
FPGA Latency Optimization Using System-level

Transformations and DFG Restructuring

Daniel Gomez-Prado, Maciej Ciesielski, and Russell Tessier

Department of Electrical and Computer Engineering

University of Massachusetts, Amherst

{dgomezpr, ciesiel, tessier}@ecs.umass.edu

Abstract—This paper describes a system-level approach to
improve the latency of FPGA designs by performing optimization
of the design specification on a functional level prior to high-
level synthesis. The approach uses Taylor Expansion Diagrams
(TEDs), a functional graph-based design representation, as a
vehicle to optimize the dataflow graph (DFG) used as input to the
subsequent synthesis. The optimization focuses on critical path
compaction in the functional representation before translating
it into a structural DFG representation. Our approach engages
several passes of a traditional high-level synthesis (HLS) process
in a simulated annealing-based loop to make efficient cost trade-
offs. The algorithm is time efficient and can be used for fast design
space exploration. The results indicate a latency performance
improvement of 22% on average versus HLS with the initial
DFG for a series of designs mapped to Altera Stratix II devices.

I. INTRODUCTION

As field-programmable gate arrays (FPGAs) mature, the

level of design representation used to target the devices contin-

ues to move upward from the register transfer level (RTL) to

algorithmic and behavioral level specifications. Much FPGA

design exploration work has focused on optimizations which

are performed during traditional high-level synthesis (HLS),

such as operation scheduling, register binding, and functional

unit allocation. These algorithms are typically applied to a

dataflow graph (DFG) which represents the desired computa-

tion. In many HLS systems, these graphs are treated as a fixed

starting point, limiting the exploration of design implementa-

tions. Flexible FPGA architectures provide an opportunity for

algorithmic approaches which restructure a DFG at a level

above traditional HLS.

The use of FPGAs for design implementation necessitates

specific DFG restructuring that accommodates the lookup

tables, memory blocks and multipliers commonly found in the

devices. For example, whenever two or more functional units

write into a register, a multiplexer is required at the input to the

register. In the case of FPGAs, a multiplexer made from lookup

tables may require as much logic as a second functional unit,

altering tradeoffs [1][2]. Critical path analysis during FPGA

design mapping must carefully consider both FPGA functional

block and interconnect delay at multiple hierarchical levels.

These resources are configurable on a per-application level,

allowing for a variety of area and performance tradeoffs. For

HLS, operations require multiple clock cycles, so minimizing

978-3-9815370-0-0/DATE13/ c©2013 EDAA

design latency requires effective functional unit use in addition

to achieving a high design clock frequency.

In this work, a high-level design representation, the Taylor

expansion diagram (TED), is used to transform dataflow

graphs prior to the final application of traditional high level

synthesis optimizations in an effort to improve the latency of

FPGA designs. This analysis considers FPGA-specific opti-

mization such as critical path compaction including expected

routing when evaluating expected FPGA design latency. TED

optimizations involve a series of design restructurings based

on desired design operations. In this paper we show that

it is possible to rapidly explore and modify dataflow graph

representations at the behavioral level to improve FPGA design

latency with limited impact on design area. An interesting

aspect of our approach is the use of some HLS operations

during TED optimization to evaluate the benefit of specific

optimization steps. Effectively, a minimal set of HLS oper-

ations is provided ”in the loop” in assessing the impact of

higher-level transforms. A full set of standard HLS operations

is performed once the TED-based restructuring is complete.

Our new design flow consists of the following phases:

1) High-level algorithmic transformation using TEDs.

2) High-level synthesis using GAUT [3]. This tool is used

to evaluate intermediate behavioral design representa-

tions and convert the final behavioral design to RTL.

3) RTL design synthesis and physical design (place and

route) using Altera Quartus II for commercial Stratix II

FPGA devices.

We demonstrate that TED transformations can directly lead

to an average of 22.6% post-mapped improvement in design

latency for a set of previously-used HLS benchmarks mapped

to Stratix II FPGAs versus mapping using only the initial,

static DFG.

