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Abstract—A power delivery system for implantable biosensors
is presented. The system, embedded into a skin patch and
located directly over the implantation area, is able to transfer
up to 15 mW wirelessly through the body tissues by means of
an inductive link. The inductive link is also used to achieve
bidirectional data communication with the implanted device.
Downlink communication (ASK) is performed at 100 kbps;
uplink communication (LSK) is performed at 66.6 kbps. The
received power is managed by an integrated system including a
voltage rectifier, an amplitude demodulator and a load modulator.
The power management system is presented and evaluated by
means of simulations.

Index Terms—Remote powering, inductive link, energy har-
vesting, implantable biosensors, lactate measurement.

I. INTRODUCTION

The research field of implantable biosensors has attracted
the interest of academia and industry in the last two decades.
The possibility of continuous monitoring of the human body
from inside is an opportunity to better understand the ways
the body works and paves the way to a large number of
applications.

As an example, the continuous monitoring of the glucose
level in the subcutaneous interstitial fluids is an important
aid to those patients who suffer from diabetes. By using
implantable sensors located in the subcutaneous zones, the
percentage of glucose in the blood (glycemia) can be recorded
and analyzed [1]. Thus, periodic and disturbing blood sam-
pling can be avoided. Lactate can also be monitored by means
of subcutaneous sensors [2]. The lactate concentration in the
blood (lactatemia) or interstitial tissues in muscle can be
recorded to monitor the muscular effort in sportsmen or people
under rehabilitation. Finally, many other human metabolites
can be detected with subcutaneous biosensors [3].

Several key challenges must be addressed to realize these
scenarios [4]: implantable biosensors should be minimally
invasive, completely biocompatible, highly reliable, and with
a low thermal dissipation. Security and privacy should be pro-
vided during data transmission. Finally, large power autonomy
should be ensured. This last requirement must be carefully
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considered, since the performance and the invasivity of an
implantable sensor strongly depend by the battery size and
the battery lifetime.

Modern batteries have increased capabilities with respect
to those available in the past. As an example, lithium-ion
batteries have reached a high level of energy density (up
to 0.2 Wh/g) and can maintain an almost constant voltage
until they are discharged to 75%-80% [S]. Furthermore, thin-
film rechargeable batteries can sensibly reduce the size of
battery-powered devices [6]. However, even with an improved
energy density, batteries still represent a bottleneck in the
miniaturization of implantable sensors. Moreover, substituting
the battery can cause discomfort to the patient.

Energy harvesting techniques exploit natural and/or artificial
power sources surrounding the person to assist the implanted
batteries, to recharge them and in certain cases replace them.
A review of the most popular harvesting techniques for im-
plantable sensor can be found in [7].

Remote powering through inductive link is a well known
method of delivering power to an implanted device. In such
a technique, a current flowing through an external inductor
(transmitter) induces a current through one or more implanted
inductors (receiver); thus, power is transmitted wirelessly
through the body tissues. Several solutions have been proposed
in the literature [8—17]. Commercial devices exploiting induc-
tive links for the remote powering of implantable systems al-
ready reached the market [18]. However, the wearability of the
power transmitter (delivery module) and the miniaturization of
the implanted receiver (delivery and management modules) is
still an open research topic.

Inductive links are also used to perform bidirectional data
communication with the implanted devices [8,12,13,15].
Downlink communication (from the external transmitter to the
implanted device) can be obtained by modulating the power
carrier generated by the transmitter. Uplink communication
(from the implanted device to the external transmitter) can be
obtained by modulating the load of the receiving inductor; this
modulation is detected as a change of current flowing through
the external inductor. Thus, no implanted RF transmitter is
needed.

The focus of this paper is on the power delivery and power
management. A target device for metabolite measurement
is reported in Section II. Section III describes the system
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Schematic view of the implantable system and the power delivery

designed to remotely power the target device. The electronics
to manage the received power and to efficiently store it is
presented in Section IV. Finally, Section V concludes the

paper.
II. TARGET DEVICE

A. System Description

In this section a metabolite sensor and the integrated circuit
to perform metabolite measurements are presented. A diagram
of the system is shown in Fig. 1. The main blocks of the
implantable device are the biosensor, the electronic interface,
the power management module, and the receiving inductor.

