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Abstract— The growing variability and complexity of advanced 

CMOS technologies makes the physical design of clocked logic in 

large Systems-on-Chip more and more challenging. 

Asynchronous logic has been studied for many years and become 

an attractive solution for a broad range of applications, from 

massively parallel multi-media systems to systems with ultra-low 

power & low-noise constraints, like cryptography, energy 

autonomous systems, and sensor-network nodes. The objective of 

this embedded tutorial is to give a comprehensive and recent 

overview of asynchronous logic. The tutorial will cover the basic 

principles and advantages of asynchronous logic, some insights 

on new research challenges, and will present the GALS scheme as 

an intermediate design style with recent results in asynchronous 

Network-on-Chip for future Many Core architectures. Regarding 

industrial acceptance, recent asynchronous logic applications 

within the microelectronics industry will be presented, with a 

main focus on the commercial CAD tools available today. 

Keywords—component; asynchronous design, handshake 

circuits, GALS, CAD flow 

I.  INTRODUCTION 

The growing variability and complexity of advanced 
CMOS technologies makes the physical design of clocked 
logic in multi-core Systems-on-Chip (SoCs) extremely 
challenging and costly. The main issues for such systems, 
which carry on scaling with the Moore’s law, are concerned 
with achieving timing closure in the face of PVT variations, IR 
drops on power lines, synchronization issues for different clock 
domains and so on. On the other end of the spectrum of CMOS 
are many problems in the realm of more-than-Moore, i.e. 
developments in mixed signal systems such as systems with 
energy harvesting sources, RFID etc., where power and timing 
conditions are harsh and require logic to be robust to them. 
Clearly, IC designers begin to realize that reliance on the use of 
a single global clock no longer guarantees economic and 
reliable solutions. The question is therefore arising, whether it 
is worth to switch to clockless or asynchronous systems, and if 

so, what types of asynchronous logic design techniques would 
be most appropriate.  

Asynchronous logic is not a new paradigm, it has been 
studied for many years and become an attractive solution for a 
broad range of applications, from massively parallel multi-
media systems to systems with ultra-low power and low-noise 
constraints, like cryptography, energy autonomous systems, 
and sensor-network nodes. While in the past asynchronous 
logic design methods were developed in relative isolation, they 
tended to follow fairly purist approaches, such where an entire 
system would be seen to be built without clocking, using delay-
insensitive or speed-independent circuit theory. The reality has 
proven that those approaches, albeit theoretically elegant, 
haven’t been picked up by industry for various reasons, and 
most prominently for the lack of connections with real-life 
industrial design and test practices, starting from the 
description languages, flexible design tools and ending with the 
accepted validation procedures. More recent views of the 
asynchronous design experts are much more in line with real-
life, and this is what our position in this tutorial, whose 
objective is to give a comprehensive and recent overview of 
asynchronous logic and its modern day status.  One of such 
present day trends for introducing asynchrony into system 
design is through a more evolutionary approach, called 
“globally asynchronous, locally synchronous” (GALS) design, 
which uses asynchronous principles to build interfaces between 
locally clocked data-processing islands, to combine the 
advantages of both aspects. 

The tutorial is organized as follows. Section II will discuss 
the main principles and advantages of asynchronous logic. 
Section III will present the GALS scheme as an intermediate 
design style. Section IV will follow with recent results in 
asynchronous Networks-on-Chip for future Many Core 
architectures. Section V will focus on a modern industrial 
design flow from Tiempo with its own synthesis tools. Section 
VI will cover recent applications and CAD perspectives within 
the microelectronics industry. 
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II. ASYNCHRONOUS DESIGN PRINCIPLES 

A. Design Principles 

This section will outline the key principles lying behind 
most of the existing asynchronous design methods. 

Asynchronous handshaking. When data is passed between 
logic blocks two aspects of timing are most important. One of 
them concerns the conditions that determine the moment of 
time when the sender knows that the receiver has received the 
previous item, so it can send the next item. The other aspect is 
for the receiver to know that the data on the information lines is 
valid as opposed to being in transit (some bits have changed 
while other bits are still changing their state). In synchronous 
circuits both aspects are resolved with the help of the clock 
pulse. In asynchronous circuits, the situation is different. The 
first aspect is resolved by the use of handshake protocols, 
where two signals, request and acknowledgement are used to 
transmit switching events between the sender and receiver, as 
shown in Fig.1. These req-ack events form communication 
tokens a useful abstraction for asynchronous system design. 
Three main types of signaling are often used for handshakes 
[1]: (i) four-phase, or level-based, or Return-to-Zero (RTZ); (ii) 
two-phase, or transition-based, or non-Return-to-Zero (NRZ), 
and (iii) pulse-based. The advantage of the four-phased method 
is a relative simplicity of the implementation logic, while the 
two-phase signaling has less communication overhead than the 
four-phase protocol with more complex logic to implement. 
The pulse-based approach combines the advantages of the 
previous two schemes, however at the cost of requiring extra 
care with the formation of pulses, as some of the transitions on 
the wires are unacknowledged.  

        

Figure 1.  Handshake signaling: req-ack pair  

(a); four-phase (return to zero, RTZ) protocol (b). 

