
Automatic Success Tree-Based Reliability Analysis
for the Consideration of Transient and Permanent

Faults
Hananeh Aliee, Michael Glaß, Felix Reimann, and Jürgen Teich
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

{hananeh.aliee,glass,felix.reimann,teich}@cs.fau.de

Abstract—Success tree analysis is a well-known method to
quantify the dependability features of many systems. This paper
presents a system-level methodology to automatically generate a
success tree from a given embedded system implementation and
subsequently analyzes its reliability based on a state-of-the-art
Monte Carlo simulation. This enables the efficient analysis of
transient as well as permanent faults while considering methods
such as task and resource redundancy to compensate these. As a
case study, the proposed technique is compared with two analysis
techniques, successfully applied at system level: (1) a BDD-based
reliability analysis technique and (2) a SAT-assisted approach,
both suffering from exponential complexity in either space or
time. Experimental results performed on an extensive test suite
show that: (a) Opposed to the Success Tree (ST) and SAT-assisted
approaches, the BDD-based approach is highly vulnerable to
exhaust available memory during its construction for moderate
and large test cases. (b) The proposed ST technique is competitive
to the SAT-assisted analysis in analysis speed and accuracy, while
being the only technique that is suitable to also handle large
and complex system implementations in which permanent and
transient faults may occur concurrently.

I. INTRODUCTION

Constantly shrinking device structures allow to produce
and design smaller, more efficient, and often also lower cost
system components. However, this is bought by these device
structures being susceptible to, e. g., environmental effects like
cosmic rays, manufacturing tolerances, and aging effects. This
leads to a growing inherent unreliability of the employed
components [1]. In conclusion, future design methodologies
need to automatically optimize and synthesize dependable
embedded systems from unreliable components, not only for
safety-critical, but for all types of application domains [2].
Dependability is typically not for free, but bought by certain
kinds of redundancy in time, space, or energy to tolerate faults
or by advanced hardening techniques during production and/or
design. Thus, efficient automatic reliability analysis techniques
are of utmost importance to investigate and carefully trade-
off positive effects of reliability-increasing measures and their
additional cost.

Existing work in the field of automatic reliability analy-
sis can be coarsely divided into two categories: (a) Simple
system models based on series-parallel structures and (b)
more complex formal methods based on Binary Decision
Diagrams (BDDs) [3] and related structures as well as SAT
solvers [4]. While the former approaches are too simple to
consider complex interdependencies of embedded systems, the
latter inherently solve the satisfiability problem which comes at

Supported in part by the German Research Foundation (DFG) as associated
project TE 163/16-1 of the priority program Dependable Embedded Systems
(SPP 1500).

exponential complexity in either time (SAT solver) or space
(BDD). To overcome this drawback, this work proposes an
automatic methodology for the reliability analysis of embed-
ded systems at system level based on Success Trees (STs),
see [5], [6]. It concurrently considers permanent defects as a
result of, e. g., aging effects that wear out components until
they eventually fail permanently, and transient faults caused by,
e. g. radiation inducing single event upsets that affect a single
execution of a software task. The approach fully automatically
(a) generates an ST for a given system implementation and
(b) analyzes the success tree in the presence of transient and
permanent faults by applying a state-of-the-art Monte Carlo-
based simulation technique.

Fault tree analysis is a well-known method to quantify
dependability parameters such as reliability and safety [7].
The top event in a fault tree is a system failure event, and
the primary inputs of the tree are events that cause system
failure. Success tree analysis uses the same representation of
the system as fault trees, however the top event is a system
success, and the primary inputs of the tree are those lead-
ing to system success. Employing ST-based analysis during
design automation faces two serious challenges: (a) STs are
typically employed to study the effects of interdependency and
redundancy among hardware components and requires at least
semi-manual construction by the designer [8]. In this work,
we propose a novel construction technique that automatically
extracts the ST of a system implementation, considering the
dependency and redundancy of both software tasks as well
as hardware resources while circumventing to implicitly solve
the SAT problem as required by existing construction schemes.
(b) While the actual analysis of the constructed ST is typically
seamlessly applicable for hand-crafted use cases, the analysis
may become a severe problem for complex and large systems
or automatically derived STs [9]. In the work at hand, we
employ a state-of-the-art ST analysis technique based on
stochastic logic [10] to evaluate the generated STs. Here, each
gate of the ST is translated into its corresponding stochastic
logic template while a Monte Carlo simulation is used to
calculate the reliability of the system.

