
A Parallel Fast Transform-Based Preconditioning Approach for
Electrical-Thermal Co-Simulation of Power Delivery Networks

Konstantis Daloukas, Alexia Marnari, Nestor Evmorfopoulos, Panagiota Tsompanopoulou, George. I. Stamoulis
Department of Computer and Communications Engineering,

University of Thessaly, Volos, Greece
{kodalouk, almarnar, nestevmo, yota, georges}@uth.gr

Abstract—Efficient analysis of massive on-chip power delivery net-
works is among the most challenging problems facing the EDA industry
today. Due to Joule heating effect and the temperature dependence of
resistivity, temperature is one of the most important factors that affect
IR drop and must be taken into account in power grid analysis. However,
the sheer size of modern power delivery networks (comprising several
thousands or millions of nodes) usually forces designers to neglect thermal
effects during IR drop analysis in order to simplify and accelerate
simulation. As a result, the absence of accurate estimates of Joule
heating effect on IR drop analysis introduces significant uncertainty
in the evaluation of circuit functionality. This work presents a new
approach for fast electrical-thermal co-simulation of large-scale power
grids found in contemporary nanometer-scale ICs. A state-of-the-art
iterative method is combined with an efficient and extremely parallel
preconditioning mechanism, which enables harnessing the computational
resources of massively parallel architectures, such as graphics process-
ing units (GPUs). Experimental results demonstrate that the proposed
method achieves a speedup of 66.1X for a 3.1M-node design over a state-
of-the-art direct method and a speedup of 22.2X for a 20.9M-node design
over a state-of-the-art iterative method when GPUs are utilized.

I. INTRODUCTION

The relentless push for high-performance and low-power integrated
circuits has been met by aggressive technology scaling, which enabled
the integration of a vast number of devices on the same die but
brought new problems and challenges to the surface. The on-chip
power delivery network (power grid) constitutes a vital subsystem of
modern nanometer-scale ICs, since it affects in a critical way the
performance and correct functionality of the devices. Due to the
aggressive scaling and the subsequent reduction in power supply
voltage, IR drop in power delivery networks has become a very
important factor that determines circuit reliability and performance.
As a result, accurate analysis of power delivery networks is of great
importance in order to ensure proper functionality.

The increased power density in conjunction with the lower power
supply voltages due to shrinking sizes, has led to a significant
increase in current density. Larger current densities result in greater
IR drop, while Joule heating (self-heating) effect becomes of critical
importance and should be seriously taken into account [3] as it
contributes to temperature rise and affects reliability. As the elec-
trical resistivity is temperature-dependent, temperature variations on
the power delivery network substantially modify the interconnect
resistances contributing to the IR drop in the power grid. However,
such effects are usually neglected during IR drop analysis due to
the immense growing size of modern power delivery networks and
the corresponding demands in computational resources for their
analysis. Power grids can be extremely large, demanding abundant
computational resources, while at the same time, thermal analysis
requires even more resources in terms of speed and memory.

As IR drop on the power grid and temperature rise on the intercon-
nects constitute undesirable issues with respect to the performance,
reliability and functionality of nano-scale technology, extensive re-
search has been performed to separately analyze each of these issues.
However, few approaches have been suggested for a thermal-aware
IR drop analysis, despite the fact that IR drop and temperature are
directly interdependent. Authors in [13] present an electrical-thermal
co-simulation method, including Joule heating, air convection and
fluidic cooling effects using the finite volume method with non-
uniform rectangular grid. In the same context, a thermal-aware IR
drop analysis for power grids is proposed in [15]. Both methods
present the idea of iterative electrical-thermal simulations, updating
the electrical resistivities in each iteration, including this way the
thermal effects on each new electrical simulation. However, they
focus on modeling aspects rather on simulation approaches.

Recently, parallel architectures have come to the forefront. Owing
to their vast computational resources, they present a promising

alternative for accelerating simulation algorithms. Approaches [9]
and [8] present two methods for thermal and power delivery networks
analysis respectively on GPUs. However, they do not consider a
combined analysis approach and the proposed methods have limited
potential for parallelism.

In this paper, we place specific emphasis on the simulation algo-
rithms that are used in electrical-thermal co-simulation approaches.
To that end, we propose a new algorithm for electrical-thermal co-
simulation for large-scale power grids, found in most contemporary
nano-scale ICs. Our method takes into account the basic thermal
factors that contribute to temperature rises on the power grid such
as Joule heating and heat from both the substrate and interconnects,
while at the same time exhibits great potential of parallelism. We
propose an efficient and highly-parallel preconditioning mechanism
based on the application of a Fast Transform solver, which can be
used in conjunction with a state-of-the-art iterative solution method
in order to accelerate electrical-thermal analysis of power delivery
networks. The benefits of the proposed method are twofold: i) the
proposed preconditioning mechanism can accelerate the convergence
rate of the iterative solution method by greatly reducing the required
number of iterations, and ii) from a computational point of view,
it exhibits near-optimal computational complexity, low memory re-
quirements, and great potential for parallelism, which can harness
the computational power of parallel architectures, such as multi-
core processors or GPUs, thus further reducing the amount of time
required for simulation. Experimental results demonstrate that our
method achieves a speedup of 66.1X for a 3.1M-node design over a
state-of-the-art direct method and a speedup of 22.2X for a 20.9M-
node design over a state-of-the-art iterative method when GPUs are
utilized. To the best of our knowledge, this is the first research
approach that presents an algorithm for combined electrical-thermal
simulation on parallel architectures.

The rest of the paper is organized as follows. We outline the
modeling of power delivery networks and the corresponding thermal
grid as well as the proposed combined simulation approach and
the basic information about iterative solution methods in Section II.
Section III presents the theory behind Fast Transform solvers for
2D and 3D networks. Next, we present the methodology behind the
construction of efficient preconditioners for power and thermal grid
analysis, as well as the proposed algorithm and the opportunities
for parallelism in Section IV. We validate the performance of our
approach using a series of large-scale designs in Section V. Finally,
Section VI concludes the paper.