Delay-insensitive encoding. The second aspect of timing is 
concerned with the validity of data on the information lines. 
Without having a clock, the validity of the data should be 
derived from the causal relations between data lines [1]. A 
simple way, the so called bundled data method, uses the 
assumption that the data value must transition strictly before 
the edge on the request signal. In this way, the validity tag is 
provided by the request signal, which is analogous to the clock. 
While the bundled data approach often enables reuse of 
datapaths from synchronous implementations (hence benefit 
from using results of commercial logic synthesis tools), the 
timing constraints between data and control may undermine the 
robustness of circuits, for example under severe PVT variation. 
Hence the use of delay-insensitive (DI) codes, where the 
validity of data is directly embedded in its encoding. The 
simplest form of DI encoding is dual-rail. It relies on the use of 
two wires for each bit and when combined with a four-phase 
signaling protocol also requires a NULL state (spacer) when 
both wires are in the zero state, as shown in Fig 2, where the 
transmission of a sequence of logical 1 and 0 is shown.  Other 

DI codes can be formed, for example, those based on m-of-n 
codes (having valid codewords with exactly m bits that are 
equal to 1 out of the total n wires) [2]. Two examples of DI m-
of-n codes are shown that are commonly used in recent NoCs: 
1-of-4 (0001=> 00, 0010=>01, 0100=>10, 1000=>11); 2-of-7 
(1100000, 1010000, …, 0000011 – in total 21 combinations, 
which can encode 4 bits of data plus 5 control tokens). 

 

Figure 2.  Data encoding in dual rail 

Completion detection. In the absence of the clock, the 
deriving of the validity of data on inputs as well as signaling 
the completion of transients inside logic blocks can be done by 
using special pieces of hardware dedicated solely to completion 
detection. For bundled data representation the completion is 
indicated by a special matched delay, whose value must be 
greater than the worst-case delay in the single-rail logic block. 
For DI signaling, such as dual-rail, special circuitry is added to 
propagate information about the transient completion, as 
illustrated in the implementation of a completion detection tree 
shown in Fig. 3. This tree consists of a row of OR gates 
followed by a multi-input C-element, which can be constructed 
either as a tree of 2-input C-elements or using trees of simple 
gates for multi-input AND and OR and a 2-input C-element at 
the end. The need for completion logic at the output of the 
dual-rail logic, as opposed to using ‘shortcuts’ via matched 
delays, effectively supports the notion of causal 
acknowledgement, described in the following paragraph. 

 

Figure 3.  Completion detection for dual-rail logic 

Causal acknowledgement. In synchronous circuits or when 
using the bundled data method the correctness of timing 
conditions is determined by assumptions about relative delays 
(in case of clock, between the worst case paths and clock 
period). For asynchronous operation that relies on the explicit 
indication of the transients between the circuit gates, that is 
called causal acknowledgement. According to this principle, 
every transition on inputs or the output of each gate is 
acknowledged, or indicated, by some other signal transition. To 
illustrate this effect, consider the circuit shown in Fig. 4(a). The 
circuit diagram shows a speed-independent or quasi-delay-
insensitive (QDI) implementation of the behavior of a two-way 
C-element, whose specification is given in the signal transition 
graph shown on the right. The refined behavior of this circuit, 
at the level of all gates, is shown in Fig. 4(b), which clearly 



shows that the cause-effect relation is guaranteed for all 
transitions regardless of the delays of all gates. Signal transition 
graphs (STGs) are generally used to specify asynchronous 
control logic [3]. There are tools to perform synthesis of 
control logic from STGs, the most widely used such tool is 
Petrify [3].  

 

 

Figure 4.  C-element implementation in simple gates with full indication  

of signal transitions and its signal tranistion graph (a); 

its refined signal-transition graph (b) 

Full indication and early evaluation. Related to the notion of 
causal acknowledgement and indicatability is the property of 
causality between signals inside the circuit, which has its 
implication on the implementation of logic operators. For 
example, when using dual-rail encoding one can think of a 
strongly-indicating QDI implementation of a two input logical 
AND, shown on the left of Fig. 5 (this implementation is also 
known as DIMS [2], for “directly indicating min-term 
synthesis”) and a weakly-indicating implementation, 
sometimes also known as an implementation “with early 
propagation” (shown on the right). The tradeoffs between 
robustness and efficiency in these two options for two-input 
AND are quite obvious.  

 

Figure 5.  Strongly indicating and weakly indicating 

("with early propagation") implementationss of logical AND. 

Time comparison. The last important principle is about the 
need for explicit logic to perform the so-called “time 
comparison”, which exhibits itself either in the form of 
synchronization or arbitration. A synchronizer is a device 
which interfaces a circuit with its own clock to an input whose 
signal transitions are produced outside the clock domain, and 
thus being asynchronous to the circuit.  Using a simple flip-flop 
as a synchronizer is prone to failures because when its data 
input (used as an asynchronous request or other validity tag) 
and clock input change close to each other, the set-up condition 
for the flip-flop is violated and its output may enter a 
metastable state, between 0 and 1, and stay there longer than 
the clock period. This may cause a malfunctioning in the circuit 

where the metstable state may be interpreted as 0 in one place 
and 1 in another. More about metastability, synchronization 
and the design of synchronizers can be found in [4]. 