To this end, this analysis technique provides a flexible envi-
ronment to study the various effects of redundancy strategies
at task level and resource level concurrently. Experimental
results show that this approach can efficiently construct and
analyze the success tree of a system, particularly where other
existing analytical methods fail. Compared to another state-
of-the-art simulation-based technique from [11], the proposed
technique delivers more accurate results in a shorter or at least
competitive time. The proposed automatic analysis approach
enables a multi-objective design space exploration that is978-3-9815370-0-0/DATE13/ c©2013 EDAA

t1

t2

t0

t3

r01

r11 r12

r21 r22

r31

Application Architecture

m01

m11

m12

m21

m22

m31

m01

m11 m12

m21 m22

m31

Mappings Task instances

Fig. 1. A system specification consisting of an application with four tasks,
six resources, and mapping edges (dashed). When allocating all resources
and activating all mappings, an implementation is derived with a structure
of communicating task instances depicted on the right. In this case, two
redundant paths with respect to the tasks t1 and t2 exist.

capable of trading-off the achieved reliability for extra costs
in other design objectives such as mounting space, energy
consumption, or monetary costs.

The rest of the paper is outlined as follows: Section II
gives an overview of the problem targeted in this paper and
related work in this area. Section III introduces the proposed
ST analysis approach and explains in details how the ST
is constructed automatically and analyzed at system level.
Finally, experimental results are discussed in Section IV while
Section V concludes the paper.

II. PROBLEM STATEMENT AND RELATED WORK

This section first introduces the basic system model used
in this work. Afterwards, the targeted problem and related
approaches to solve it are discussed.

A system under design is given as a graph-based model:
• Application: The application of a system is modeled as

a graph gT(T,ET), where the vertices t1, . . . , t|T | ∈ T
denote tasks of the application, and the directed edges
e1, . . . , e|ET| ∈ ET ∈ T × T represent data dependencies
between tasks.

• Architecture: A target architecture is represented as a
graph gR(R,ER), where r1, . . . , r|R| ∈ R denote avail-
able interconnected hardware resources in the system, and
the directed edges e1, . . . , e|ER| ∈ ET ∈ R × R model
available interconnection links between resources.

• Mappings: The relation between application and archi-
tecture is shown by a set of mappings. In particular, each
mapping m = (t, r) ∈ EM is a direct edge between a
task t and a resource r and indicates that task t can be
mapped (implemented) on resource r.

Thus, such a specification includes all the possible design
alternatives, see Fig. 1 of an example system. From this, an
implementation can be derived which represents the actual
system to be implemented: An implementation consists of a
subset of resources called allocation α that are actually used in
the design and a subset of the mapping edges called binding
β that guarantees that each task is mapped to at least one
allocated resource in the system. Mapping tasks to multiple
resources means creating multiple instances of the same task
in the system, thus introducing redundancy at task level. An
implementation is finally feasible if tasks are only mapped to
allocated resources and all data-dependent tasks are executed
on the same or adjacent resources.

Automatic reliability analysis approaches typically take a
feasible implementation as input and evaluate the expected
lifetime of this implementation with respect to a specified fault
model. For this purpose, the reliability function R is calculated
that gives the probability of the system having a life time
τLT greater than time τ , i. e, R(τ) = P[τLT > τ]. Given the
reliability function, all well-known reliability measures, partic-
ularly the Mean-Time-To-Failure (MTTF) given as MTTF =∫∞
τ=0
R(τ) dτ , can be derived seamlessly. To determine the

reliability function, knowledge about the system behavior
in the presence of faults is essential. Existing approaches
typically determine a characteristic function ψ first, which
is a Boolean function that returns whether the system provides
correct service (1) or failed (0). In this function, each allocated
resource r ∈ α is modeled one-to-one by a binary variable r
with r = 1 indicating a properly working, defect-free resource
and r = 0 indicating a defective resource suffering from a
permanent fault. The instances of each task are modeled by
their respective mapping: β = (m1, . . . ,m|β|) is a vector of
binary variables where m = 1 indicates that the task instance
m is active and provides correct service andm = 0, otherwise.
From the simple system model employed here, and existing
construction rules from literature, cf. [3], function ψ may be
derived as follows:

ψ(α,β) =
∧
t∈T

 ∨
m=(t,r)∈β

m

 ∧ (1a)

∧
m=(t,r)∈β

m→ r ∧ (1b)

∧
(t̃,t)∈ET

∧
m=(t,r)∈β

m→ χ(m, t̃) (1c)

Eq. (1a) states that for each task t ∈ T , at least one active task
mapping (or instance) m = (t, r) ∈ β is necessary to provide
correct service. Eq. (1b) states that an active task instance
needs to be mapped to a non-defective resource. Finally,
Eq. (1c) implies that if there are two data-dependent tasks, they
must be able to communicate properly. The communication
function χ is formulated according to the communication
paradigm, i. e., single-hop or multi-hop communication, and
the presence of majority voters. Based on the above definitions,
the reliability analysis finally requires to solve the following
satisfiability problem (SAT):

ϕ(α) = ∃m∈βm : ψ(α,β) (2)

Here, the structure function ϕ evaluates to 1 if for a given
allocation of resources α, there exist active mappings (task
instances) m with m = 1 for all tasks such that all previ-
ous constraints summarized in ψ are satisfied. State-of-the-
art approaches use either BDDs [3] to represent function
ϕ and apply an exact analytical approach or employ SAT
solvers [11] to drive a simulation-based analysis. However,
the BDD approach has the drawback of growing exponentially
with the number of variables involved. The SAT solver on
the other hand tackles the SAT problem over time, resulting
in long simulation times. However, there exists no implicit
SAT-solving ability for a success tree, because all primary
inputs of the ST have fixed values. The work at hand avoids
solving the SAT problem by proposing a novel construction
scheme for success trees and an evaluation employing a recent
simulation-based approach using stochastic logic. This way,

m21 r21 m31 r31 m22 r22

(a) (b)

a b c

m21 r21

m31 r31

m22 r22

(I) 1 0 1 1 1 1

(II) 0 0 1 1 1 1
(I) 1 0 1 1

1 1

= 0 (I)

= 1 (II)
= 1 (I)

Fig. 2. The success tree generated for a part of the system shown shaded in
Fig. 1: (a) Using Eq. (1), and (b) Considering a partial ordering scheme for
evaluating the predecessors of a task instance first.

the problem of BDDs outgrowing available memory is avoided
while being faster at higher precision compared to known SAT-
based approaches.

III. AUTOMATIC SUCCESS TREE ANALYSIS

In the following, the proposed automatic success tree
analysis is introduced in three steps: (1) The construction
scheme for STs, particularly discussing the need for a novel
construction algorithm, (2) the evaluation of a constructed ST
by a simulation-based approach, and (3) the integration of both
permanent and transient faults within the ST analysis.

A. Success Tree Construction
Basically, success trees are a graphical representation of

a Boolean formula by a logic circuit with arbitrary many
primary inputs and one output. A success tree can be simply
extracted from a given characteristic function as follows:
Boolean operators are represented by logic gates, e. g., ∧ by
an AND gate and ∨ by an OR gate, and the binary variables
are the primary inputs of the circuit1.

The characteristic function introduced in Eq. (1) cannot be
directly translated into a success tree as the following example
shows: Consider again the system implementation depicted in
Fig. 1. Suppose that resource r21 is defective (depicted in
dark gray) and no transient fault occurred. Fig. 2 (a) illustrates
the success tree of the Boolean formula related to the shaded
area in Fig. 1 directly derived from Eq. (1). The success trees
constructed from Eq. (1a), Eq. (1b), and Eq. (1c) are separated
by a, b, and c parts respectively. Moreover, let the vector (I)
hold the inputs for the corresponding allocation α and binding
β. Evaluating the Boolean function (the corresponding success
tree) with this vector results in a 0 although the system still
provides correct service (via the redundant path over m12

and m22). Opposed to ST, BDD and SAT-based approaches
implicitly recognize that by disabling m21 (m21 = 0), the
function can still be fulfilled using vector (II).

