and
implemented is limited by the available optimization time and
run-time memory size.

B. Run time

At run-time, the system has to find the appropriate operation
solution according to the current mode and security require-
ments. The system takes the following as input parameters for
the on-line procedure,
• available implementations {IM : M ∈ Mimpl} that are

stored in memory,
• QoC and IDA requirements, QoCR and IDAR, received

from the run-time security monitor.
The objective is to find a solution s, based on the available
implementations, that delivers the highest QoS value while
satisfying all constraints, i.e. QoCs ≥ QoCR, IDAs ≥ IDAR,
and Us ≤ 1.

VI. PROPOSED TECHNIQUES

A. Design Time

Subproblem I: We cannot afford finding the optimal Pareto
surface for a given mode, due to the huge computational com-
plexity. Therefore, we use the genetic algorithm based multi-
objective optimization framework NSGA-II [22] for generating
the Pareto surface IM for mode M . The parameters, e.g. the
population size, number of generations, and mutation rates,
for NSGA-II are fine-tuned for different problem sizes. The
population size in NSGA-II gives the maximal number |IM | of
valid solutions to be saved in memory for one obtained surface.

Subproblem II: For solving the second subproblem defined
in the previous section, we traverse the modes in the Hasse
diagram using an improvement factor λ to limit the depth of
exploration. Before going further, let us introduce the definition
of immediate submode of M as

M−(M) = {M ′ ∈M(M) : |M | − 1 = |M ′|}. (9)
For example, M1 = {t1} is a immediate submode of
M12 = {t1, t2}, but not of M123 = {t1, t2, t3}; thus, M1 ∈
M−(M12).

The optimization procedure is outlined in Algorithm 1.
Mwait,Mimpl, andMskip keep the modes that are waiting to
be processed, have been implemented, and ignored respectively.
The top functional modes Mfunc

↑ must be implemented to
ensure correctness (see Eq. 7). So we start from these modes
when generating implementations (Line 2-3). After implement-
ing a mode Mt, we add its immediate submodesM−(Mt) into
Mwait (Line 4).

While the list Mwait is not empty, we take out and remove
the first mode M ′ fromMwait (Line 5-6). If M ′ is a functional
mode, and has not been implemented or skipped, then we
generate the derived surfaces IM ′′

M ′ (see Section V-A) for all
M ′′ ∈ (M(M ′) ∩ Mimpl), and keep the one among them
with the maximal hypervolume HD

MAX (Line 7-10). Then we
generate the actual surface IM ′ for M ′, and compare the
hypervolumes H(IM ′) and HD

MAX . This comparison gives us



Algorithm 1 Heuristic for offline design phase
1: Initialize list Mwait := empty, sets Mimpl,Mskip ← ∅
2: for each Mt ∈Mfunc

↑ do
3: Generate Pareto surf. IMt , and Mimpl ←Mimpl ∪ {Mt}
4: Add each M ∈M−(Mt) into the list Mwait

5: while Mwait 6= empty do
6: Take out the first element M ′ from Mwait

7: if M ′ ∈Mfunc\(Mimpl ∪Mskip) then
8: for each IM′′ of M ′′ ∈ (M(M ′) ∩Mimpl) do
9: Calculate H(IM

′′
M′ ) of derived surface for M ′

10: HD
MAX =MAX(H(IM

′′
M′ ),HD

MAX)
11: Generate Pareto surface IM′ for M ′

12: if H(IM′) ≥ HD
MAX ∗ (1 + λ) then

13: Mimpl ←Mimpl ∪ {M ′}
14: Add the modes inM−(M ′)\(Mimpl ∪Mskip) to the

end of Mwait

15: else
16: Mskip ←Mskip ∪ {M ′} ∪M(M ′)
17: Remove the modes in M(M ′) from Mwait

an indication about how much we gain by storing an actual
implementation for M ′ as opposed to using a derived surface
at run-time. IfH(IM ′) ≥ HD

MAX∗(1+λ), we consider the gain
sufficiently large for storing IM ′ , and the immediate submodes
of M ′,M−(M ′), are added intoMwait to be further processed
(Line 11-14). Otherwise, no implementation of M ′ will be
stored, and the search along its descendants is stopped (Line
16-17). After the algorithm terminates, the modes that have
been implemented are kept in Mimpl.