 

Figure 6.  Two-way arbiter (mutex) with metastability resolver 

Another form of time comparison is for asynchronous 
arbitration [4], which is for example required for resolving 
various forms of conflict in systems, including arbitration for 
common resources between mutually asynchronous clients. A 
two-way arbiter (also called mutex) is illustrated in Fig. 6. It 
can be used to determine the order of arrival between two 
mutually concurrent requests req1 and req2. The circuit issues 
only one grant ack1 or ack2 at a time. Since the circuit uses an 
SR latch the digital part of the mutex may enter a metastable 
state. However, the analogue part, called metastability resolver, 
prevents its propagation to the ack outputs. Only when the latch 
leaves the metastable state one of the outputs ack1 or ack2 goes 
to 1.Two way mutexes are used in building GALS interfaces 
and complex arbiters in NoC routers. 

B. Main advantages and drawbacks 

Researchers have always been excited by asynchronous 
design and motivated by their ability to work on average not 
worst case delays; lower power consumption (automatic fine-
grain “clock” gating; automatic instantaneous stand-by at 
arbitrary granularity in time and function; distributed localized 
control; more architectural options/freedom; more freedom to 
scale the supply voltage); modularity; lower EMI and smoother 
Idd (the local “clocks” tend to tick at random points in time); 
low sensitivity to PVT variations (due to inherent 
indicatability); secure chips (white noise current spectrum). 

So why hasn’t asynchronous logic been adopted in the 
past? Some of the reasons are due to overheads (area, speed, 
power) in control and handshaking, dual-rail and completion 
detection costs. However, these are less of an issue now due to 
the counterarguments in favour. The most prominent now are 
actually the reasons associated with the design and test issues. 
Namely: the variety of styles and variants to go and one can 
easily get confused which is better; lack of practical CAD tools 
as the tools tend to be quite specific to particular design styles 
and design niches; complexity of timing and performance 
models; difficulty with sign-off (for particular frequency 
requirements). Last but not least, the hardness to test 
asynchronous circuits using conventional testing methods and 
equipment is another obstacle. 

Despite these drawbacks, the situation is gradually 
changing and as the following sections demonstrate, the design 
methods and tools gradually mature and industry is certainly 
much less averse to this discipline because the pluses are 
gradually outweighing minuses. 



III. GLOBALLY ASYNCHRONOUS LOCALLY SYNCHRONOUS 

A. GALS Design Main Principles 

The Globally Asynchronous Locally Synchronous (GALS) 
scheme has been introduced as early as 1984, by Daniel 
Chapiro. A GALS system (Figure 7. ) consists of a number of 
complex digital blocks operating synchronously. Those blocks 
are usually developed using standard synchronous CAD tools 
and design flow. However, the operation of the blocks is not 
mutually synchronized, hence the name “locally synchronous”. 
These locally synchronous blocks communicate with each 
other asynchronously: at top level, the system is asynchronous.  

In the literature, the “GALS” term stands for any design 
style between fully synchronous design using unrelated clock 
frequencies – the GALS term is often used by the industry 
today to implement multi-synchronous large SoCs – to various 
forms of asynchronous communication schemes between the 
synchronous islands. The communication topologies can be 
anything from point-to-point communications to structured 
interconnects, like bus hierarchy, rings, or Network-on-Chip. 
For asynchronous style, a common approach is to add a so 
called "asynchronous wrapper" that provides an interface from 
the synchronous to the asynchronous environment to every 
locally synchronous block. 

 
Figure 7.  GALS architecture template 

The main advantage of GALS is to provide modular and 
scalable architecture. GALS is a way to structure system level 
communication, such as those in Network-on-Chips. Regarding 
physical design and timing optimization, global clocking is not 
feasible anymore due to long wires and high frequencies. 
GALS is a way to provide structured pipelined interconnect: 
top level long wire delays are handled through asynchronous 
signalling and pipelines, with high level protocol semantics. As 
a result, local synchronous islands are smaller IPs, thus 
allowing smaller and independent clock trees, with smaller 
clock skews. GALS is also a natural enabler for Low Power. 
By fully decoupling communication from computation, power 
management techniques such as Dynamic Voltage and 
Frequency Scaling, DVFS) can be applied to GALS where 
synchronous IPs are independent voltage and frequency 
islands. Lastly, GALS design brings also Low Noise. By 
decoupling the frequency domains, the GALS architecture will 
generate smaller noise with a set of smaller multi-harmonics 
instead of a single large-noise harmonic. This can be beneficial 
for crypto applications for instance. 

Nevertheless, all these often advocated advantages of a 
GALS template must no hide various issues and drawbacks. 
When designing a GALS system, the main issue is the design 
of reliable GALS interfaces in order to handle the so-called 
metastability problem, which may occur between the 
synchronous and asynchronous logic domains [5]. The GALS 
design style can be classified into two main forms: (i) a full 
clock cycle is required to wait for metastability to resolve; such 
a technique is adopted in multi-synchronous GALS design by 
using a two flip-flop synchronizer, likewise using mixed 
synchronization FIFOs ; ii) a single flip-flop but with a delayed 
clock; this is the initial unsynchronous machine from Chapiro 
which has evolved in the pausible or stretchable clock concepts 
[8]. In both cases, the GALS interfacing logic must provide 
high performance with high throughput and low latency. The 
two following sections present the design principles of these 
two design styles. 

B. FIFO based synchronization 

For SoC level synchronization, a two flip-flop (2FF) 
synchronizer is simple to design, but a back pressure protocol 
is required to handle sporadic and bursty traffic with associated 
full/empty states. Then, a simple 2FF synchronizer would 
present a large performance overhead with 4 clock cycles 
throughput (at least) for any token round trip; which is 
unacceptable cost at system level. The classical solution is to 
use a synchronization FIFO to hide synchronization and allow 
parallel read and write. 