II. FPGA DESIGN LATENCY OPTIMIZATION DURING HIGH

LEVEL SYNTHESIS

Most high-level synthesis optimizations for FPGAs consider

critical path reduction and multiplexer minimization. Although

these optimizations are performed during HLS, rather than at

a higher design level, they provide insight into the types of

design explorations that can be considered by TEDs.

HLS algorithms have been widely explored in the context

of latency optimization. The problem of register allocation and

binding and its impact on the final architecture of synthesized

designs have been extensively studied. In Chen and Cong [1],

a register binding algorithm with multiplexer optimization is

modeled as a minimum cost flow in a network, and then a

greedy algorithm is used to optimize performance. The prob-

lem of register binding for clock period minimization without

register overhead is formulated in Huang and Chen [4]. In

Cong et al. [5], the overall resource usage of functional units,

registers and multiplexers is simultaneously optimized. The

synthesis process is not broken into a sequence of optimization

steps, as is traditionally practiced. Instead, the scheduler

transmits global optimization information between each step of

the algorithm. In Kim and Liu [6], a simultaneous register and

functional unit binding algorithm targeting multiplexer input

reduction to shorten the total interconnect length is developed.

The improvements are based on the observation that not all

functional units operate at the same time. When a functional

unit is idle, it can be reconfigured as pass-through logic for

data transfer, reducing interconnect requirements. Although

these approaches provide significant steps forward in latency

optimization, they do not attempt to restructure the dataflow

graph targeted to FPGAs in an effort to enhance register

allocation and binding.

Perhaps the work most similar to ours is the low-power

architectural synthesis system (LOPASS) [7]. This approach

performs a simulated-annealing optimization over the entire

synthesis process of scheduling, resource selection and alloca-

tion, functional unit binding, register binding, and interconnec-

tion estimation to effectively reduce power. The main objective

of this approach is to reduce the overall connectivity between

functional units and registers (including multiplexers) and

to reduce the total design interconnections, which ultimately

leads to a reduction in power consumption. In their work, the

DFG is fixed, and an annealing algorithm is applied to swap

the type of functional units being used (e.g., Wallace multiplier

versus other multiplier types), merge functional units, and

swap functional unit operands.

Our method is complementary to the previous approaches

as it restructures a dataflow graph prior to high level synthesis

in an attempt to create a DFG which minimizes design latency

by increasing design clock frequency, reducing the number of

clock cycles per high-level operation, or both. The modified

DFG is then used as input to a high level synthesis flow where

the approaches mentioned above can still be performed as part

of the synthesis process.

III. REVIEW OF TAYLOR EXPANSION DIAGRAMS

Taylor expansion diagrams were originally developed in the

context of formal verification for data-intensive computations

and arithmetic datapaths. A TED is a canonical, graph-based

data structure that can efficiently represent designs expressed

as multivariate polynomial expressions, often encountered in

signal processing and computer graphics applications. A multi-

variate polynomial expression, F (x1, · · · , xn), is decomposed

recursively using Taylor series expansion, one variable at a

time. The resulting decomposition is stored as a directed

acyclic graph, the TED.

F

A

 3

B

C

 2

ONE

F

*

A

*

B

+

C

< <

1 3

Fig. 1. a) TED of F = 3A(B + 2C); b) DFG of F = 3A(B + 2C).

To illustrate the concept of functional-level transformations

supported by TED, consider a simple computation F =
3A(B+2C), whose TED is shown in Fig. 1(a). Solid edges in

the graph correspond to multiplications, dotted edges represent

additions, weights on edges represent constant multiplications,

and node ONE is a multiplication by 1. Because of the canon-

ical nature of a TED (for a given variable order, in this case

A,B,C) the function encoded in the TED can be interpreted

as F = 3A(B + 2C), which requires two multiplications,

one addition and one shift. Fig. 1(b) shows a DFG obtained

from this TED by performing TED decomposition under this

variable order.