The designer can traded-off solution quality with optimiza-
tion time and needed memory space by tuning the improvement
factor λ(λ >= 0) in Line 12. With smaller value of λ, the
numbers of explored and stored implementations increase.

B. Run time

After the design phase, the system has a set of imple-
mentations {IM : M ∈ Mimpl} stored in memory. At
run-time, the system changes modes dynamically, and must
adapt to the security requirements corresponding to the current
state of the environment and threat level. Two situations may
occur when the system is required to switch to mode M : an
implementation of M is available (M ∈ Mimpl), and is not
available (M /∈Mimpl).

1) M ∈ Mimpl: In this case, M was implemented, and
a set of solutions IM were stored in memory. Knowing the
security requirements QoCR and IDAR, the system selects
the operation point s ∈ IM , which delivers the highest QoSs,
and satisfies QoCs ≥ QoCR and IDAs ≥ IDAR. It might be
possible that, under the given amount of resources, there does
not exist any schedulable solution satisfying QoCR and IDAR,
even if the optional cycles for all application tasks are zero
(there is no s ∈ IM that satisfies the security constraints). In
this case, the run-time monitor will be notified and emergency
measures must be taken.

2) M /∈Mimpl: In this case, we first select the supermode
M ′ ∈ (M(M) ∩Mimpl) that results in the best hypervolume
of the derived surface H(IM ′

M ) for M , i.e.
H(IM

′

M ) ≥ H(IM
′′

M ),∀M ′′ ∈ (M(M) ∩Mimpl). (10)
As a second step, an appropriate solution point s ∈ IM ′

M has
to be selected. It should be reminded that all solutions on IM ′

M
are fixed such that the resources assigned to tasks ti ∈M ′\M
are not used. Thus, in order to determine the best resource
allocation for the new mode M , the unused resources must be

redistributed. We have to consider two cases depending on, if
according to IM ′

M , the current security requirements QoCR and
IDAR can be satisfied or not.

If QoCR and IDAR can be satisfied in IM ′

M : we first
select the solution s ∈ IM ′

M as in case 1) discussed above.
Then we allocate the free processor bandwidth Ufree

s = 1−Us

among the tasks ti ∈M in the priority order of the derivative
fi
′(eoi ) of the reward function (refer to Eq. 1).

If QoCR and IDAR cannot be satisfied in IM ′

M : we start
from the solution s ∈ IM ′

M that has the closest Euclidean dis-
tance between (QoCs, IDAs) and (QoCR, IDAR). Then we
check whether IDAR can be satisfied by allocating bandwidth
from the unused processor load Ufree

s = 1 − Us in order to
achieve the required period of the ID task pIDs = PID

min/IDA
R.

If this is possible, we fix the period of the ID task accord-
ingly and continue with a similar procedure regarding the
requirement QoCR. If QoCR is currently not satisfied, we
distribute the now available processor bandwidth to provide
higher encryption level to the messages corresponding to tasks
ti ∈M . The available bandwidth is assigned for increasing the
encryption strength with priority to the messages with higher
wij on confidentiality. If bandwidth is still available, it will be
distributed for increasing QoS, as indicated further above. In
case the security requirements QoCR and/or IDAR cannot be
satisfied, the run-time monitor will be signaled.

VII. EXPERIMENTAL RESULTS

We have conducted experiments on a Linux machine having
a four-core Intel Xeon CPU with 2.66GHz frequency and 8GB
RAM. We have studied five different problem sizes having task
numbers |T | = 3, 4, 6, 8, and 10 respectively. On each problem
size, 20 test applications were generated randomly. The ID task
execution time EID and minimal period PID

min were set as 390
and 1200 time units, respectively.