To tackle this problem, Fig. 2 (b) proposes a success tree
construction which evaluates all task instances in an ordered
fashion, in which all predecessors of each task instance are
processed first. Also, in this tree, the two possible redundant
paths ending in m31 are considered independently, so a
failure in one of them does not affect the other one. In the
following, we propose a novel recursive construction scheme

1For explanatory purpose, we rather represent an ST also by a Boolean
function instead of a graph in our methodology.

Algorithm 1 Derive ∗ Substitutions.
Require: α and β
Ensure: sortedTasks: topologically sorted list of tasks T

1: substitutions // stores m∗ → Boolean term
2: while t := sortedTasks.next() do
3: if t has predecessor(s) t̃ then
4: for all (t̃, t) ∈ ET do
5: for all m = (t, r) ∈ β do
6: m∗ := m ∧ r ∧ χ(m, t̃)
7: substitutions.put(m, m∗)
8: end for
9: end for

10: else // t has no predecessors
11: for all m = (t, r) ∈ β do
12: m∗ := m ∧ r
13: substitutions.put(m, m∗)
14: end for
15: end if
16: end while
17: return substitutions

that includes partial ordering of the tasks and a substitution
pattern to derive correct success trees.

To derive such a correct success tree, the dependency among
tasks and resources must be properly reflected in the Boolean
formula. So, whenever a permanent fault occurs in a resource
r or a transient fault in a task instance m, it must only
affect the impacted redundant paths, i. e., those paths that
rely on the data from the faulty task or that include tasks
executed on the defective resource. This may be achieved by a
recursive substitution scheme of variables such that the output
of gates considering preceding task instances serves as the
direct input of gates considering succeeding tasks in the paths.
Hence, we suppose to start the construction of the success tree
by determining a map that stores the required substitutions,
see Alg. 1. Suppose that application graph gT is an acyclic
graph2. In this algorithm, the tasks t ∈ T are first ordered
topologically with respect to their data dependencies, i. e., it
holds that ∀t, t̃ ∈ T, (t, t̃) ∈ ET : t < t̃. Hence, each task t
appears in this list before any of its successors. For each task
instance m = (t, r) ∈ β, it is ensured that the predecessor
instances are evaluated first such that m is capable of detecting
whether it received proper data (χ(m, t̃) = 1) and whether it
itself provides correct service (m ∧ r = 1). Here, χ(m, t̃)
particularly indicates the feasibility in the communication of
task instance m with its predecessor t̃ defined as follows:

χ1/n(m, t̃) =
∨

m̃=(t̃,r̃)∧
(m̃,m)∈Eβ

m̃∗ (3a)

χk/n(m, t̃) =
∨

∀m̃1=(t̃,r̃1),...,m̃k=(t̃,r̃k)∈β:
m̃1 6=... 6=m̃k∧

(m̃1,m),...,(m̃k,m)∈Eβ

V ∧ m̃1
∗ ∧ . . . ∧ m̃k

∗

(3b)
which hold for a 1-out-of-n and a k-out-of-n system, re-
spectively. Here, the edges Eβ ⊆ β × β depict a feasible
communication between task instances. Whenever a particular

2The scheme for considering cyclic graphs is similar, but requires additional
formulations also during analysis and shall not be discussed here.

Fig. 3. The success tree of the system implementation in Fig. 1. B(i) refers
to the bit stream representation of the success probability for the event i.

m̃∗ appears in a formula, it is replaced by the Boolean term
given by m̃∗=substitutions.get(m̃). The result of Alg. 1 is a
recursive substitution that, so far, stops for task instances that
do not have predecessors. Finally, to construct the Boolean
function (characteristic function) corresponding to the desired
success tree, the recursion just has to be started from all task
instances that do not have any successors (end tasks):

ψ1/n(α,β) =
∧

twith @t̃,(t,t̃)∈ET

 ∨
m=(t,r)∈β

m∗

 (4a)

ψk/n(α,β) =
∧

twith @t̃,(t,t̃)∈ET

 ∨
∀m1=(t,r1),...,mk=(t,rk)∈β:

m1 6=...6=mk

m∗

(4b)

This equation checks the possibility of correct execution for
each end task in the case of 1-out-of-n (Eq. (4a)) and k-out-of-
n (Eq. (4b)) systems, respectively. Again note that other tasks
than end tasks are not checked in this equation because they
are successively inserted in the Boolean function by following
the substitutions given by m∗. The resulting ST for the full
example in Fig. 1 is depicted in Fig. 3.