DFG Generation: In general, an ordered, minimized TED

can be converted to a DFG with a minimum number of

arithmetic operations by means of functional decomposition of

the TED [8] involving factorization and common subexpres-

sion elimination (CSE). The arithmetic expression obtained by

such a decomposition, called Normal Factored Form (NFF), is

unique and minimal (in the number of arithmetic operators) for

a TED with a fixed variable order. The normal factored form

for the TED in Fig. 1 is F = 3A(B+2C). A structural DFG

representation can then be readily constructed by replacing

the arithmetic operations (additions and multiplications) with

hardware operators, ADD and MULT, as shown in Fig. 1(b).

It should be noted that, unlike NFF, the DFG representation

is not unique. While the number of operations remains fixed, a

DFG can be further restructured and/or balanced to minimize

latency. This offers an additional potential for optimization in

which the best DFG can be constructed, depending on the

required cost function, be it resource optimization, latency

optimization, or an optimization under resource or latency con-

straints. Several methods employed by logic and HLS can be

used for this purpose [9]. In addition, constant multiplications

can be replaced by shifters and adders [8].

DFG Selection and Optimization: While TED decompo-

sition minimizes the total number of arithmetic operations in

the resulting normal factored form (and in the corresponding

DFG), it does not address the issue of optimizing the final

hardware implementation. Specifically, it does not minimize

the number of hardware resources (adders and multipliers)

actually used in the final, scheduled implementation; nei-

ther does it minimize the latency of the design. Such an

optimization is only possible by performing scheduling and

resource allocation on the structural level for the selected

DFG. That is, the usage of the operators and the resulting

design latency depends on the scheduling and allocation steps

of the subsequent high level synthesis that has not been

considered during the TED decomposition.

For the TED-based decomposition to be practical, it must

gain insight into the construction of an actual DFG from the

resulting NFF. It can then choose the structure which requires

fewer resources (to minimize area) or provides more hardware

parallelism (to minimize latency). The enhancements applied

to the TED decomposition to address this issue include: 1)

hashing all the extracted terms to avoid resource replication; 2)

modifying the factorization and extraction methods to extract

the minimum clique partitioning; and 3) forcing all irreducible

TEDs to become reducible through a guided variable ordering

according to the selected optimization goal.

A. TED-based Decomposition System (TDS)

A guided TED-based decomposition provides a means for

effective design space exploration. This idea is illustrated in

Fig. 2. In a traditional synthesis flow, a single DFG is extracted

from an initial (functional) specification and used as input

to high-level synthesis to generate the final hardware imple-

mentation. Optimization of the resulting implementation is

therefore limited to local modifications between the solutions

that are obtainable from only that DFG.

Fig. 2. Space exploration with TDS.

Fig. 2 shows a set of such solutions, each represented as

a cone associated with a DFG. To improve the solution, an

attempt can be made to transform the DFG into another DFG.

However, such a transformation, if at all possible, is limited

to a set of structural modifications of the graph, such as tree

height reduction and balancing, which are limited in scope.

In contrast, transformation of the functional specification,

obtained by means of TED decomposition, can produce a

family of functionally equivalent DFGs. One such DFG can

be selected on the basis of a given objective and design

constraints to generate the final hardware implementation.

This approach has been implemented in a system called

TDS [8], which transforms the function extracted from a

design specification into a TED and uses a host of TED-based

decomposition and DFG optimization techniques to obtain an

optimized DFG; it then passes the modified DFG to a high

level synthesis tool, in this case GAUT. The TDS system has

been used as a framework for design latency optimization for

FPGA designs, which is described in the remainder of the

paper.

IV. SYSTEM LEVEL EXPLORATION

Although the TED data structure encodes a functional

representation of the design, it provides limited structural

information necessary for final implementation. Therefore, it is

difficult to directly use a TED graph to characterize important

structural design properties, such as the complexity of the

steering logic, the number of multiplexers, or the amount of

resources required by the control unit.

In this work, a pseudo critical path discovery algorithm is

implemented and used to partition the TED into two clusters.

One cluster targets latency minimization and the other targets

area minimization. Then we use the resource usage in each

cluster as a cost function to guide the TED space exploration.

The overall objective of this approach is to reduce the number

of iterations between the TED decomposition and high level

synthesis by pruning those solutions that are not likely to

improve the design latency obtained after FPGA place and

route.