 
Figure 8.  Dual Clock FIFO principles 

As presented in Figure 8. , a dual clock FIFO allows 
concurrent read and write using independent read and write 
clock domains, and synchronization of read/write FIFO 
counters with respective opposite clocks to compute the 
empty/full FIFO status. Since the FIFO pointers cross timing 
domains, it is required to use an adequate encoding to ensure 
proper synchronization and detection of FIFO empty/full states. 
For this, Gray encoding is classically used in multi-
synchronous FIFOs. With a Hamming distance of one, the 
Gray-encoded FIFO counters only change one digit by read or 
write iteration, thus providing correct multi-bit 
synchronization. Gray encoding leads to complex logic, since 
counter increment need translation from/to binary, and is 
mostly limited to 2^N FIFO sizes, with an N-bit Gray counter.  

For mixed-mode asynchronous/synchronous FIFOs to be 
used in a GALS scheme, similar FIFO strategy applies but one 
FIFO side is transformed or wrapped to behave with an 
asynchronous protocol; and different pointer encoding can be 
used to replace costly Gray codes. Various FIFO encoding and 



architecture have been studied in the recent years. Most of 
these FIFOs use token based encoding instead of Gray code. 
Chelcea [6] has proposed mix-mode synchronization FIFOs, 
using a 1-hot token-based encoding implemented using 
precharge logic, providing efficient but - partly - full custom 
design. Sheibanyrad [11] has proposed a bubble encoding for 
FIFO design targetting a GALS NoC architecture. More 
recently, Thonnart [7] has proposed to use Johnson encoding, 
providing also a Hamming distance of 1 as for Gray code, a 
less dense code but not restricted to 2^N values, allowing to 
have efficient small FIFOs (depth 5 or 6). 

C. Pausible Clock Design 

Another solution for cross-timing domain resynchronization 
is to use the so-called pausible clocking. The basic idea is to 
stretch the clock cycle when a transfer occurs between 
synchronous and asynchronous domains until the transfer is 
complete, to avoid any metastable state and allow safe data 
latching. As presented in Figure 9. , the locally synchronous 
block is clocked by a local clock generator and communicates 
with external world using asynchronous handshake channels 
(implemented usually by the bundle-data 4-phase protocol). 
The IP is wrapped by specific port controllers which request 
the clock generator to suspend the next clock edge until 
incoming/outgoing transfer is completed, to allow safe data 
transfer. 

 
Figure 9.  IP Self Timed Wrapper [9] 

Various pausible clock schemes have been proposed in the 
literature [8]. A comprehensive GALS design flow based on 
pausible clocking has been developed by ETH Lab with 
various port controllers (poll type, demand type), various 
interconnection topologies, an associated test architecture, and 
a complete design flow [9]. Nevertheless, such an approach 
suffers from various design issues. The port controllers are 
specified as asynchronous finite state machines (AFSM), using 
a burst-mode description. The port controllers are implemented 
using an AFSM synthesis tool, but care must be taken to avoid 
any logic remapping during logic synthesis and place & route, 
to guarantee hazard-free asynchronous logic. A more tricky 
issue concerns clock tree insertion time. In preliminary works, 
the clock tree insertion time of the synchronous IP was limited 
to match a delay race between clock pause path and data 
latching in the port controller being clocked by the generated 
clock. That was leading to small clock tree insertion time (half 
the clock period), thus limiting the size of the synchronous IP. 
This clock tree limitation has been overcome in recent work, 
but with more tricky design, and still providing a low data 

transfer throughput (less than 0.5 word per clock cycle) [10]. 
Pausible clocking exhibits also other system level limitations: 
(i) the Local Clock Generator design is a low-cost feature to 
offer Dynamic Frequency Scaling (DFS), but since it is based 
on a programmable delay line that can be implemented in full 
std-cell, or could be more sophisticated, it is usually still 
inaccurate to guarantee a target frequency; (ii) lastly, by 
pausing the clock edge for each data transfer, the transfer 
throughput is limited, thus reducing the system performance by 
not ensuring a stable and regular clock generation. 

D. Recent GALS designs and  Conclusion 

The most accomplished GALS circuit design techniques 
using Pausible Clock, with associated circuit results, have been 
developed by ETH and IHP labs. The ETH lab have developed 
various circuits [9], targeting a crypto-application with the AES 
algorithm, and also studied various topologies (ring, bus, 
crossbar). Thanks to clock tree partitioning, compared to pure 
synchronous design, the GALS version presents lower EMI, 
which was an advantage for the crypto-application, while 
presenting similar performances (speed, area, power).  

More recently, the IHP lab have developed [10] a complete 
design methodology, and a baseband OFDM TX circuit, with 6 
GALS IP blocks and 16 GALS links, fabricated and measured 
in a 40nm CMOS technology. A fair comparison with a 
synchronous version of the same OFDM BB TX design 
exhibits a 5% area gain and 6% power consumption reduction 
for the GALS version running at 160MHz. These gains are 
obtained thanks to GALS partitioning, smaller clock tree, and 
gain in clock tree power. Nevertheless, the proposed design 
techniques still require lots of expertise for too minor gains. 