II. OVERVIEW OF METHODOLOGY

A. Power Grid Electrical Modeling and Simulation
The typical model of power grid for transient analysis is obtained

by modeling each wire segment (between two contacts) as a resistance
in series (possibly) with an inductance, with capacitances to ground
at both contact nodes. Assuming that the extracted electrical model
is composed of N nodes, then by using the Modified Nodal Analysis
(MNA) formulation and the Backward-Euler differential approxima-
tion, the transient simulation of the power grid entails the solution
of the following N ×N system of linear equations:

(G +
C

hk

)v(hk) =
C

hk

v(hk−1) + e(hk) (1)

for each time-step hk, k = 1, . . . (which may in general vary during
the analysis). In the above, G is the N×N node conductance matrix,
C is a N × N diagonal matrix of node capacitances, v(hk) is the
N × 1 vector of node voltages, and e(hk) is a N × 1 vector of
excitations from independent sources at the nodes. The incorporation
of series inductances in the resistive branches rise to an analogous
N ×N recursive linear system and is described in [4].978-3-9815370-0-0/DATE13/ c⃝2013 EDAA

Power Grid Simulation

(solve with proposed method)

Current & Power

distribution profiles

Joule heating & Thermal Simulation

(solve with proposed method)

Power – Thermal

convergence?

Temperature profiles
Update of temperature

dependent resistivities

YES

NO
END OF

PROCEDURE

Fig. 1. Electrical-Thermal positive feedback simulation loop.

B. Power Grid Thermal Modeling and Simulation
Without loss of generality, in this work we focus on steady-state

thermal analysis. Steady-state thermal analysis aims at determining
the temperature distribution within a chip given a power density
distribution that does not change with time. Steady-state analysis
amounts to solving Poisson’s equation:

q(r) = −kt∇2
T (r) (2)

where r is the spatial coordinate of the point at which temperature is
being determined, q(r) is the rate of heat flow, T is the temperature,
and kt the thermal conductivity of the material.

By discretizing (2) using the Finite Difference Method (FDM), we
obtain the following system of linear equations:

Gt = p (3)

where t is the temperature vector at each point, p is the vector
containing the total power generated within each element. Due to the
electrical-thermal duality, each node in the discretization corresponds
to a node in the circuit. Using the MNA formulation, matrix G
contains the thermal resistors Gx, Gy , and Gz in the x, y, and z
direction respectively, which can be computed as follows:

Gx =
kt(∆y · ∆z)

∆x

, Gy =
kt(∆x · ∆z)

∆y

, Gz =
kt(∆x · ∆y)

∆z

where ∆{x,y,z} is the length of the rectangle in each dimension.

C. Electro-Thermal Co-Simulation Approach
As was mentioned previously, due to temperature dependence of

resistance and Joule self-heating of the conductors, the electrical
and thermal characteristics of the power delivery network form a
nonlinear system of equations. In order to capture the effect of the
thermal profile of the power delivery network, we follow a combined
electrical-thermal simulation for the power delivery network. Having
set the initial input as well as the boundary conditions for the thermal
simulation, the first step is the electrical analysis of the power grid.
The power model provides the current and power distribution profiles
to the thermal model. Subsequently, the thermal model estimates the
temperature profile and once electrical resistivities have been updated,
they are forwarded as a new input to the power model. After a
number of iterations, power and temperature calculations converge
and the thermal-aware power grid analysis is terminated. At each
step where the solution of the power or the thermal grid (steps 1
and 2 respectively) are required, we apply the proposed methodology
(the iterative linear solution method in conjunction with the proposed
preconditioning mechanism) in order to accelerate the corresponding
procedure. Fig. 1 depicts the flow diagram of the proposed approach.

D. Linear System Solution Methods
In the above procedure, steps 1 and 3 involve the solution of

very large (and sparse) linear systems of equations Ax = b. Direct
methods (based on matrix factorization) have been widely used in the
past for solving the resulting linear systems, mainly because of their
robustness in most types of problems. Unfortunately, these methods
do not scale well with the dimension of the linear system, and become
prohibitively expensive for large-scale networks and grids, in both
execution time and memory requirements. Iterative methods involve
only inner products and matrix-vector products, and constitute a better
alternative for large sparse linear systems in many respects, being
more computationally- and memory-efficient. System matrices arising

from the modeling of the power and the thermal grid can also be
shown to be Symmetric and Positive Definite (SPD), which allows
the use of the extremely efficient method of Conjugate Gradient (CG)
for the solution of the corresponding linear systems.

The main problem of iterative methods is their unpredictable rate
of convergence which depends greatly on the properties (specifically
the condition number) of the system matrix. A preconditioning
mechanism, which transforms the linear system into one with more
favorable properties, is essential to guarantee fast and robust con-
vergence. However, the ideal preconditioner (one that approximates
the system matrix well and is inexpensive to construct and apply)
differs according to each particular problem and each different type
of system matrix. That is why iterative methods have not reached
the maturity of direct methods and have not yet gained widespread
acceptance in linear circuit simulation. Although general-purpose pre-
conditioners (such as incomplete factorizations or sparse approximate
inverses) have been developed, they are not tuned to any particular
simulation problems and cannot improve convergence by as much as
specially-tailored preconditioners.