Estimating resource usage within the TED: The as soon

as possible (ASAP) and as late as possible (ALAP) schedules

derived as a bi-product of TED decomposition, which involves

factorization and common subexpression elimination, give an

early estimate of the resource requirements of a decomposed

TED. For example, the TED shown in Fig. 3(a) is decomposed

into a set of product terms (PT) and sum terms (ST), as

shown in Fig. 3(b). The resulting structure is then balanced

hiearchically to minimize the delay of the DFG generated

from this TED. Specifically, each term can be implemented

as a balanced tree to minimize its contribution to the overall

latency, and the higher level structure composed of nodes PT 1
and ST 1 can then be implemented as a balanced tree, while

considering the internal path delay imposed by each of its

terms. Furthermore, when subtrees have different path delays,

the slack (obtained from the ASAP and ALAP schedules) is

used to reduce the resource requirements of the tree with the

smallest path delay.

For example, the sum term depicted at the left in Fig.

3(c) by a balanced tree seems to imply that two adders are

required, but when the delay of the operators are considered,

the slack between both trees can be used to reduce the resource

requirement. Assuming that the MULT operator has a delay

of 2 and the ADD operator has a delay of 1, the delays of the

sum and product term are 3 and 4, respectively. Therefore, it

is possible to accommodate one more addition in the adder

tree or delay one of its operations by one cycle, thus reducing

the total number of adders in the scheduled design to 1.

Computing the critical path delay from a TED: Since

a TED is an acyclic graph, its critical path delay can be

found in O(n + e), where n and e denote the number of

nodes and edges in the TED. The critical path delay algorithm

traverses all nodes of the TED and computes the height of the

F

xin

a 1

^ 3

a 2

ONE

2a 3

a 4

F

PT1

ST1

PT1

xin[1]

xin[2]

ST1

a 1

ONE

2

a 2

a 3

a 4

xin[3]

(a) (b)

a 1

+

+

a 2

+

a 4

+

a 3

*

xin

*

*

ass ign

F

(c)

Fig. 3. (a) Initial TED for the function F = x
3

in(2a1 + a2 + a3 +
a4). (b) Decomposed TED with a product and a sum term, PT1 and
ST1. (c) Resulting netlist (DFG) with latency equal to 3 MULT and
a resource requirement of 1 MULT and 1 ADD.

adder tree formed by the incoming edges of a node. When

an edge connecting a node to its children contains a register,

the height contributed by that child is assigned 0 as if it

were a primary input. Another special case arises when a

node belongs to a multiplicative or an additive chain. In this

case, the height is not computed immediately but postponed

until the entire chain is discovered, at which point the local

height is adjusted accordingly. The critical path computation

obtained from the TED helps generate an initial clustering for

target optimizations. Critical paths are considered for delay

minimization and paths with slack are considered for area

minimization. The clustering is dynamically updated because

the discovered critical path delay assumes unlimited resources

and, hence, some misclassification is bound to occur.

Iterative high level synthesis: It is fair to say that, when

targeting FPGAs, the area and delay results obtained during

high level synthesis can be far from accurate. Even though

these metrics could be somewhat improved by logic synthesis

tools, interconnect might ultimately be the principal cause of

delay in an FPGA design. We use multiple iterations of sim-

plified high-level synthesis operations to explore architectures

that improve the design latency after mapping and routing the

design into an FPGA. We use the metrics derived from the

TED not to discover the best solution, but rather to prune the

search.

The following design written in C is used as an example to

demonstrate the core procedure of the iterative synthesis.

main(int a, int b, int c, int * out) {

const static int mem[5];

int pathr, path4, path5;

int path1 = a+b+mem[0];

int path2 = b*mem[1]*c*a;

if (path1>path2) path4 = path1;

else path4 = path2;

int path3 = path2*mem[2];

if (path2<path3) path5 = pathr;

else path5 = path3;

pathr = path2;

out = path4(mem[2]+b) + mem[3]*path5;

}

The high level synthesis tool, GAUT, first compiles the

C code with a modified gcc compiler into a control data

flow graph (CDFG). The obtained CDFG, shown in Fig. 4(a),

expresses all the operations specified in the original code. The

CDFG is then transformed through scheduling, allocation and

binding into an architecture as shown in Fig. 4(b).