B. Success Tree Analysis
Interpreting the success tree by providing either a 0 or

1 for each variable (primary input) in α and β determines
whether the system provides correct service or fails for this
particular scenario of defective resources and tasks being
affected by a transient fault. Now, the key idea behind success
tree analysis is to use a probability of success (or fault,
respectively) instead of deterministic values for each primary
input. This probability is, for each point in time τ , specified
by the designer by providing a reliability function for each
resource Rr(τ) and task instance Rm(τ). Analyzing the ST
at time τ with the respective probabilities at the primary inputs
delivers the probability of the whole system to work properly
at time τ ; implicitly delivering the desired R(τ) for the system
implementation as outlined in the problem description.

In the following, the state-of-the-art stochastic fault tree
analysis approach introduced in [10] is exploited. This ap-
proach models the probability of each primary input event i by
a bit stream B(i) of length l, where the number of 1s divided
by l approximates the desired probability. In our case, the bit
stream for an input i, i. e., a resource r or a task instance m,
at time τ is given as:

Bτ (i) = {1, 0}l with:
#1

l
≈ Ri(τ) (5)

To determine R(τ) of the overall system, a bit stream Bτ (i) is
generated for each primary input. The ST is then interpreted in
l iterations where in the j-th iteration, the j-th bit of each input
bit stream is processed. Processing each iteration is determined
as a separate Monte Carlo simulation run. Finally, the result is
an output bit stream of the ST for which again the number of
1s divided by l approximates the probability of the complete
system, hence, R(τ). Fig. 3 presents an example where input
streams B(r01) and B(m01) are processed via an AND gate
(colored in gray). Suppose that l = 10, and Rr01 and Rm01

are
0.6 and 0.5, respectively. In the enlarged part of the figure, the
input reliability values are presented in bit streams which are
then passed through an AND gate to produce the output bit
stream B(m01

∗). The resulting bit stream represents Rm∗
01

=
0.3 which is the multiplication of Rr01 and Rm01

. Given the
small l, other arrangements of 1’s and 0’s in the bit streams
modeling Rr01 and Rm01

may lead to an inaccurate output. But
the larger l, the more accurate the results are. As discussed in
the experimental results, this technique can produce satisfiable
results for l > 2000.

Given an ST that is only constructed once, this evaluation
is invoked by simulation of R(τ) over time τ ∈ [0, τmax],
thus, enabling to calculate many reliability-related measures
like the MTTF. Here, τmax denotes the time that the success
probability is near zero.

C. Modeling of Transient and Permanent Faults

Finally, we propose a combined success tree analysis which
enables the analysis of transient as well as permanent faults.
Previous works often analyze these effects separately and
combine them afterwards, e. g., by adding the resulting failure
rates. This, however, is not always feasible: Imagine a pro-
cessor is permanently defective. The tasks executed on this
processor are directly affected by being unavailable. Thus, they
are affected by a permanent fault and become permanently
defective themselves, although a separate analysis may assume
they are only temporarily unavailable due to transient effects.
Given the constructed ST as described in this section, such
interdependencies may be considered correctly and hence,
a concurrent analysis of transient and permanent effects is
enabled. In this work, we distinguish the following effects:

Permanent Faults: In our analysis, we assume that hard-
ware resources r ∈ R may become permanently faulty. This
may be the result of, e. g., aging effects that degrade hard-
ware components such that they eventually violate specified
characteristics. In that case, we assume that all task instances
m = (t, r) ∈ β mapped to such a resource r are affected by
this malfunction and will not provide correct service anymore.
Thus, for each such resource r ∈ R, the value of the primary
input r is set to 0 or 1 according to the probability given by
evaluating Rr(τ).