The preconditioning of iterative methods reduces to a precondi-
tioner solve step Mz = r in every iteration of the method, and effec-
tively modifies the algorithm to solve the system M−1Ax = M−1b,
which has the same solution as the original one Ax = b [2]. If the
preconditioner M approximates A in some way, then the condition
number of the modified system M−1Ax = M−1b becomes very
small and the iterative method converges very quickly [2]. So the
motivation behind preconditioning is to find a matrix M with the
following properties: 1) the convergence rate of the preconditioned
system M−1Ax = M−1b is fast, and 2) a linear system involving
M (i.e. Mz = r) - which then effectively receives the whole
burden of the algorithm - is solved much more efficiently than the
original system involving A (i.e. Ax = b). The effect of good
preconditioning is even more pronounced if the operations for the
solution of Mz = r can be performed in parallel. Fortunately, as we
will describe in Section IV, matrices arising from power grids and
the electrical equivalent of thermal grids can be well-approximated
by preconditioners with special structure such that the number of
iterations is reduced to a great extent, while the systems Mz = r can
be solved by applying a Fast Transform in a near-optimal number of
operations in a sequential implementation, and even less operations
in a parallel environment (owing to the large parallel potential of
Fast Transforms as well as other parallelization opportunities). The
next section describes the special form of the preconditioner matrices,
and the solution of the corresponding linear systems Mz = r by Fast
Transform solvers.

III. FAST TRANSFORM SOLVERS FOR LINEAR SYSTEMS WITH
SPECIAL STRUCTURE

A. Fast Transform Solvers for 2D Networks
Let M be a N × N block-tridiagonal matrix with m blocks of

size n× n each (overall N = mn) with the following form:

M =


T1 −γ1In

−γ1In T2 −γ2In
· · ·

−γm−2In Tm−1 −γm−1In
−γm−1In Tm

 (4)

where In is the n × n identity matrix and Ti, i = 1, . . . ,m, are
n× n tridiagonal matrices of the form:

Ti =


αi + βi −αi
−αi 2αi + βi −αi

· · ·
−αi 2αi + βi −αi

−αi αi + βi



= αi


1 −1
−1 2 −1

· · ·
−1 2 −1

−1 1

 + βiIn

(5)

We will describe an algorithm for the solution of a linear system
Mz = r with matrix M of the form (4), by the use of a Fast
Transform solver in O(mn logn) = O(N logn) operations. Such
a solution is based on the fact that the eigen-decomposition of the
tridiagonal matrices Ti is known beforehand, and that the matrices
of eigenvectors that diagonalize Ti are matrices that correspond to a
Fast Transform. More specifically, it can be shown [6] that each Ti

has n distinct eigenvalues λi,j , j = 1, . . . , n, which are given by:

λi,j = βi + 4αi sin
2 (j − 1)π

2n
= βi + αi(2 cos

(j − 1)π

n
− 2) (6)

as well as a set of n orthonormal eigenvectors qj , j = 1, . . . , n, with
elements:

qj,k =


√

1
n cos

(2k−1)(j−1)π
2n j = 1, k = 1, . . . , n√

2
n cos

(2k−1)(j−1)π
2n j = 2, . . . , n, k = 1, . . . , n

(7)

Note that the qj do not depend on the values of αi and βi,
and are the same for every matrix Ti. If Qn = [q1, . . . ,qn]
denotes the matrix whose columns are the eigenvectors qj , then
due to the eigen-decomposition of Ti we have QT

nTiQn = Λi =
diag(λi,1, . . . , λi,n). By exploiting this diagonalization of the matri-
ces Ti, the system Mz = r with M of the form (4) is equivalent to
the following system (due to QT

nQn = I):
QT

n

. . .
QT

n

M

 Qn

. . .
Qn




QT
n

. . .
QT

n

 z

=


QT

n

. . .
QT

n

 r

⇔


Λ1 −γ1In

−γ1In Λ2 −γ2In
· · ·

−γm−2In Λm−1 −γm−1In
−γm−1In Λm

 z̃ = r̃

(8)
where

z̃ =


QT

n

. . .
QT

n

 z, r̃ =


QT

n

. . .
QT

n

 r

If the N×1 vectors r, z, r̃, z̃ are also partitioned into m sub-vectors
(blocks) of size n× 1 each, i.e.

r =

 r1
...

rm

 , z =

 z1

...
zm

 , r̃ =

 r̃1
...

r̃m

 , z̃ =

 z̃1

...
z̃m


then we have: r̃i = QT

nri and z̃i = QT
nzi ⇔ zi = Qnz̃i, i =

1, . . . ,m.
However, it can be shown [12] that each product QT

nri = r̃i
corresponds to a Discrete Cosine Transform of type-II (DCT-II) on
ri, and each product Qnz̃i = zi corresponds to an Inverse Discrete
Cosine Transform of type-II (IDCT-II) on z̃i. This means that the
computation of the whole vector r̃ from r amounts to m independent
DCT-II transforms of size n, and the computation of the whole vector
z from z̃ amounts to m independent IDCT-II transforms of size n. A
modification of Fast Fourier Transform (FFT) can be employed for
each of the m independent DCT-II/IDCT-II transforms [12], giving
a total operation count of O(mn logn) = O(N logn).

If now P is a permutation matrix that reorders the elements of
a vector or the rows of a matrix as 1, n + 1, 2n + 1, . . . , (m −
1)n+ 1, 2, n+ 2, 2n+ 2, . . . , (m− 1)n+ 2, . . . , n, n+ n, 2n+
n, . . . , (m−1)n+n, and PT is the inverse permutation matrix, then
the system (8) is further equivalent to:

P


Λ1 −γ1In

−γ1In Λ2 −γ2In
· · ·

−γm−2In Λm−1 −γm−1In
−γm−1In Λm

P
T
Pz̃ = Pr̃

⇔


T̃1

. . .
T̃n

 z̃
P

= r̃
P (9)

where

T̃j =


λ1,j −γ1
−γ1 λ2,j −γ2

· · ·
−γm−2 λm−1,j −γm−1

−γm−1 λm,j

 (10)

and z̃P = Pz̃, r̃P = Pr̃. If the N×1 vectors z̃P , r̃P are partitioned
into n sub-vectors z̃Pj , r̃