a

* +

m e m _ 1

*

b

+

+

*

c

g t m u x*

l tmux

ass ign

m e m _ 0

*

m e m _ 2

+

p a t h r

*

m e m _ 3

wire

o u t

loopback

p a t h r

(a)

1 +

R
E

G
5

2 X

1 x

R
E

G
3

R
E

G
1

R
E

G
2

R

E
G

0

>

<

R
E

G
4

R
E

G
6

(b)

Fig. 4. (a) The CDFG netlist generated by GAUT from the C design.
(b) The original datapath architecture generated from the CDFG.

The list scheduler of GAUT prioritizes the set of operations

to be executed next according to the arrival and required

completion times. When more than one operation of the same

type needs to be completed at a certain time, the scheduler in-

stantiates another resource of that type. The resource allocation

and binding then establishes which operations are performed

in which hardware resource, which in turn determines how

many registers will be needed to store the partial computations

throughout the data flow. The number of multiplexers gener-

ated when connecting the registers to and from the operator

ports is optimized [7]. These steps are performed in a loop

which includes TED restructuring to determine the lowest

latency design. In the loop, GAUT uses the target design

latency (clock period × number of clock cycles) and clock

period of the design to determine the number of cycles that

the scheduler can use. If the scheduler cannot reach the target

latency, regardless of the number of instantiated resources, the

synthesis process fails to successfully complete the schedule

for that TED and further TED restructuring can be considered.

Design
GAUT Quartus II

Cycles Mux Reg Area + × LUTs FFs Freq (MHz) Des. Lat. (ms)

Orig. design 14 96 7 208 1 2 533 126 159.5 87.8

Restr. design 11 128 6 208 1 2 528 107 160.6 68.5

TABLE I
GAUT AND QUARTUS II REPORT FOR THE ORIGINAL DFG (FIG.

4(B)) AND THE RESTRUCTURED DESIGN (FIG. 5(B))

The results reported by GAUT (high-level synthesis) and

Quartus II (logic synthesis, place and route) for the original

design in Fig. 4 are shown in Table I. The design latency

corresponds to the clock period obtained by Quartus multiplied

by the number of cycles scheduled by GAUT. It is important

to note in Table I that two multipliers are instantiated and that

for the given original CDFG, GAUT cannot generate any other

architecture which results in fewer clock cycles. Additionally,

note that the second multiplier instantiated by GAUT, in the

datapath architecture shown in Fig. 4(b), has no multiplexer at

its input ports, because the second multiplier was instantiated

by the scheduler after other multiplications have already been

scheduled on the other multiplier. The key idea, therefore, is

to restructure segments of the CDFG that could benefit from

this second instance to reduce the number of clock cycles and

the overall design latency.

The CDFG shown in Fig. 4(a) is imported into the TDS

system, and the different algebraic paths in the CDFG are

translated into multiple TEDs. Each extracted CDFG path

becomes a TED output, which can be classified by its critical

path delay. Each TED variable has an associated initial arrival

time that is used to compose a more suitable CDFG to reduce

design latency. After performing TED optimizations in an

attempt to reduce resource requirements, the cost of the new

CDFG is evaluated using GAUT. The annealing algorithm

accepts and rejects the new costs which calibrates the window

size into which a TED performs reordering and decomposition.

For example, Fig. 5(a) shows an improved CDFG and the

corresponding architecture is shown in Fig. 5(b). This new

design requires fewer cycles to complete the computation and

improves the design latency of the overall design, as shown

in Table I.

m e m [3]

*

m e m [1]

*

a

+

*

b

*

*

c

*

l tmux

g t m u x ass ign

m e m [2]

*

p a t h r

+

m e m [0]

+

+

wire

o u t

loopback

p a t h r

(a)

>

R
E

G
5

2 x

R
E

G
4

 +

R
E

G
2

 <

R
E

G
1

1 x

R
E

G
0

R

E
G

3

(b)

Fig. 5. (a) Reduced latency CDFG obtained after TED manipula-
tions. (b) Datapath for the optimized CDFG.