The biosensor consists of an electrochemical cell with three
electrodes (Fig. 2). In order to measure the metabolite con-
centration, a fixed voltage V (oxidation potential) is applied
between working electrode (WE) and reference electrode (RE).
As aresult, a current flows between the working electrode and
the counter electrode (CE) due to the metabolite oxidation. To
increase the biosensor selectivity to a specific target, different
enzymes can be immobilized on the surface of the working
electrode [19].

A main issue of metabolite biosensors is the lack of stability.
Moreover, the sensor parameters are strongly affected by the
immobilization method of the enzyme onto the electrode. Pre-
vious works have investigated the use of multi-walled carbon
nanotubes (MWCNTs) to immobilize the enzyme onto the
electrodes [20, 21]. The enhanced adhesion, due to MWCNTs,
improves the performance of the sensor [20].

B. Circuit Design

An electronic interface (EI) is designed to perform elec-
trochemical measurements of lactate with the three-electrode
configuration of Fig. 2. The EI, reported in Fig. 3, includes
the potentiostat, the readout circuit, the reference voltage
generators and the ADC.

The potentiostat consists of OPAMPs OP; and OP5, to-
gether with transistors MPy and MP,. It applies a fixed
voltage of 650 mV (oxidation potential of several metabolites,
including glucose and lactate) between WE and RE.

The readout circuit consists of current mirrors and a resistor
to generate a copy of the cell current Iywg. The copied current
is then converted into a voltage and measured, while providing
isolation for the sensor current Iywg. The potentiostat and the
readout circuit are fabricated in 0.18 um CMOS technology
and consume 45 pA with a supply voltage of 1.8 V.

Fig. 2. Three-electrode electrochemical cell and measurement set-up.
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Fig. 3. Electronic interface for metabolite measurement.

Two bandgap reference circuits are designed to generate
a voltage of 650 mV between WE and RE. That voltage
is independent from temperature and supply. A voltage of
550 mV is applied to the RE by means of a sub-1V bandgap
reference [22]; a voltage of 1.2V is applied to the WE by
means of a regular bandgap reference. Thus, 650 mV are
measured between WE and RE.

An ADC is designed to digitize the output voltage of the
readout circuit. The current range and the sensitivity of the
biosensor depends on the geometry of the electrodes and the
enzyme used [3,21]. In this work, the maximum value of Iwg
is set to 4 uA and the current resolution is set to 250 pA,
in order to be compliant with a wide range of sensors with
different geometries and enzymes. To digitize 4 pA with the
resolution of 250 pA, a 14-bit ADC is required. The designed
ADC is a second order sigma-delta, implemented in 0.18 pm
CMOS technology. The area of the ADC and the bandgap
reference is 0.3 mm?. The simulated current consumption is
240 pA with a supply voltage of 1.8 V.

C. Measurement Results

The potentiostat and the readout circuit in Fig. 3 are used
to measure lactate concentration. Two different enzymes are
immobilized on the screen printed electrodes: commercial
(cLODx) and wild type (wtLODx). MWCNTs are used to
enhance the performance of the sensor. The measured char-
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Fig. 4. Lactate measurement using the potentiostat and the readout circuit
reported in Fig. 3.

acteristic is shown in Fig. 4. The results are in agreement
with those obtained with a commercial potentiostat. A detailed
discussion can be found in [23].

III. POWER DELIVERY

In this section is described the device to deliver power to
the target sensor presented in Section II. Further details can be
found in [24]. The system, named IronIC patch, is designed
to be embedded into a skin patch and placed directly over
the implantation zones. Designed on a flexible substrate, the
device can be used on concave or convex parts of the body
(Fig. 5).

A. System Description

A schematic description of the patch is given in Fig. 6,
from [24]. Power is transmitted to the implanted system
by driving the transmitting inductor with a class-E power
amplifier. Amplifiers in class-E are commonly used to drive
inductive links due to the high efficiency, theoretically equal
to 100% [25-27]. Indeed, by properly tuning the amplifier
capacitors Cs and Cy, the current and the voltage across the
switch My are never non-zero at the same time. In this design,
the amplifier is driven by a 5 MHz square waveform with duty
cycle 50%.