P
j of size m × 1 each, then the system (9)

effectively represents n independent tridiagonal systems T̃j z̃
P
j = r̃Pj

of size m which can be solved w.r.t. the blocks z̃Pj , j = 1, . . . , n
(to produce the whole vector z̃P) in a total of O(mn) = O(N)
operations. For each such system the coefficient matrix (10) is known
beforehand and is determined exclusively by the eigenvalues (6) and
the values γi of matrix M, while the right-hand side (RHS) vector
r̃Pj is composed of specific components of (DCT-II)-transformed
blocks of vector r. The equivalence of the system Mz = r, with
M as in (4), to the system (9) gives a procedure for fast solution of
Mz = r, which is described in algorithm from Fig. 2. Note that apart
from the resultant near-optimal complexity of O(N logn) operations,
the m DCT-II/IDCT-II transforms and the n tridiagonal systems are
completely independent to each other and can be solved in parallel.
Furthermore, both the FFT and the tridiagonal solution algorithm
are highly-parallel algorithms by themselves, allowing for further
acceleration of the individual transforms/solutions when executed on
parallel platforms.

B. Fast Transform Solvers for 3D Networks
Let M be a N ×N block-tridiagonal matrix with l blocks of size

mn×mn each (overall N = lmn) with the following form:

M =


M1 −δ1Imn

−δ1Imn M2 −δ2Imn
· · ·

−δl−2Imn Ml−1 −δl−1Imn
−δl−1Imn Ml


(11)

where Imn is the mn × mn identity matrix, Mi, i = 1, . . . , l, are
themselves mn×mn block-tridiagonal matrices of the form:

Mi =


Ti + γiIn −γiIn
−γiIn Ti + 2γiIn −γiIn

· · ·
−γiIn Ti + 2γiIn −γiIn

−γiIn Ti + γiIn


where In is the n × n identity matrix and Ti have the form (10).
Thus, the eigenvectors of the diagonal blocks of Mi are the same
as those of Ti, with values given by (7). By a similar reasoning
as in (8), the linear system Mz = r with M of the form (11) is
equivalent to the following:


M̃1 −δ1Imn

−δ1Imn M̃2 −δ2Imn
· · ·

−δl−2Imn M̃l−1 −δl−1Imn

−δl−1Imn M̃l

 z̃ = r̃

(12)
where

M̃i =


Λ

(1)
i −γiIn

−γiIn Λ
(2)
i −γiIn
· · ·

−γiIn Λ
(2)
i −γiIn

−γiIn Λ
(1)
i



z̃ =


QT

n

. . .
QT

n

 z, r̃ =


QT

n

. . .
QT

n

 r,

Fig. 2. Fast Transform algorithm for the preconditioner solve step Mz = r
in 2D networks

1: Partition the RHS vector r into m blocks ri of size n, and perform DCT-II
transform (QT

n ri) on each block to obtain transformed vector r̃
2: Permute vector r̃ by permutation P, which orders elements as 1, n +

1, . . . , (m − 1)n + 1, 2, n + 2, . . . , (m − 1)n + 2, . . . , n, n +
n, . . . , (m − 1)n + n, in order to obtain vector r̃P

3: Solve the n tridiagonal systems (9) with known coefficient matrices (10), in
order to obtain vector z̃P .

4: Apply inverse permutation PT on vector z̃P so as to obtain vector z̃.
5: Partition vector z̃ into m blocks z̃i of size n, and perform IDCT-II transform

(Qnz̃i) on each block to obtain final solution vector z

and Λ
(1)
i = diag(λ

(1)
i,1 , . . . , λ

(1)
i,n), Λ

(2)
i = diag(λ

(2)
i,1 , . . . , λ

(2)
i,n) are

diagonal matrices with the eigenvalues of Ti + γiIn, Ti + 2γiIn,
which are the following:

λ
(1)
i,j = γi + βi + αi(2 cos

(j − 1)π

n
− 2), j = 1, . . . , n

λ
(2)
i,j = 2γi + βi + αi(2 cos

(j − 1)π

n
− 2), j = 1, . . . , n

If P is again the mn ×mn permutation matrix that reorders the
elements of a vector or the rows of a matrix as 1, n+ 1, . . . , (m−
1)n+1, 2, n+2, . . . , (m−1)n+2, . . . , n, n+n, . . . , (m−1)n+
n, and P1, PT

1 denote the block-diagonal lmn× lmn permutation
matrices P1 = diag(P, . . . ,P), PT

1 = diag(PT , . . . ,PT), then
the system (12) is further equivalent to:

D1 −δ1Imn
−δ1Imn D2 −δ2Imn

· · ·
−δl−2Imn Dl−1 −δl−1Imn

−δl−1Imn Dl

 z̃
P1 = r̃

P1

(13)
where Di = diag(T̃i,1, . . . , T̃i,n), i = 1, . . . , l, with T̃i,j , j =
1, . . . , n being m×m tridiagonal matrices of the form:

T̃i,j =


λ
(1)
i,j −γi

−γi λ
(2)
i,j −γi

· · ·
−γi λ

(2)
i,j −γi

−γi λ
(1)
i,j



=γi


1 −1
−1 2 −1

· · ·
−1 2 −1

−1 1

 + (αi(2 cos
(j − 1)π

n
− 2) + βi)Im

and z̃P1 = P1z̃, r̃
P1 = P1r̃. If Λ̃i,j = diag(λ̃i,j,1, . . . , λ̃i,j,m) is

the diagonal matrix with the eigenvalues of T̃i,j , which are:

λ̃i,j,k = γi(2 cos
(k − 1)π

m
− 2)+αi(2 cos

(j − 1)π

n
− 2)+βi, k = 1, . . . ,m

(14)
and Qm is the common matrix of eigenvectors for all T̃i,j , then
again by similar reasoning as in (8), the system (13) is equivalent to:


D̃1 −δ1Imn

−δ1Imn D̃2 −δ2Imn
· · ·

−δl−2Imn D̃l−1 −δl−1Imn

−δl−1Imn D̃l

 ˜̃z = ˜̃r

(15)
where D̃i = diag(Λ̃i,1, . . . , Λ̃i,n) and

˜̃z =


QT

m

. . .
QT

m

 z̃
P1 , ˜̃r =


QT

m

. . .
QT

m

 r̃
P1

If now P2 is a permutation matrix of size N ×N that reorders the
elements of a vector or the rows of a matrix as 1,mn + 1, 2mn +
1, . . . , (l − 1)mn + 1, 2,mn + 2, 2mn + 2, . . . , (l − 1)mn +
2, . . . , mn,mn + mn, 2mn + mn, . . . , (l − 1)mn + mn, and
PT

2 is the inverse permutation matrix, then system (15) is equivalent
to:

˜̃M˜̃z
P2 = ˜̃r

P2 (16)

where ˜̃M = diag(˜̃T1,1,
˜̃T1,2 . . . ,

˜̃T1,m, ˜̃T2,1, . . . ,
˜̃T2,m, . . . , ˜̃Tn,m),

with ˜̃Tj,k, j = 1, . . . , n, k = 1, . . . ,m being l × l tridiagonal
matrices of the form:

˜̃Tj,k =


λ̃1,j,k −δ1
−δ1 λ̃2,j,k −δ2

· · ·
−δl−1 λ̃l−1,j,k −δl

−δl λ̃l,j,k

 (17)

and ˜̃zP2 = P2
˜̃z, ˜̃rP2 = P2

˜̃r. The equivalence of the system Mz =
r, with M as in (11), to the system (16), gives a procedure for fast
solution of Mz = r which is described in algorithm in Fig. 3.

IV. PROPOSED APPROACH FOR ELECTRO-THERMAL SIMULATION

As mentioned in Section II-D, the intuition behind preconditioner’s
formulation is to create a matrix M that will approximate the system
matrix A as faithfully as possible, while at the same time enable the
utilization of efficient algorithms for the solution of systems Mz = r.
We have developed such an algorithm based on a Fast Transform
solver in the previous section for matrices with special structure
arising from 2D and 3D problems such as the power and the thermal
grid. This section will describe the construction of the preconditioners
that are utilized in the Preconditioned Conjugate Gradient (PCG)
method for the simulation of the power and thermal grid.

A. Power Grid Preconditioner Construction
Practical power grids are created as orthogonal wire meshes with

very regular spatial geometries, with possibly some irregularities im-
posed by design constraints (e.g. some missing connections between
adjacent nodes), and arranged in a few - typically 2 to 6 - metal
layers of alternating routing directions (horizontal and vertical). Due
to the presence of vias between successive metal layers, the actual
grid has the structure of a 3D mesh, with very few planes along
the third dimension. However, as it was observed in [8], electrical
resistances of vias are usually much smaller than wire resistances,
leading to voltage drops much less than 1mV. Also, data in [11]
show that almost all circuit elements (mainly resistances) in each
metal layer have the same values (with few differences due to grid
irregularities).

Based on the above observations, we create a preconditioner matrix
that approximates the system matrix of the power grid by a process
of regularization of the 3D power grid to a regular 2D grid, consisting
of the following steps:

1) Determine the distinct x- and y-coordinates of all nodes in the
different layers of the 3D grid, and take their Cartesian product
to specify the location of the nodes in the regular 2D grid.

2) By disregarding via resistances between layers, collapse the 3D
grid onto the regular 2D grid by adding together all horizontal
branch conductances gh ≡ 1

rh
connected in parallel between

adjacent nodes in the x-direction of the 2D grid, and all vertical
branch conductances gv ≡ 1

rv
connected in parallel between

adjacent nodes in the y-direction of the 2D grid (where rh and
rv denote the resistance of horizontal and vertical branches).
If a conductance of the 3D grid occupies multiple nodes of the
regular 2D grid, it is decomposed into a corresponding number
of pieces. The node capacitances corresponding to the same
regular grid nodes are also added together during the collapsing.

3) In the regular 2D grid, substitute horizontal branch conduc-
tances by their average value in each horizontal rail, and
vertical branch conductances by their average value in each
horizontal slice (enclosed between two adjacent horizontal
rails). Substitute node capacitances in each horizontal rail by
their average value as well.

Fig. 3. Fast Transform algorithm for the preconditioner solve step Mz = r
in 3D Networks

1: Partition the RHS vector r into lm sub-vectors ri of size n, and perform
DCT-II transform (QT

n ri) on each sub-vector to obtain transformed vector r̃.
2: Partition vector r̃ into l sub-vectors r̃i of size mn, and permute each sub-

vector by permutation P, which orders elements as 1, n+1, . . . , (m−1)n+
1, 2, n + 2, . . . , (m − 1)n + 2, . . . , n, n + n, . . . , (m − 1)n + n,
in order to obtain vector r̃P1 .

3: Partition vector r̃P1 into ln sub-vectors r̃iP1 of size m, and perform DCT-II
transform (QT

mr̃i
P1) on each sub-vector to obtain transformed vector ˜̃r.

4: Permute vector ˜̃r by applying permutation P2, which orders elements as
1,mn+1, 2mn+1, . . . , (l−1)mn+1, 2,mn+2, 2mn+2, . . . , (l−
1)mn+2, . . . , mn,mn+mn, 2mn+mn, . . . , (l− 1)mn+mn,
in order to obtain vector ˜̃rP2 .

5: Solve the mn tridiagonal systems (16) with known coefficient matrices (17),
in order to obtain vector ˜̃zP2 .

6: Apply inverse permutation PT
2 on vector ˜̃zP2 so as to obtain vector ˜̃z.