 
Figure 10.  GALS design technique comparison 

Finally, when comparing the two main GALS design 
techniques (Figure 10. ), pausible clocking is more adapted for 
low power, low performance application, and requires more 
design expertise, while FIFO based synchronization will target 
high performance application with guaranteed throughput, but 
presenting higher latency and area costs. In both cases, in order 
to hide the inherent design complexity regarding timing 
analysis and associated verification, these GALS interface 
blocks (pausible clock generator & port controller, or re-
synchronization FIFO) can be designed as hard macros that can 
be easily reused at system level. In conclusion, the main 
benefits of GALS will not be only obtained from circuit design 
techniques but most of all at system level thanks to modular 
and scalable GALS design, allowing local DVFS for further 
power consumption system level optimization [14]. 



IV. ASYNCHRONOUS NETWORK-ON-CHIP 

A. Main principles 

Networks-on-Chip (NoC) have been introduced as an 
alternative to more traditional bus-based architectures, to give a 
modular and scalable communication architecture based on 
packet switching. With a clear separation between computation 
and communication, the NoC architecture perfectly fits the 
GALS paradigm (Figure 11. ), where NoC units are 
implemented as synchronous units, with independent clock 
domains, while the NoC infrastructure can be implemented in 
fully asynchronous logic. 
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Figure 11.  GALS Network-on-Chip template 

Regarding clocking strategy, the NoC may be implemented 
using synchronous logic, but due to timing constraints for long 
wire communication, single-clock synchronous design is not 
feasible (clock skew on large topologies, margins, etc.), a 
certain level of de-synchronization is often used. This can be 
done using standard multi-synchronous design, source-
synchronous design, or with meso-chronous clocking. Such 
synchronous NoC implementations are feasible, but present 
large latency overhead, due to synchronization cost at each 
router hop, even when using optimized mesochronous design 
[11], when compared to a fully asynchronous NoC.  

A more elegant solution consists in implementing NoC 
routers and links using asynchronous logic and handshake 
channels. Many asynchronous NoC have been proposed in the 
literature, using various asynchronous design techniques: 

• Bundle-data asynchronous logic, like in MANGO, 
QNOC, which use standard 4-phase protocols, or more 
recently [12] using a two-phase Mousetrap protocol, to 
increase link throughput ; 

• Quasi-Delay-Insensitive (QDI) asynchronous logic, 
like HERMES-A  using dual rail, ANOC using 1-of-4 
DI code for lower power, or CHAIN using more 
complex 2-of-7 DI code for code density and additional 
power reduction, to provide robust NoC routers and 
links insensitive to timing variations ; 

• Mixed design (internal router using bundle data logic 
while long NoC links are implemented using QDI 
logic), like in ASPIN [11], to benefit of both 
advantages : smaller logic in the routers, robustness on 
the long NoC links, but requiring additional conversion 
logic. 

B. NoC Building Block Design 

An asynchronous NoC is composed of asynchronous 
routers, aimed to route and arbitrate packets in the topology, 
and NoC GALS interfaces that are responsible for bridging the 
timing domains between the asynchronous router and the 
synchronous units. These NoC GALS interfaces can be either 
implemented using a FIFO-based synchronizer [7] or using a 
pausible clock GALS interface [14]. Due to performance 
constraints, FIFO-based GALS interfaces will be preferred for 
asynchronous NOC, as explained in section III. 

Asynchronous 4-rail pipeline stage
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L.ack
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Figure 12.  Asynchronous NoC link pipeline stage 

Lastly, the NoC is composed of asynchronous long wire 
NoC links that can be implemented using various encodings: 
bundle-data, which requires timing margin constraints to be 
met on long wires, or using QDI asynchronous logic for design 
robustness and easier physical design. In order to increase NoC 
link performances, it is often required to pipeline the long link 
wires. Compared to synchronous retiming in pipelines, pipeline 
retiming can also be done using asynchronous logic, yet more 
easily and efficiently. A long NoC link shown in Figure 12.  is 
pipelined; it uses a 4-phase 1-of-4 QDI encoding, by adding a 
half-buffer pipeline stage (C-elements and a NOR gate). As a 
result, the wire length is divided by two per stage, the 
throughput is multiplied by 2, with a cycle time being 4 times 
this new wire length due to 4 phase protocol, while the forward 
latency is preserved: the inverters being replaced by C-element. 
This can be done as often as needed according to the NoC link 
length and properly optimized using place & route tools [16]. 
Compared to synchronous retiming, asynchronous pipeline 
does not add extra clock cycles along the NoC links. 

C. Opportunities for Power Reduction Design Techniques 

In asynchronous Network-on-Chip, as for GALS, the main 
system level advantages will come from additional power 
reduction design techniques. In the NoC routers, a possibility is 
to benefit from the robustness and locality of asynchronous 
logic to automatically detect NoC traffic activity and use this 
information to power down and save leakage when NoC 
routers are Idle [14]. 
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Figure 13.  NoC router with Activity Detection 



Activity detection on the incoming and outgoing NoC links 
is performed using channel monitors. The channel monitor 
drives the voltage regulator, which is composed of a simple 
power switch, offering a normal mode and a low power mode 
(Figure 13. ). This is a fully autonomous and robust detection 
mechanism, without additional software control and with 
minimal latency cost (2 ns wake-up). In Idle mode, the leakage 
reduction is a factor of 4, while the router is still functional 
providing a low power mode (1/4 the throughput, 1/2 the 
energy). Such a scheme may be implemented using 
synchronous logic in a NOC router, but would not be as 
efficient, due to  extra cost for clocking and wake-up control. 