Downlink communication is achieved by modulating the
amplitude of the current flowing on the transmitting inductor
Lo. Amplitude modulation (Amplitude Shift Keying - ASK)
is a common approach when no high data-rates are required.
Indeed, it noticeably simplifies the design of the embedded
demodulator. The modulating signal is a bitstream generated
by the microcontroller. The bit-rate is set to 100 kbps. Mod-
ulation depth is determined by the ratio between resistors R
and Rg.

Uplink communication is achieved by modulating the load
of the receiving inductor and detecting that modulation on the
supply current of the class-E amplifier (Load Shift Keying -
LSK). To demodulate an uplink bitstream, the voltage drop
across Ry is digitized and analyzed by the microcontroller. A
high voltage drop, due to a high current, is detected when the
receiving inductor is not short-circuited; a low voltage drop,
due to a low current, is detected when the receiving inductor

Fig. 5.
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Fig. 7. The implanted sensor receives power and data from the external device
(transmitter patch). The transmitter performs long-range communication with
remote devices by means of bluetooth.

is short-circuited. Uplink bit-rate is set to 66.6 kbps. This
value is slightly lower than the downlink bit-rate due to the
computational time required to perform a real-time threshold
check between high and low current values.

The whole system (amplifier, modulator, and demodulator)
can be driven by a remote device, such as a laptop or a
smartphone, by means of bluetooth connection. Moreover,
acquired data are transmitted to the user by means of the
bluetooth link.

B. System Performance

The system described is tested in air by using an
8-layer, 14-turn receiving inductor, having volume
38 x 2 x 0.544 mm3 [24]. Further details on the fabrication
of the receiving inductor can be found in [28].

The received power, within a distance of 6 mm between the
inductors, is 15 mW. This value corresponds to the maximum
transmitted power. The transmitted power can be decreased
by properly tuning the class-E amplifier if a lower value is
required by the implantable sensor. Measurements have been
performed by using a beef sirloin between the inductors to
emulate the presence of biological tissues. While a 17 mm
thick slice of sirloin is placed between the coils, the transferred
power is 1.17 mW. This value is similar to that obtained in
air, where the distance between the coils is set to 17 mm.

While the patch is disconnected by the bluetooth and it is not
sending power, the estimated battery duration is about 10 h.
This value decreases when the system is connected to a remote
device, such as a laptop or a smartphone. In that case, the
estimated battery duration is about 3.5 h. While disconnected
from the bluetooth, the patch can send power continuously for
1.5 h.

IV. POWER MANAGEMENT

In order to use the power delivered by the receiving inductor,
the implantable sensor must be equipped with a voltage
rectifier and a low-dropout regulator. Moreover, an amplitude
demodulator and a load modulator are needed to enable the
downlink and the uplink communications, respectively. These
circuits (rectifier, regulator, amplitude demodulator, and load
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Fig. 8. Schematic of the voltage rectifier and the load modulation unit.

modulator) should be integrated within the sensor to provide
a stable supply voltage and perform bidirectional, short-range
communication.

In this section we describe the design of a power manage-
ment module including voltage rectifier, ASK demodulator and
LSK modulator. The module is designed in 0.18 pm CMOS
technology. A schematic view of the power management
module is shown in Fig. 7.

A. Voltage Rectifier and Load Modulator

The schematic of the voltage rectifier is reported in Fig. 8§,
together with the load modulation unit. At the beginning of
the operations, when no power is transmitted and the output
capacitor is discharged, switch M; is open and switch M,
is closed. Thus, the equivalent circuit is an half-wave rectifier
with four clamping diodes to prevent overvoltage of the output
(Vo < 3V). That configuration remains unchanged when
capacitor C, is charged and a stable supply voltage is provided
on-chip.

Load modulation is performed by switching the transistor
M; at the input of the rectifier according to the uplink
bitstream V,,. When a low logic value is transmitted, the
switch M, is closed and short-circuits the input of the rectifier;
thus, no power is delivered to the load. To avoid the discharge
of C, due to the leakage current of the clamping diodes, switch
M, is kept open when a low logic value is transmitted.

To prevent the latch-up of M; when the input voltage V; has
negative values, its bulk is not connected to ground. Transistor
M, and M, are used to bias the bulk of M; to the lowest
between drain and source voltages. To realize such circuit, the
bulks of M;, M,, and M}, are fabricated within a separate
n-well (triple well).