7: Partition vector ˜̃z into ln sub-vectors ˜̃zi of size m, and perform IDCT-II
transform (Qm

˜̃zi) on each sub-vector to obtain vector z̃P1 .
8: Partition vector z̃P1 into l sub-vectors z̃i

P1 of size mn, and apply inverse
permutation PT

1 on each sub-vector to obtain vector z̃.
9: Partition vector z̃ into lm sub-vectors z̃i of size n, and perform IDCT-II

transform (Qnz̃i) on each sub-vector to obtain final solution vector z.

1 2 3

4 5 6

7 8 9

+

-

g
p

g3
h g3

h

g2
h g2

h

g1
h g1

h

g2
v

g2
v

g2
v

g1
v

g1
v

g1
v

(a) Example of a regular
2D power grid obtained af-
ter the regularization pro-
cess.

19 20 21

1 2

24

5 6

27
10

4

12

7 8 9

11

3 ...

...

...

g1
v

g1
v g1

v

g1
h

g1
h

g1
h

g1
h

g1,2 g1,2 g1,2

g2,3g2,3g2,3

g2
h

g2
h

g2
v

g2
v

g3
h

g3
h

g3
v g3

v

g1
v

g1
v

g1
v

(b) Example of a 3D thermal grid that
is used for preconditioning.

Fig. 4. Examples of a power delivery and a thermal grid that are used for
preconditioning.

Fig. 4(a) shows an example of a 2D regular grid that results
from the previous regularization process used to construct the pre-
conditioner matrix. If we use the depicted natural node numbering
(proceeding horizontally, since this is always the routing direction of
the lowest-level metal layer), the matrix G+ C

hk
that corresponds to

the regular 2D grid will be the following block-tridiagonal matrix:

M =

[
T1 −gv

1 I
−gv

1 I T2 −gv
2 I

−gv
2 I T3

]

where T1,T2,T3 are 3 × 3 tridiagonal matrices (each one corre-
sponding to a horizontal rail of the 2D grid) which have the form:

T1 =

gh
1 +gv

1 +gp+
c1
hk

−gh
1

−gh
1 2gh

1 +gv
1 +

c1
hk

−gh
1

−gh
1 gh

1 +gv
1 +

c1
hk



T2 =

 gh
2 +gv

1 +gv
2 +

c2
hk

−gh
2

−gh
2 2gh

2 +gv
1 +gv

2 +
c2
hk

−gh
2

−gh
2 gh

2 +gv
1 +gv

2 +
c2
hk



T3 =

 gh
3 +gv

2 +gv
3 +

c3
hk

−gh
3

−gh
3 2gh

3 +gv
2 +gv

3 +
c3
hk

−gh
3

−gh
3 gh

3 +gv
2 +gv

3 +
c3
hk


In the above, ghi is the average horizontal conductance in the i-th
horizontal rail, gvi is the average vertical conductance in the i-th
horizontal slice, and ci is the average node capacitance in the i-th
horizontal rail. Also hk is the current analysis time-step (possibly
variable), and gp ≡ 1

rp
is the parasitic conductance of the supply

pads.
We observe that the form of the above matrix is almost identical

to (4), with the exception of the pad parasitic conductance gp in few
places along the diagonal (considering that the number of voltage
pads is much smaller than the number of nodes N). In order to obtain
a preconditioner M with an exact form that can be efficiently solved
by the application of a Fast Transform, we can just omit entirely
those pad parasitics. However, we have found that in practice it is
usually better to amortize the total sum of pad conductances of a
specific horizontal rail (in the regular 2D grid) to all nodes of this
rail, i.e. assume that all nodes of the i-th horizontal rail have pad
conductance ḡpi = (

∑
gp)i
n

, where (
∑

gp)i is the sum of the actual
pad conductances attached to nodes of the i-th horizontal rail. This
also has the beneficial effect of making the preconditioner M non-
singular in the case of DC analysis (where capacitances are absent).
In the above example, the block T1 would become:

T1 =

gh
1 +gv

1 +ḡp
1 +

c1
hk

−gh
1

−gh
1 2gh

1 +gv
1 +ḡp

1 +
c1
hk

−gh
1

−gh
1 gh

1 +gv
1 +ḡp

1 +
c1
hk



where ḡp1 = gp

3
. It is not difficult to generalize the procedure to

an arbitrary m× n power grid. In that case, the preconditioner will
comprise m blocks of size n × n and have the form (4), where
αi = ghi , βi = gvi + gvi−1 + ḡpi + ci

hk
, γi = gvi , i = 1, . . . ,m

(with gv0 = gvm = 0).

B. Thermal Grid Preconditioner Construction
Typically, to model the thermal profile of the power grid, a chip

is considered as comprising n layers, where each layer contains
metal lines and inter-layer insulator. The topmost layer is covered
by a thermal insulation layer and the heat generated in the power
grid is conducted away by the substrate (usually attached to a heat
sink). By modeling each layer as was mentioned in section II-B,
the thermal grid is equivalent to a highly regular resistive network,
with resistive branches connecting nodes in the x, y, and z axis.
To create a preconditioner that will approximate the grid matrix, we
substitute each horizontal and vertical thermal conductance with its
average value in the corresponding layer. Moreover, we substitute
each thermal conductance gi,i+1 connecting nodes in adjacent layers
(z axis) with their average value between the two layers. Fig. 4(b) is
an example of a thermal grid with n = 3, m = 3 nodes in the x and y
axis respectively and l = 3 layers. Using the depicted numbering, the
matrix that corresponds to the aforementioned grid is the following
block-tridiagonal matrix:

M =

[
M1 −g1,2Imn

−g1,2Imn M2 −g2,3Imn
−g2,3Imn M3

]

where

Mi =

[
Ti + gv

i In −gv
i In

−gv
i In Ti + 2gv

i In −gv
i In

−gv
i In Ti + gv

i In

]
, i = 1, 2, 3

T1 =

 gh
1 + g1,2 −gh

1

−gh
1 2gh

1 + g1,2 −gh
1

−gh
1 gh

2 + g1,2



T2 =

 gh
2 + g1,2 + g2,3 −gh

2

−gh
2 2gh

2 + g1,2 + g2,3 −gh
2

−gh
2 gh

2 + g1,2 + g2,3



T3 =

 gh
3 + g2,3 −gh

3

−gh
3 2gh

3 + g2,3 −gh
3

−gh
3 gh

3 + g2,3


Similarly to the power grid preconditioner, the form of the above
matrix is identical to matrix (11). As a result, if such a matrix is
used as the preconditioner M for the thermal analysis procedure,
it can be efficiently solved through utilization of a Fast Transform
solver, as was described in section III-B.