Transient Faults: In addition to permanent faults, we
also consider transient faults in hardware and we assume that
these only affect individual task instances currently running
on such a resource. For example, radiation effects have this
kind of impact on hardware by flipping bits in either control
or data path. As a result, the transient failure rate is directly
influenced by the underlying hardware and the time duration
each task instance is executed on the hardware. Assuming a
given constant transient fault probability Pr for each resource
r ∈ R (e. g., due to radiation), for periodic tasks, the transient
failure probability may coarsely be estimated for each task
instance m = (t, r) executed on this resource as:

Pm = Pr ·
τmET

τmP
(6)

with τmET being the duration of a single task instance’s execu-
tion and τmP being its period. Given this is a constant value
over time, the reliability function of a task instance m is given
as:

Rm(τmET, τ
m
P) = 1−

(
Pr ·

τmET

τmP

)
(7)

such that for each binary variable m and for each specific point
in time τ , a bit stream encoding the same probability given by
Rm(τmET, τ

m
P) is generated. Note that now, permanent resource

defects still directly affect the task instances but there is also a
probability that a task instance does not deliver correct results
although the underlying resource is providing correct service;
resulting in a correct modeling of the interdependency between
transient and permanent faults.

IV. EXPERIMENTAL RESULTS

This section evaluates the scalability, efficiency, and accu-
racy of the proposed automatic success-tree-based reliability
analysis methodology. To this end, ST is compared with two
state-of-the-art reliability analysis approaches: (1) the BDD-
based approach proposed in [3], and (2) the SAT-assisted
simulation presented in [11]. It should be noted that the com-
parison is based on the related work considering permanent
faults only. The SAT-assisted simulation cannot be seamlessly
adapted to consider the transient faults since it determines
only one time-to-failure for each component and assumes it
is permanently defective afterwards. The BDD-based approach
can be adapted, but, as we will show, it heavily suffers from the
increased number of variables to consider. Thus, this section
will show the competitiveness of ST with existing techniques
for permanent faults only. Afterwards, we will show that
ST is superior when concurrently considering permanent and
transient faults.

The proposed technique uses the Java-based reliability li-
brary (JReliability) [12] to analyze reliability-related measures,
e. g. MTTF. Moreover, in this paper, the open-source opti-
mization tool Opt4j [13] has been employed which provides a
system-level optimization framework being also used by pre-
vious methods: SAT-assisted and BDD-based approach. The
test suite employed here contains eight system-level design
specifications including several real-world as well as multiple
synthetic test cases ranging from simple, moderate, up to hard
examples. The specification’s size ranges from about 50 tasks
with 25 resources up to 250 tasks with 1000 resources. For
each of the specifications, 10 different implementations with a
varying number of available resources are generated. To gather
examples of different analysis complexity, not the sheer size

is the key factor, but the degree of redundancy. Thus, each
of the 80 implementations is evaluated with three different
configurations, enabling hardly any redundancy (simple), a
moderate degree of redundancy (moderate), and a very high
degree of redundancy (hard). For the resulting test suite
of 240 implementations with different complexities, each is
analyzed with respect to its reliability in terms of MTTF. The
experiments are carried out a standard desktop PC.

Accuracy w.r.t. Analysis Time: The BDD-based approach
is precise in the sense that it gives an exact value for each
required R(τ) and only negligible errors occur, e. g., during
numerical integration to determine MTTF. Both ST and the
SAT-assisted simulation can only approximate R(τ), such
that an investigation of their accuracy becomes necessary.
Table I investigates the achievable accuracy and speed-up of
the proposed technique using stochastic logic and the SAT-
based approach and compares them to exact results derived
by the BDD-based approach. The table shows that with an
increased number of simulation runs (equal to the length l
of the bit streams in ST), the accuracy increases for both ST
and SAT. For simple and moderate test cases, SAT approach
is more accurate than ST, but the runtime of ST is still a
factor of 3-5 lower. As will also be discussed in the next
paragraph on scalability, BDD is the best option for simple
and several moderate examples, being exact at a significantly
shorter runtime. The important conclusion here is that for hard
test cases, ST provides a higher accuracy at lower runtime
compared to SAT.