B. Amplitude Demodulator

As previously said, the power management module is
equipped with an embedded ASK demodulator to read
downlink bitstreams transmitted by the external patch. The
schematic of the demodulator is reported in Fig. 9.

The circuit is driven by a two-phase non-overlapping clock
signal (p; and ¢, in Fig. 9). While signal ¢; is high, the
equivalent circuit is the one reported in Fig. 10a. Capacitor Cs
is charged to the amplitude of the sinusoidal signal V; through
the switch M;(. Diodes Dg, D7 and Dg prevent the discharge.
The voltage across Cs is read as a logic value by inverters I3
and I4. During this phase, capacitor C; is discharged.
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Fig. 9. Schematic of the amplitude demodulator. The circuit is driven by a
two-phase non overlapping clock signal (¢1 and ¢2).
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When signal @5 is high, the equivalent circuit is the one
reported in Fig. 10b. Capacitor C;, previously discharged,
forces a zero voltage between gate and source of M. Thus,
switch M is open disregarding the value of V;. During this
phase, capacitor Cs is discharged and the output of inverters
I3 and I is neglected.

Similarly to what happens with transistor M; of the rectifier
(Fig. 8), a sub-circuit is included to bias the bulk of M;q and
prevent latch-up.

C. Simulations

The power management module is simulated to check the
performance. While receiving or transmitting a bitstream, the
sensor is assumed in low power mode, with a maximum
current consumption of about 350 pA; while performing a
measurement, the sensor is assumed in high power mode,
with a maximum current consumption of about 1.3 mA. These
power consumptions are much higher than those previously
reported. However, a worst scenario is assumed to check
the capability of the power module to operate with more
power-demanding sensors. In this set of simulations the power

delivered from the receiving inductor to a matched load is
equal to 5 mW. This value decreases while downlink commu-
nication is performed. While transmitting a high logic value
the transferred power is about 3 mW; while transmitting a
low logic value the transferred power is about 1 mW. These
values have been measured with the external patch described in
Section III within a distance of 10 mm between the inductors.

A purely capacitive matching network (Cs and Cp in
Fig. 7) is used between the receiving inductor and the input
of the rectifier to have impedance matching. Due to the
non-linearity of the rectifier, it is not possible to define a
linear input impedance for that block. Thus, simulations have
been performed to determine an average value for the input
impedance of the rectifier. With the data just introduced, the
average input impedance of the rectifier is about 150 €2. This
value is used to select capacitors Cp and Cp of the matching
network.

By considering the dropout voltage of the regulator equal
to 300 mV, the output voltage V, of the rectifier should
always be higher than 2.1 V to assure the correct functioning
of the sensor at 1.8 V. A simulation is performed to check
the behavior of the rectifier and the amplitude demodulator
(Fig. 11).

Capacitor C, is charged until it reaches a voltage of 2.75 V
at time 270 ps. Eighteen bits, with a bit-rate of 100 kbps,
are sent to the sensor by modulating the signal V; at time
300 ps. Those bits are correctly detected at the output Vgem
of the demodulator at every rising edge of the clock signal
(1. During the communication, the output voltage V, of the
rectifier never goes below 2.1 V. An uplink communication is
simulated at time 520 us. Several bits are sent with a bit-rate
of 100 kbps from the sensor to the external patch by short-
circuiting the input of the rectifier, according to signal V,
of Fig. 8. The effect of such modulation on the input voltage
V; is reported in Fig. 11. Similarly to what reported for the
downlink communication, the output voltage V,, of the rectifier
never goes below 2.1 V during the transmission.

V. CONCLUSIONS

A power delivery system for implantable sensors is pre-
sented. Power delivery and power management modules are
reported, together with a description of the implantable sensor
to be powered.

An external delivery device, embedded into a skin patch,
is able to transmit up to 15 mW through inductive link,
within a distance of 6 mm between the transmitting and the
receiving inductors. Downlink communication is performed
at 100 kbps with ASK modulation; uplink communication
is performed at 66 kbps with LSK modulation. Long range
communication with a remote device is enabled by a bluetooth
module embedded into the patch.

The power management module, including voltage rectifier,
amplitude demodulator, and load modulator is presented and
discussed by means of simulations. The design has been
fabricated in 0.18 pm CMOS technology. Future works will
involve the circuit characterization by means of measurements.
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