C. Procedure Implementation
Once the preconditioners for the power and the thermal grid have

been created, the proposed approach executes the electro-thermal loop
in Fig. 1. At each step this requires the solution of the power grid at
step 1 and the solution of the thermal grid at step 3. An off-the-self
implementation of the PCG method can be used for both steps, with
an external call for the preconditioner-solve step Mz = r. The latter
corresponds to algorithm in Fig. 2 for power grid electrical simulation
and algorithm in Fig. 3 for power grid thermal simulation.

Owing to their special construction that allow utilization of Fast
Transform solvers, solution of the preconditioned systems of the
power and the thermal grid offer ample parallelism, both at data-
and task-level. Both FFT and the tridiagonal system solution are
highly-parallel algorithms that offer abundant level of data-level
parallelism [7] [14]. Thus, the proposed method can efficiently utilize
the computational resources found in massively parallel architectures,
thus greatly accelerating the simulation process. This comes in
contrast with most widely-used preconditioning methods, such as
incomplete factorizations, which have limited parallelism.

As far as task-level parallelism is concerned, algorithms from Fig. 2
and Fig. 3 entail a number of independent one-dimensional DCT-II
and IDCT-II transforms as well as the solution of a large number of
independent tridiagonal systems. This translates to additional task-
level parallelism, which can result to further acceleration on multi -
GPU systems for the preconditioner solve step as the independent
transforms and tridiagonal solvers can be executed in parallel, re-
quiring limited communication between different GPUs.

TABLE I
RUNTIME RESULTS FOR THE THREE SOLVERS. Iter. IS THE AVERAGE NUMBER OF ITERATIONS (TOTAL NUMBER OF ITERATIONS IN EACH ITERATION

OVER THE NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE OF THE ELECTRO-THERMAL LOOP) REQUIRED FOR CONVERGENCE OF EACH
ITERATIVE METHOD. Time DENOTES THE AVERAGE TIME REQUIRED FOR THE SOLUTION AT EACH ITERATION, WHILE SpdCHOL AND SpdICCG

DENOTE THE SPEEDUP OF ET-FTCG OVER CHOLMOD AND ICCG RESPECTIVELY. THE CONVERGENCE TOLERANCE FOR ITERATIVE SOLVERS WAS
10−6 AND CONVERGENCE WAS ACHIEVED IN ALL CASES.

Benchmark CHOLMOD ICCG ET-FTCG
Nodes T ime (s) Iter. T ime (s) Iter. T ime (s) SpdCHOL SpdICCG

ckt1 3.1M 105.8 201 15.1 62 1.6 66.1X 9.4X
ckt2 6.3M N/A 296 58.1 63 3.7 N/A 15.7X
ckt3 14.6M N/A 465 214.1 62 10.6 N/A 20.1X
ckt4 16.7M N/A 495 259.4 62 12.5 N/A 20.8X
ckt5 18.8M N/A 536 314.2 62 14.6 N/A 21.5X
ckt6 19.9M N/A 540 331.6 59 15.2 N/A 21.8X
ckt7 20.9M N/A 551 359.5 61 16.2 N/A 22.2X

One other salient feature of the proposed preconditioners (apart
from the near-optimal complexity of solving the systems Mz = r
and the parallelization opportunities) is that there is no need for
explicit storage of the preconditioner matrix M, which comes in
contrast with most standard preconditioners. As it is easily observed,
only the eigenvalues and the values γi and δi of M matrices in (4)
and (11) respectively are necessary in the execution of algorithms
from Fig. 2 and Fig. 3. Thus, only limited storage is required for
the preconditioners. A small memory footprint is very important
for mapping the algorithm onto architectures with limited available
memory space such as GPUs.

V. EXPERIMENTAL EVALUATION

To evaluate the efficiency of the proposed methodology for com-
bined electro-thermal simulation, we compared three methods for
solving the linear systems for the power and the thermal grid (steps 1
and 3 in Fig. 1): the PCG method with zero-fill Incomplete Cholesky
preconditioner (ICCG), the proposed method of using PCG with
the Fast Transform preconditioners (ET-FTCG), and CHOLMOD [5]
which is a state-of-the-art direct solver for sparse SPD linear systems.
Each method was ported on a GPU platform and the only part that
is executed on the CPU is the construction of the power and thermal
grid preconditioners for ET-FTCG and ICCG. Subsequently, the CPU
is responsible for transferring the appropriate data to the GPU. We
have used the CUDA library [1] (version 4.2, along with CUBLAS,
CUSPARSE and CUFFT libraries) for mapping the ICCG and the
ET-FTCG algorithm on the GPU.