V. EXPERIMENTAL RESULTS

We have successfully integrated the TDS, GAUT, and Quar-

tus system and applied it to a series of DSP algorithms [10]. As

mentioned in the previous section, TDS and GAUT are used

in a simulated annealing loop where GAUT provides design

latency estimates. Each iteration of the annealing algorithm

includes a TED reordering operation and TED-based decom-

position based on paths with critical delay. Non-critical paths

are transformed to minimize area. Then, the GAUT tool is used

to generate a datapath and get an estimated hardware cost. As

the temperature in the annealing algorithm decreases, the TED-

based decomposition and TED-to-DFG transformation options

are gradually reduced to those that provide the best results for

the current design. The final, best result is output by GAUT

in VHDL and run through Altera Quartus synthesis, place and

route to validate the improvements reported by GAUT. For

each benchmark, we used the smallest Stratix II device that

would fit the design. The Quartus II tool was set to maximum

effort in all cases with an unreachable target clock frequency

of 1 GHz. DSP block extraction and automated shift register

chain insertion was turned off.

Table II illustrates the results obtained using our approach.

Execution times include both the time required by TED

exploration and the time consumed by GAUT. The GAUT

tool has been used in a number of academic projects and its

HLS algorithms for binding, allocation, and scheduling are

well documented [3]. The column named original corresponds

to results obtained by processing the original design CDFGs

with GAUT and Quartus without TED manipulation. The

column named TDS corresponds to the results obtained from

optimizing the TEDs. The results in the table indicate that our

goal of reducing design latency (labelled latency in the table)

has been achieved. Overall, the average design latency has

been reduced by about 22% versus GAUT synthesis without

TED manipulation. This latency decrease caused an average

lookup table (LUT) increase of 10.1%. In all cases, design

frequency improved. The worst case TDS/GAUT execution

time across all designs was 154 seconds, a small value in

comparison to the half hour Quartus compile times.

VI. CONCLUSIONS

In this paper a new FPGA design latency optimization tool

has been demonstrated. Our system uses TEDs to restructure

dataflow graphs and a high-level synthesis tool to quickly

evaluate the datapath design space at a behavioral level. HLS

passes are used in a loop with TED restructuring to fully

explore the design space. Once a final DFG is selected, GAUT

performs a final HLS pass and the resulting design is sent to

FPGA physical design tools for final implementation. For a

collection of benchmark designs our approach shows a 22%

reduction in design latency versus the direct use of HLS

binding, allocation, and scheduling on an unmodified graph.

In the future, further operations at the HLS level could be used

to guide TED manipulation.

VII. ACKNOWLEDGEMENT

This work has been supported in part by a grant from the

National Science Foundation, award CCF-0702506.

REFERENCES

[1] D. Chen and J. Cong, “Register binding and port assignment for
multiplexer optimization,” in Proc., Asia and South Pacific Design

Automation Conference, Jan. 2004, pp. 68–73.
[2] J. Cong and J. Xu, “Simultaneous FU and register binding based on

network flow method,” in Proc., IEEE/ACM Design and Test in Europe

Conference, Mar. 2008, pp. 1057–1062.
[3] P. Coussy, et al., “GAUT: A High-Level Synthesis Tool for DSP

Applications,” High-Level Synthesis: From Algorithm to Digital Circuits,
Springer, Berlin, Germany, 2008.

[4] S.-H. Huang and C.-H. Cheng, “Minimum-period register binding,”
IEEE Trans. on Computer Aided Design of Integrated Circuits and

Systems, vol. 28, no. 8, pp. 1265–1269, Aug. 2009.
[5] J. Cong, B. Liu, and J. Xu, “Coordinated resource optimization in

behavioral synthesis,” in Proc., IEEE/ACM Design and Test in Europe

Conference, Mar. 2010, pp. 1267–1272.
[6] T. Kim and X. Liu, “A functional unit and register binding algorithm

for interconnect reduction,” IEEE Trans. on Computer Aided Design of

Integrated Circuits and Systems, vol. 29, no. 4, pp. 641–646, Apr. 2010.
[7] D. Chen, et al., “LOPASS: a low-power architectural synthesis system

for FPGAs with interconnect estimation and optimization,” IEEE Trans.