Scalability: A serious issue when using the BDD-based
approach is that its SAT solving capability is bought by an
exponential complexity in terms of memory in the worst case.
Thus, we investigate the number of examples where BDD
fails to highlight the superiority of ST in terms of scalability.
Consider again Table I: For simple and moderate implemen-
tations, BDD-based technique does never (simple) or hardly
(moderate) fail due to outsized memory. It is noteworthy
that already for the consideration of permanent defects only,
BDD fails to analyze 50% (40) of the hard implementations.
In contrast, both SAT-assisted and ST-based approaches can
seamlessly analyze these test cases with individual runtimes
being affordable, cf. also Fig. 4. Extending the BDD-based
approach to consider transient effects as well, an even larger
amount of memory is required. This significantly influences
its scalability with 0% fail for simple, 20% fail already for
moderate, and 100% fail for the hard examples. ST on the
contrary can seamlessly analyze these test cases at almost
the same speed as when not considering transient faults. The
reason is that for permanent faults only, the m variables are
set to all 1 but are none the less already considered.

Recommendation: (1) Considering permanent faults only,
BDD is the technique of choice for examples of small and
moderate complexity. For hard examples, BDD fails too fre-
quently and ST is superior to SAT in terms of accuracy and
speed. (2) Considering permanent and transient faults concur-
rently, BDD fails for a huge amount of examples, particularly
when analysis complexity rises. ST on the contrary seamlessly
evaluates these examples and is, through the unavailability
of an extension for the SAT-assisted simulation for transient
faults, the technique of choice for the concurrent consideration
of permanent and transient faults.

TABLE I
COMPARISON OF THE (A) AVERAGE ERROR WITH RESPECT TO MTTF OF ST AND SAT, (B) THE SPEED-UP FACTOR (FOR EXAMPLE, ST OVER SAT 5.38

MEANS ST IS 5.38 TIMES FASTER THAN SAT), AND (C) THE PERCENTAGE OF EXPERIMENTS WHERE BDD AS THE EXACT TECHNIQUE FAILS.

of Runs MTTF Error (%) Speed-up Factor Failed Experiments for BDD (%)
ST SAT ST over SAT BDD over ST BDD over SAT Perm. Perm. & Trans.

simple
500 4.45 3.85 5.38 3.96 18.48 0 0
1000 3.29 2.54 5.85 6.80 34.4 0 0
2000 2.72 1.89 5.99 11.91 62.02 0 0
4000 2.30 1.39 5.95 23.50 118.80 0 0

moderate
500 4.53 3.84 3.08 5.78 15.84 2.5 20
1000 4.08 2.77 3.09 9.42 26.19 2.5 20
2000 3.63 1.98 3.01 19.66 52.84 7.5 20
4000 3.02 1.35 2.91 31.44 82.97 4.0 20

hard
500 3.27 4.59 2.68 1.22 4.21 50 100
1000 2.22 2.45 2.53 2.24 7.60 50 100
2000 1.59 1.67 2.37 4.29 14.14 50 100
4000 1.04 1.18 2.31 6.71 21.70 50 100

100 101 102 103 104 105
100

101

102

103

104

105

τRT in [ms] for BDD

τ R
T

in
[m

s]
fo

r
ST

100 101 102 103 104 105
100

101

102

103

104

105

τRT in [ms] for BDD

τ R
T

in
[m

s]
fo

r
SA

T

100 101 102 103 104 105
100

101

102

103

104

105

τRT in [ms] for ST

τ R
T

in
[m

s]
fo

r
SA

T

Fig. 4. Comparison of the runtime τRT of the compared techniques Success Tree (ST) analysis, BDD-based analysis and SAT-assisted simulation where
BDD did not fail. As can be seen, although BDD is a lot faster on average, ST and SAT may also be faster in some cases and ST is typically faster than
SAT (being also more accurate for the interesting hard examples). Noteworthy is that (given the times in milliseconds) all times are reasonable for a design
space exploration.