 
Figure 14.  GALS NoC unit template for DVFS [14] 

For NoC units, as discussed in section III for any generic 
GALS scheme, the main idea is to implement independent 
frequency and power domain synchronous islands, to achieve 
Dynamic Voltage and Frequency Scaling (DVFS). As 
presented in Figure 14. , a given synchronous IP core of the 
NoC architecture can be wrapped in a template architecture, 
with its Network-Interface for handling NoC traffic, a Local 
Power Manager to control, by software, the various Power 
Modes, a Test wrapper for testability, a GALS interface for 
interfacing synchronous and asynchronous domains, a Local 
Clock Generator for DFS, and finally a Power supply units 
providing voltage selection and leakage control for DVS. The 
GALS NoC template allows decoupling of the various 
architecture services, such as NoC communication, power 
management, clock generation, re-synchronization stage, all 
locally at IP level. In many-core architectures, such a DVFS 
template can then be exploited for power optimization 
according to application constraints [14][15]. 

D. Asynchronous NoC results 

A synchronous vs. asynchronous comparison of the same 
NoC in a 65nm technology is presented in Figure 15.  [13]. 
ANOC achieves low power (* measured on a real application), 
for half the latency, for the same throughput, but with some 
area cost due to QDI logic. A recent Design Flow based on 
standard-cells and using Place & Route tools can achieve more 
aggressive performances for QDI asynchronous logic [16]. 

 
Figure 15.  Asynchronous vs. Synchronous NoC router comparison 

V. INTRODUCTION TO TIEMPO ASYNCHRONOUS CIRCUIT 

SYNTHESIS AND DESIGN FLOW 

The Tiempo asynchronous circuit design flow is based on a 
unique and specific synthesis tool called ACC (Asynchronous 
Circuit Compiler). ACC performs fully-automated synthesis of 
asynchronous circuits starting from a standard hardware 
description language, SystemVerilog. Indeed, TLM-like 
descriptions in SystemVerilog are transformed into gate-level 
netlists in Verilog. ACC maps the circuits on standard cell 
libraries augmented with asynchronous cells. 

In terms of flow (Figure 16. ), ACC is the only different 
tool, and it is made compliant and interoperable to standard 
design flows based on industry-standard tools. SystemVerilog 
models can be simulated with any HDL simulators, enabling 
the verification of mixed asynchronous/synchronous designs. 
ACC provides a set of sync-async and async-sync interfaces to 
ease mixing synchronous and asynchronous designs into a 
single SoC. The implementation of the asynchronous netlists is 
supported by industry-standard P&R, STA and LVS/DRC 
checker tools. 
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Figure 16.  Tiempo asynchronous Circuits Design Flow. 

A. Tiempo Design Flow Description 

1) Modeling 
Asynchronous circuit models are written in un-timed 

Transaction Level Modeling (TLM), using the standard IEEE-
1800 SystemVerilog language. Using this format provides a 
seamless integration of Tiempo clockless technology into 
verification platforms like Synopsys VCS

TM
, Mentor Graphics 

Questa
TM

, Cadence NCsim
TM

 or others, and allows the designer 
to access any required debug tools to find out cause of possible 
design mistakes. 

Channels represent the basic medium for communication 
between asynchronous design entities and processes. A channel 
allows point-to-point communication between two processes, 
where each communication through a channel involves a token 
exchange between the two processes, via a “handshake”. 
Handshaking protocols can be of two kinds: push or pull [1]. 
Each mode defines which one of the two processes involved in 
the token exchange is the initiator of the handshake: the one 
writing data to the channel or the one reading them. Channels 
are modeled as SystemVerilog interfaces. Tiempo developed 
SystemVerilog definition files and macros to predefine an 
interface (i.e., channel type) for each of the SystemVerilog data 



types (bit, byte, integer, etc…) as well as for user-defined types 
(e.g. typedef or enumerated type). Channel communications are 
modeled as read and write operations using methods 
automatically created with each channel type. Those operations 
can be blocking or non-blocking.  

Tiempo defined the language to provide the designers with 
the key tools necessary to build efficient asynchronous circuits 
for their applications. Indeed, the language is such that it 
enables the designers to adopt the right architecture styles for 
their applications, including pipelined, data-flow, parallel, 
sequential, etc… Hence, design objects such as modules or 
components are available to model concurrency and hierarchy 
(SystemVerilog Modules), asynchronous communicating 
processes are available to model procedural and concurrent 
behaviors (SystemVerilog Processes), and communicating 
channels are available to make modules and processes 
communicate and synchronize between each other 
(SystemVerilog Interfaces). 

Further information with regards to Tiempo SystemVerilog 
coding style can be found in [22], in which a simple FSM-ALU 
structure and its testbench are detailed. 

2) Synthesis 
The ACC synthesis tool is seamlessly integrated into 

standard design flows. Indeed, ACC interoperability with 
commercial CAD tools is made effective using the standard file 
formats most of the tools are using to exchange information 
between each other (Figure 17. ). In addition, ACC provides a 
standard TCL interface using industry-standard names for the 
different commands. 
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Figure 17.  ACC interaction with the design flow tools. 