Due to the lack of a set of available benchmarks for electro-thermal
analysis, we have created a set of synthetic benchmarks, based on the
modeling described in [10] (namely 10% of the wiring resources are
used for the power grid), with size ranging from 3.1M to 20.9M-
nodes. For the thermal grid, the length ∆z of the grid rectangle was
selected equal to the layer thickness (which can be variable), while
the lengths ∆x and ∆y were chosen equal to the smallest routing
width/pitch within a layer. We executed all experiments on a Linux
workstation, comprising an Intel Core i7 processor running at 2.4GHz
(6 cores and 24GB main memory) and an NVIDIA Tesla C2075 GPU
with 5GB of main memory. Table I presents the results from the
evaluation of the aforementioned methods on the set of benchmark
circuits. The number of nodes in each circuit (Nodes) refers to the
total number of nodes in the power grid, while execution time (Time)
refers to the average time required for solution at each electro-thermal
loop iteration, including any overhead for matrix factorization (in
CHOLMOD) and preconditioner construction (in iterative methods).

As we can observe, CHOLMOD (the direct solution method) was
able to simulate only the smaller benchmark circuit. Due to its
excessive memory requirements, analysis of larger benchmarks was
infeasible. On the other hand, both ICCG and ET-FTCG owing to
the limited memory requirements were able to simulate the complete
set of benchmarks. Moreover, they achieved a speed-up of 7X and
66.1X respectively.

If we restrict our comparison to the iterative methods, we can
observe that the proposed method was able to greatly reduce the
number of iterations required for convergence. This is a testament to
the efficiency of the proposed preconditioning mechanism. Compared
with general purpose preconditioning methods such as Incomplete
Cholesky factorization, the proposed preconditioners take into ac-
count the topology characteristics of the power and the thermal grid.
As a result, they are able to approximate them faithfully enough
and reduce the required number of iterations. Moreover, owing to
their inherent parallelism, the proposed preconditioners can utilize the
vast amount of computational resources found in massively parallel
architectures, such as GPUs. Thus, their efficacy is increased with

the increasing circuit size. ET-FTCG was able to achieve a speed-up
ranging between 9.4X and 22.2X over ICCG for our benchmark
circuits. On the contrary, ICCG was not able to fully utilize the
GPU resources due to the limited parallelism found in the triangular
solution algorithm.

VI. CONCLUSIONS

We have presented a new simulation approach for combined
electrical-thermal simulation. Our method combines a state-of-the-art
iterative solution method with a preconditioning mechanism that can
tackle the electrical-thermal simulation of power delivery networks
found in contemporary nano-scale ICs. Owing to its special formu-
lation that allows utilization of Fast Transform solvers, the proposed
preconditioning mechanism is able to harness the computational capa-
bilities of massively parallel architectures. Experimental evaluation of
the proposed method on a set of benchmark circuits with size ranging
from 3.1M to 20.9M -nodes showed that ET-FTCG achieved a speed-
up ranging between 9.4X and 22.2X over a preconditioned iterative
method with incomplete factorization preconditioner when GPUs are
utilized.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their com-
ments. The first author is supported by a grant from ’Bodossaki’
public benefit foundation.

REFERENCES

[1] NVIDIA CUDA Programming Guide, CUSPARSE, CUBLAS,
and CUFFT Library User Guides. [Online]. Available:
http://developer.nvidia.com/nvidia-gpu-computing-documentation

[2] O. Axelsson and A. Barker, Finite Element Solution of Boundary Value
Problems. Theory and Computation. Academic Press, 1984.

[3] K. Banerjee and A. Mehrotra, “Global (interconnect) warming,” Circuits
and Devices Magazine, IEEE, vol. 17, no. 5, pp. 16–32, 2001.

[4] T.-H. Chen and C. C.-P. Chen, “Efficient Large-Scale Power Grid
Analysis Based on Preconditioned Krylov-Subspace Iterative Methods,”
in ACM/IEEE Design Automation Conf., 2001.

[5] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Algorithm
887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Up-
date/Downdate,” ACM Trans. Math. Softw., vol. 35, no. 3, pp. 22:1–
22:14, 2008.

[6] C. C. Christara, “Quadratic Spline Collocation Methods for Elliptic
Partial Differential Equations,” BIT Numerical Mathematics, vol. 34,
no. 1, pp. 33–61, 1994.

[7] Z. Cui-xiang, H. Guo-qiang, and H. Ming-he, “Some New Parallel Fast
Fourier Transform Algorithms,” in Int. Conf. on Parallel and Distributed
Computing, Applications and Technologies, 2005.

[8] Z. Feng, Z. Zeng, and P. Li, “Parallel On-Chip Power Distribution
Network Analysis on Multi-Core-Multi-GPU Platforms,” IEEE Trans.
VLSI Syst., vol. 19, no. 10, pp. 1823–1836, 2011.

[9] X.-X. Liu, Z. Liu, S.-D. Tan, and J. Gordon, “Full-chip Thermal Analysis
of 3D ICs with Liquid Cooling by GPU-accelerated GMRES Method,”
in Quality Electronic Design (ISQED), 2012.

[10] S. Nassif, “Power Grid Analysis Benchmarks,” in Asia and South Pacific
Design Automation Conf., 2008.

[11] J. Shi, Y. Cai, S. X.-D. Tan, J. Fan, and X. Hong, “Pattern-Based
Iterative Method for Extreme Large Power/Ground Analysis,” IEEE
Trans. Computer-Aided Design, vol. 26, no. 4, pp. 680–692, 2007.

[12] C. Van Loan, Computational Frameworks for the Fast Fourier Trans-
form. SIAM, 1992.

[13] J. Xie and M. Swaminathan, “Electrical-Thermal Co-Simulation of
3D Integrated Systems With Micro-Fluidic Cooling and Joule Heating
Effects,” Components, Packaging and Manufacturing Technology, IEEE
Transactions on, vol. 1, no. 2, pp. 234–246, 2011.

[14] Y. Zhang, J. Cohen, and J. D. Owens, “Fast Tridiagonal Solvers on
the GPU,” in ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2010.

[15] Y. Zhong and M. D. F. Wong, “Thermal-Aware IR Drop Analysis in
Large Power Grid,” in ISQED’08, 2008.