V. CONCLUSION

This paper presents a fully automatic system-level reliability
analysis methodology based on generating a success tree from
a given system implementation and subsequently analyzing it
based on a state-of-the-art simulation technique. Due to a novel
construction scheme, it avoids the exponential growth related
approaches in either memory (BDD) or time (SAT solver)
by circumventing to implicitly solve the Boolean satisfiability
problem. Moreover, it is capable of concurrently investigating
the effects of permanent and transient faults that is currently
not seamlessly implementable by the SAT-assisted simulation
and tends to max-out BDD-based approaches. Compared to the
existing techniques by considering only permanent faults, ST
is superior in the case of complex implementations with a large
degree of redundancy. In case of a concurrent consideration
of permanent and transient faults, it clearly outperforms the
BDD approach in terms of scalability. In summary, while
BDD-based approaches are still the technique of choice for
simple and moderately-sized examples, the proposed ST ap-
proach should be the preferred technique to analyze complex
implementations. Given both kinds may have to be investigated
during an automatic design space exploration, the novel ST
technique provides an efficient and highly scalable solution to
the reliability analysis problem.

REFERENCES

[1] N. Miskov-Zivanov and D. Marculescu, “Multiple transinet faults in
combinational and sequential circuits: A systematic approac,” IEEE
Transactions on Computer-Aided Dsign of Integrated Circuits and
Systems, vol. 29, no. 10, pp. 1614–1627, 2010.

[2] T. Streichert, M. Glaß, C. Haubelt, and J. Teich, “Design space ex-
ploration of reliable networked embedded systems,” Journal of Systems
Architecture: the EUROMICRO Journal, vol. 53, no. 10, pp. 751–763,
2007.

[3] M. Glaß, M. Lukasiewycz, T. Streichert, C. Haubelt, and J. Teich,
“Reliability-aware system synthesis,” in Design, Automation and Test
in Europe (DATE). France: IEEE Computer Society, 2007, pp. 409–
414.

[4] M. Glaß, M. Lukasiewycz, F. Reimann, C. Haubelt, and J. Teich,
“Symbolic system level reliability analysis,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). USA: IEEE Com-
puter Society, ACM, 2010, pp. 185–189.

[5] A. Reibman and M. Veeraraghavan, “Reliability modeling: An overview
for system designers,” Computer, vol. 24, no. 4, pp. 49–57, 1991.

[6] N. Rasmussen, “The application of probabilistic risk assessment tech-
niques to energy technologies,” Annual Review of Energy, vol. 6, no. 1,
pp. 123–138, 1981.

[7] J. Dugan, K. Sullivan, and D. Coppit, “Developing a low cost high-
quality software tool for dynamic fault-tree analysis,” IEEE Transactions
on Reliability, vol. 49, no. 1, pp. 49–59, 2000.

[8] W. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick, and
J. Railsback, Fault Tree Handbook with Aerospace Applications. NASA
Office of Safety and Mission Assurance, 2002, pp. 1–218.

[9] G. Merle, J. Roussel, J. Lesage, and A. Bobbio, “Probabilistic algebraic
analysis of fault trees with priority dynamic gates and repeated events,”
IEEE Transactions on Reliability, vol. 59, no. 1, pp. 250–261, 2010.

[10] H. Aliee and H. Zarandi, “Fault tree analysis using stochastic logic:
A reliable and high speed computing,” in Annual Reliability and
Maintainability Symposium (RAMS). USA: IEEE Computer Society,
2011, pp. 1–6.

[11] M. Glaß, M. Lukasiewycz, C. Haubelt, and J. Teich, “Towards scal-
able system-level reliability analysis,” in Proceedings of the 2010
ACM/EDAC/IEEE Design Automation Conference (DAC ’10), Anaheim,
USA, Jun. 2010, pp. 234–239.

[12] M. Glaß, M. Lukasiewycz, and F. Reimann, Java-based Reliability
Library, 2008 (accessed February, 2012). [Online]. Available:
http://jreliability.sourceforge.net/

[13] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich, “Opt4j - a
modular framework for meta-heuristic optimization,” in Proceedings of
the Genetic and Evolutionary Computing Conference (GECCO 2011),
Ireland, 2011, pp. 1723–1730.