The input to the tool is as follows. The HDL description is 
in SystemVerilog. The targeted technology is specified using 
the standard library format (.lib file). A set of standard cells 
commonly used for synchronous circuits is provided to the tool 
as well as a set of asynchronous cells, necessary for the 
synthesis of efficient delay insensitive circuits. Finally, design 
constraints are specified using the standard design constraint 
format (.sdc file). In addition to the standard sdc language, 
some commands have been added in order to accurately and 
efficiently constrain asynchronous circuits. As an example, it is 
very common in an asynchronous design to have many parts 
running at very different speeds. The new commands provide a 
means to control the constraints applied to different modules 
and/or handshaking communications. 

At the output, ACC generates the circuit netlist in Verilog 
format (.v file). ACC also generates timing information using 
the standard delay format (.sdf file). Last, but not least, the tool 
generates an sdc file, compiling the input design constraints 
and the constraints generated by the synthesis process. 

3) Place and route 
Standard place and route tools can be used to implement the 

netlist generated by ACC. Since there is no clock at all there is 
no need to perform a clock tree synthesis and the associated 
timing closure. However, timing driven place and route has to 
be done in order to respect a given performance target. This 
step is made possible using the “sdc” constraint file generated 
by ACC. Timing constraints are expressed as a set 
set_max_delay commands annotating the handshaking cycles 
of the design [23]. This enables the P&R tool to accurately 
optimize the asynchronous logic paths involved in the 
handshaking communications, taking into account the local 
timing characteristics of the asynchronous netlist. This step is 
for asynchronous circuits what optimizing the critical paths 
between flip-flops is for a synchronous circuit. The only 
exception here is that there are no functional issues since the 
asynchronous design is delay insensitive, whereas in a 
synchronous circuit the timing constraints must be fulfilled, not 
only to respect the timing performance target, but also to 
guarantee the functionally correct behavior. 

4) Verification 

For functional verification, transaction viewers of standard 
simulators can be used to give a high level view of the 
communication involved in the asynchronous design, through 
those channels [22]. The transaction view of the system is 
particularly convenient as it hides the low-level implementation 
of those channels, and gathers only the necessary information 
in a convenient format. Using this higher level view, one can 
represent the channel state (whether active or inactive), the start 
and end time of each channel operation, and finally the relevant 
attributes characterizing it, such as the occurrence of the 
operation or the token value at a given time. As an example, 
illustrated in Figure 18. , Mentor Graphics Questa

TM
 

transactions support the simulation and debugging of an 
asynchronous design by detailing the sequences of token 
exchanges between the different system modules in the design, 
whether they are in the control-path or data-path, providing the 
necessary fields for proper data monitoring and verification, 
and giving a clear picture of the capacity and utilization of the 
different channels in the system. 

For timing, dynamic verification is performed at the gate 
level running a standard simulator using the Verilog netlist 
along with the delay information provided by the “sdf” file. 
Such a logical simulation with timing enables an accurate 
analysis of the timing behavior of asynchronous circuits and 
their dependency with respect to data. Static timing verification 
is done running standard sign-off tools like Synopsys 
PrimeTime

TM
, using the Verilog netlist, before or after 

placement and routing, the “sdc” constraint file, and the back-
annotation “sdf” or “spef” files. 

Physical verifications after place and route are performed 
using standard Extraction, LVS and DRC tools. 



 

Figure 18.  Typical view of tokens flowing in a viewer [22]. 

Regarding formal verification, there is no tool yet enabling 
checking the equivalence between the SystemVerilog model 
and the Verilog netlist. Today, extensive dynamic simulations 
are performed, using a unique test-bench and checking for code 
and gate coverage, in order to show the functional correctness. 

Layout equivalency checking (LEC) is possible using 
standard tools, to verify netlists before and after place and 
route. 

B. Design Examples 

Tiempo’s asynchronous delay insensitive technology is 
successfully applied to designing integrated circuits 
implementing secured transactions such as smartcard for 
banking or ticketing, ePassport, or standalone circuit for DRM 
or NFC secure elements. Tiempo products deliver a new 
security paradigm against hardware attacks as well as 
exceptional performance in ultra-low and/or variable power 
environments (secured contactless transactions). Hence, the 
TESIC platform developed by Tiempo is a fully delay 
insensitive integrated circuit including a microcontroller, three 
crypto-processor cores, and several dedicated blocks (Figure 
19. ). An FPGA emulation of TESIC is also available for 
software prototyping, thanks to the ACC tool, which not only 
targets ASIC but also FPGA technologies. 

 
Figure 19.  TESIC platform for secured transactions. 

Finally, the most recent major application of Tiempo design 
technology and flow is the design of variability-tolerant circuits 
on advanced processes (32 nm to 14 nm). The circuits 
generated by ACC have the fundamental property of being 
delay insensitive. This feature makes them robust with respect 
to any effect impacting the timing (such as process, voltage or 
temperature variation), and easy to design since process/ library 
timing information can be inaccurate or even absent (no timing 
closure design phase needed). Moreover, it enables them to run 
at maximum speed under a wide range of operating conditions, 
hence accurately monitoring the switching speed of devices 
and gate networks. All these key and unprecedented features 
have been proven by the design, fabrication and 
characterization on a 32 nm process of Tiempo unique 
monitoring chip (Fig. 20) that allows faster advanced process 
performance characterization [24]. 
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Figure 20.  MTAM16, Tiempo monitoring chip for advanced processes. 