The mandatory execution time Emi and maximal optional
execution time Eoi of task ti were randomly generated from
the intervals [500, 1400] and [100, 800], respectively. Each task
was associated with a set of messages, each of which had
lij ∈ {1, 2, ..., 7} blocks and a random weight wij ∈ [0, 1].
The reward functions were assumed to be of the form fi(e

o
i ) =

αi ∗ eoi + βi ∗
√
eoi .

A. Design Time

We first evaluated our design time optimization technique.
Five different improvement factors λ were studied in the
experiments, i.e. 0, 0.2, 0.4, 0.8, and 1.6, to evaluate the trade-
off between optimization time and performance. If λ = 0,
the algorithm exhaustively explored all functional modes, and
generated a Pareto surface for each mode.

For comparison, we chose the baseline as the situation when
only the top functional modes were implemented, i.e.Mimpl =
Mfunc
↑ . Under this scenario, the total hypervolume HMfunc

↑
of

the system was actually the minimum that could be obtained
without violating the coverage constraint in Eq. 7. For each λ on
a given test application, we computed the achieved performance
improvement (PI) as follows,

PI =
HMimpl −HMfunc

↑

HMfunc
↑

, (11)

where HMimpl was the total hypervolume of all functional
modes under the situation when onlyMimpl were implemented
(this is the value of the cost function in Eq. 8).
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Fig. 6. Performance improv. of off-line phase
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Fig. 7. Optimization time of off-line phase
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Fig. 8. Performance of on-line solution selection

Fig. 6 shows the obtained results relative to the baseline
solution Mimpl = Mfunc

↑ . The horizontal and vertical axes
indicate the number of tasks |T | and average PI in each
experimental setup, respectively. It can be observed that bigger
improvements can be achieved with smaller λ, since more
modes are explored and implemented. Therefore, it is important
to implement more modes than the top functional modes in the
system design stage, especially in large system designs. The
overall trend also shows that, with a fixed λ, better improve-
ments are obtained on bigger problem sizes. Fig. 7 shows the
average optimization time (in seconds) for each λ and problem
size. As can be noticed, no result was shown for |T | = 10 and
λ = 0 in Fig. 6 and 7 because of the long runtimes. These two
figures together demonstrate the trade-off between optimization
time and result quality for different problem sizes. In large
problem sizes, it is infeasible to explore a very large portion of
the Hasse diagram as the optimization time grows aggressively
for small λ. However, good performance improvement can still
be achieved using a larger λ.

B. Run time

We simulated the run-time operation phase optimization
on the same test applications having 3-10 tasks as above
considering the same five values for λ. For each application and
λ, we randomly generated 20 modes to simulate the dynamic
changes of the active task set. Each mode Mi was assigned
with random QoCR

i and IDAR
i constraints to emulate the

uncertain security requirements received on-line. We performed
our proposed run-time solution selection technique on each of
the 20 modes.

For evaluation, we counted the number of cases where the
QoS value delivered by the obtained solution reached the ideal
case according to QoCR and IDAR. In other words, the ob-
tained solution delivered the same QoS as if the Pareto surface
was available for Mi. Fig. 8 shows the percentage of the cases
in which the ideal QoSs were obtained. Meanwhile, for those
solutions that differ from the ideal ones, the average achieved
QoSs of all applications and value of λ were above 90.1% of
the achievable value if all implementations are available.

VIII. CONCLUSION

In this paper, we have presented a novel security aware
design optimization framework for modern embedded systems
that have dynamic task sets. Confidentiality protection and
intrusion detection are considered in the design process together
with QoS optimization. In order to master complexity issues,
we propose efficient heuristics to be used in the off-line and
on-line stages, respectively. Our off-line solution can be tuned
by the designer for pursuing better solution quality vs. shorter
optimization time and less run-time memory. Experiments have
demonstrated the efficiency of the proposed technique.
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