on VLSI Systems, vol. 18, no. 4, pp. 564–577, Apr. 2010.
[8] M. Ciesielski, D. Gomez-Prado, Q. Ren, J. Guillot, and E. Boutillon,

“Optimization of data-flow computation using canonical TED represen-
tation,” IEEE Trans. on Computer Aided Design of Integrated Circuits

and Systems, vol. 28, no. 9, pp. 1321–1333, Sept. 2009.
[9] G. DeMicheli, Synthesis and Optimization of Digital Circuits. New

York, N.Y.: McGraw-Hill, Inc., 1994.
[10] K. Parhi, VLSI Digital Signal Processing Systems. New York, N.Y.:

John Wiley & Sons, Inc., 1999.

Design Original TDS %∆

co
nv

3
x
3

G
A

U
T

Cycles 12 9 -25.0
Registers 145 260
Muxes 240 160
Hw +,-,×,≪ 48,-,64,- 80,-108,-

Q
u
ar

tu
s Freq (MHz) 37.1 38.3

LUTs 15139 13292 -12.2
FFs 2332 4033
Latency (ms) 324 235 -27.3
Time (s) 154

C
o
o
k
to

m

G
A

U
T

Cycles 9 8 -11.0
Register 12 18
Muxes 256 256
Hw +,-,×,≪ -,3,1,2 -,3,1,2

Q
u
ar

tu
s Freq (MHz) 163.4 181.7

LUTs 247 218 -11.7
FFs 197 303
Latency (ms) 55 44 -20.0
Time (s) 7

L
at

ti
ce G

A
U

T

Cycles 15 13 -13.9
Register 13 12
Muxes 208 272
Hw +,-,×,≪ 2,-,4,- 2,-,4,-

Q
u
ar

tu
s Freq (MHz) 150.0 151.0

LUTs 592 359 -39.4
FFs 223 325
Latency (ms) 100 86 -13.9
Time (s) 11

P
ro

d
m

at

G
A

U
T

Cycles 8 6 -25.0
Register 180 288
Muxes 128 64
Hw +,-,×,≪ 28,-,54,- 72,-,216,-

Q
u
ar

tu
s Freq (MHz) 122.3 224.0

LUTs 2693 7349 173.0
FFs 1448 2310
Latency (ms) 65 27 -59.1
Time (s) 109

S
o
b
el G

A
U

T

Cycles 13 13 0.0
Register 203 204
Muxes 544 448
Hw +,-,×,≪ 17,30,-,15 28,30,-,-

Q
u
ar

tu
s Freq (MHz) 135.5 144.2

LUTs 7386 7708 4.4
Registers 3231 3277
Latency (ms) 96 90 -6.1
Time (s) 89

V
o
lt

er
ra

G
A

U
T

Cycles 19 17 -10.5
Register 13 18
Muxes 288 400
Hw +,-,×,≪ 1,-,4,- 1,-,2,3

Q
u
ar

tu
s Freq (MHz) 138.0 138.8

LUTs 463 502 8.4
Registers 227 289
Latency (ms) 138 123 -11.0
Time (s) 21

W
in

o
g
ra

d

G
A

U
T

Cycles 9 9 0.0
Register 11 11
Muxes 208 192
Hw +,-,×,≪ 2,1,3,1 3,1,4,1

Q
u
ar

tu
s Freq (MHz) 270.0 278.6

LUTs 183 248 35.0
FFs 119 138
Latency (ms) 33 32 -3.1
Time (s) 9

Geomean Freq 127.9 144.4 12.9
Geomean LUTs 1207 1329 10.1

Geomean FFs 537 739 37.4
Geomean Design Latency 90 70 -22.6

TABLE II
TABLE OF RESULTS FOR OPTIMIZED AND ORIGINAL DFGS. TIME

(S) INDICATES THE RUN TIME OF THE TDS/GAUT ANNEALING

LOOP. LATENCY (MS) INDICATED THE DESIGN LATENCY OF THE

FINAL DESIGN.