Tiempo is the first company to commercialize a complete 
flow enabling the design of delay insensitive asynchronous 
circuits. Its unique synthesis tool called ACC, extensively uses 
standard languages and formats in order to make it compliant 
and interoperable with existing commercial CAD tools. It is 
successfully applied to the design of products in the domains of 
secured integrated circuits and variability-tolerant circuits 
fabricated using advanced processes. 

VI.  RECENT INDUSTRY EXAMPLES AND CAD PERSPECTIVES 

A. Asynchronous Design in the Industry 

Fulcrum, now part of INTEL, is designing Gigabit 
Ethernet Crossbars. Fulcrum is targeting high speed design, 
based on QDI precharge logic, the so-called PCHB template 
[17]. This aggressive asynchronous design style achieves high 
performance by using deep logic pipelining, specific precharge 
cells, and full custom layout. An automated asynchronous flow 
has been developed [18]. For more relaxed part of the design, 
synchronous design is used, thus using a GALS scheme.  

Achronix, is designing fast FPGAs. As any FPGA, the 
architecture template is based on interconnected LUTs, but the 
FPGA is implemented using high speed asynchronous QDI 
precharge logic. As any FPGA, it can map synchronous RTL, 
using ad-hoc FPGA mapping tools. As for Fulcrum, the main 
asynchronous logic advantage is high performance and ease of 
full custom design thanks to QDI logic robustness. 

Handshake Solutions, (initially Philips technology is now back 

in NXP), developed a complete flow, with the Haste language, 
associated synthesis tool, and test methodology, targeting 
bundle-data handshake circuits. The flow has been extensively 
used for various markets: pagers, automotive, smartcard, e-



passport, game consoles, etc. The main advantage of 
asynchronous logic is regarding low power and low noise. 

Octasic, is designing DSP for Audio and Multimedia 
applications. The DSP architecture is based on parallel 
synchronous sub-units, working in an interlocked manner, 
where synchronization is implemented using asynchronous 
bundle-data logic. The main advantage of asynchronous logic 
is regarding low power and modular and scalable architecture. 

Tiempo, has a complete design flow presented above to 
design variability-tolerant QDI asynchronous circuits. 
Variability may come from the energy source as it is the case 
for contactless secured platforms for banking, ticketing, or 
passport applications. In this field QDI circuits’ properties to 
counter hardware attacks are also exploited. Variability may 
also come from the fabrication process, especially advanced 
processes, where Tiempo circuits show extremely high 
robustness with respect to process, temperature and voltage 
variations, and run at maximum speed, thus enabling process 
performance monitoring. 

To sum up, several companies have adopted asynchronous 
design methodology (some disappeared: Theseus, Silistix, 
Elastix). Companies never claim asynchronous logic as an 
objective, only a way to achieve differentiation: QDI logic for 
high performance, low power under variability constraints, 
especially process and voltage (e.g. subthreshold designs), and 
bundle data for low-power/low-noise. 

B. CAD tool status and perspectives 

One of the main limitations of asynchronous design 
concerned the lack of asynchronous CAD tools. In previous 
years, many CAD tools have been developed, such as Petrify 
[3], Minimalist [1] or others, but these tools only address low 
complexity asynchronous controllers, limited to tens or 
hundreds of gates. In order to address system level design, a 
language-based approach must be adopted for asynchronous 
design, to achieve productivity similar to RTL abstraction for 
synchronous design. Various languages for asynchronous logic 
have been proposed, which fit the asynchronous handshake 
channel semantics, like CSP/CHP, Tangram/Haste, Balsa [1]. 
Associated asynchronous design styles and corresponding 
synthesis tools have been developed. Nevertheless, these 
languages are too specific, and their adoption by industry is 
difficult. The Tiempo design flow, as presented section V, 
being based on a standard System Verilog language extended 
with an asynchronous channel System Verilog library is a good 
trade-off, as input to a dedicated asynchronous synthesis flow. 
A similar approach with Verilog was developed in [18]. 

Regarding cell libraries, asynchronous design requires 
specific cells, such as C-element, arbitration cells (Section II), 
or more specific cells (like pre-charge logic cells). C-element 
can be designed from a basic foundry library. But for efficient 
design, it is mandatory to develop a specific cell library (about 
50 cells usually), that will then be supported by other tools 
(Timing Analysis, Place & Route) [16] [18]. Better support of 
these specific cells by foundry libraries and by standard tools 
would be beneficial to wider usage of asynchronous logic. 

For performance analysis, even if current timing analysis 
tools can be used at a cell or pipeline level, performance 
analysis and optimization of asynchronous logic is still an 
advanced research topic, lacking industrial CAD tools [19][20]. 

VII. CONCLUSION AND PERSPECTIVES 

Asynchronous logic design has a long history of research 
innovation. Current developments in nanoscale technologies 
start to open doors and give way for asynchronous logic into 
industrial design practice, where several companies have 
already demonstrated its advantages in real products and 
services. This tutorial shows that such routes are likely to lead 
further via GALS and NoC architectural paradigms. Other 
paradigms will certainly be emerging in the near future with the 
rise of interest in energy-harvesting electronics, wireless sensor 
networks and mixed-criticality systems. Due to the lack of 
space, we could not address all of them here. To facilitate the 
progress in design more research efforts are required in 
developing CAD tools. Tiempo and its unique QDI-based 
synthesis flow, closely linked with the accepted languages and 
tools, is a strong motivating factor.   
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