
Game-Theoretic Analysis of Decentralized Core
Allocation Schemes on Many-core Systems

Stefan Wildermann, Tobias Ziermann, Jürgen Teich
University of Erlangen-Nuremberg, Germany

{stefan.wildermann, tobias.ziermann, teich}@fau.de

Abstract—Many-core architectures used in embedded systems
will contain hundreds of processors in the near future. Already
now, it is necessary to study how to manage such systems when
dynamically scheduling applications with different phases of
parallelism and resource demands. A recent research area called
invasive computing proposes a decentralized workload manage-
ment scheme of such systems: applications may dynamically
claim additional processors during execution and release these
again, respectively. In this paper, we study how to apply the
concepts of invasive computing for realizing decentralized core
allocation schemes in homogeneous many-core systems with the
goal of maximizing the average speedup of running applications
at any point in time. A theoretical analysis based on game
theory shows that it is possible to define a core allocation scheme
that uses local information exchange between applications only,
but is still able to provably converge to optimal results. The
experimental evaluation demonstrates that this allocation scheme
reduces the overhead in terms of exchanged messages by up to
61.4% and even the convergence time by up to 13.4% compared to
an allocation scheme where all applications exchange information
globally with each other.

I. INTRODUCTION

Since 2003, the semiconductors’ trend of increasing the
clock frequency of processors has shifted towards increasing
the number of processing cores on single chips due to phys-
ical issues concerning heat, power consumption, and leakage
problems [1]. In a few years, many-core architectures will even
contain hundreds of processing elements [2]. The consequence
of this development is that it becomes more and more impor-
tant to exploit the parallelism inherent in applications as, e.g.,
known from signal and image processing, to achieve a speedup
in execution time. Only in this way, it is possible to cope with
the increasing complexity and computational requirements
of embedded systems with highly dynamic applications as,
e.g., smartphones and smart cameras. A further challenge is
that the workload is typically not fixed anymore and several
applications may be dynamically activated and concurrently
executed, requiring different amounts of processing cores. This
raises the question how to assign the available cores to the
parallelizable applications at any point in time? While the
single applications are competing for cores, one main objective
from the designer’s point-of-view is to provide a fair allocation
of cores to the competing applications such that their average
speedup is maximized. Also, as a side effect, this increases
the total system throughput as, e.g., signal/image processing
applications are typically executed periodically. Only run-time
management mechanisms are able to deal with such dynamic
scenarios in embedded many-core systems. For being able
to cope with hundreds or thousands of processors, it is also
necessary to consider the scalability.

A recent research area called invasive computing [3] inves-
tigates the question of how to provide decentralized manage-
ment schemes for future embedded many-core systems. The
basic idea is that an invasive application may dynamically
explore and automatically request a certain amount of pro-
cessing cores during its execution, and release them again
for processing software portions with a reduced degree of
parallelism. This is achieved through two basic programming
constructs called invade and retreat, respectively.

In this paper, standard game theory is applied to analyze
how these concepts may be applied to provide a decentralized
core allocation scheme for maximizing the average speedup
of multiple applications. For these theoretical results, we
focus first on homogeneous many-core systems. The analysis
shows that it is necessary to synchronize invade and retreat
requests of applications to enable the exchange of processing
cores. The applications provably converge to an optimal core
allocation when globally exchanging information. Our analysis
furthermore reveals that an allocation scheme can be obtained
that even then provably converges to optimal solutions when
information is only exchanged locally between applications
on adjacent processing cores. The results of the experimental
evaluation demonstrate that, by applying this local commu-
nication scheme, the number of exchanged messages and the
convergence time can be reduced considerably compared to
an allocation scheme where information is exchanged globally
between all applications. While the investigation is fairly mo-
tivated by invasive computing, the results are also applicable
for any other run-time management approach, e.g, relying on
multi agent systems (MASs).

II. RELATED WORK

For embedded systems which demand high scalability and
reliability, there are very good reasons (cf. [4]) to provide
decentralized system management instead of using a Central-
ized Manager (CM) which cares for application mapping: No
single point of failure, and avoiding to build up a hot-spot
and bottleneck at the processor running the CM. Moreover,
the communication and/or computation overhead required for
monitoring and managing the applications and the system
can be reduced. Consequently, several approaches have been
proposed for management of multi-processor systems based on
MASs. In [4], cluster agents are introduced which are respon-
sible for managing a sub-set (cluster) of processors. Whenever
an application is started, cluster agents can negotiate via global
agents to map this application and, if necessary, to rearrange
the clusters to meet the application’s execution constraints. The
authors of [5] provide a MAS approach tailored to the problem
of core allocation as considered in our paper. Here, an agent
will be spawned together with a newly started application.978-3-9815370-0-0/DATE13/©2013 EDAA

Then, the agent will claim cores and negotiate with agents
on neighbor cores to possibly gather further cores for then
executing the application. The authors provide a negotiation
protocol, which is then empirically evaluated via simulation.
However, the theoretical and experimental results of our paper
show that negotiation which is performed locally between
applications may result in sub-optimal core allocations.

The authors of [6] take a more formalized approach to
designing resource management mechanisms. They describe
the problem of resource allocation in reconfigurable multi-core
architectures as a minority game [7]. However, their purpose
is to provide an abstract model of the problem to empirically
evaluate their algorithm, instead of theoretically analyzing the
model with the goal to develop optimal strategies.

In contrast to the above works, this papers investigates
core allocation schemes for many-cores by using game theory.
This enables to establish a formal proof of sub-optimality
and optimality of the investigated allocation schemes. We
subsequently derive proper run-time core allocation schemes
based on these theoretical results.

III. PRELIMINARIES AND PROBLEM DEFINITION

For our theoretical analysis, a set of N applications is given,
where each application is uniquely identified by an integer
value i ∈ {1, ..., N}. When an application is started, it is
assigned to a single free core of the many-core system. Any
number of processing cores can be allocated to an application.
If the application is parallelizable, it can spread its workload
on allocated cores so that the time for executing the application
is assumed to decrease. Let Ti(n) denote the (expected)
execution time of application i when running on n cores. Then,
the speedup of execution is defined as

Si(n) = Ti(1)/Ti(n). (1)

The speedup gradient denotes the increase of speedup achiev-
able when increasing the number of allocated cores by one. It
is defined as

∆Si(n) =

{
Si(n)− Si(n− 1) if n > 0

0 else
. (2)

In standard speedup models, like the one proposed by
Downey [8], it holds that Si(0) = 0 and Si(1) = 1 and the
following properties hold:
• The gradient of the speedup function is limited to 0 ≤

∆Si(n) ≤ 1.
• The speedup function is monotonically increasing. How-

ever, its gradient is not increasing (no inflection point)
∆Si(n) ≤ ∆Si(n− 1).

According to [9], above assumptions also hold when including
parallelization overhead into the speedup model. For our anal-
ysis, we make some architectural assumptions: We consider
homogeneous many-core system with C ∈ N processing cores.
Moreover, applications use their allocated cores exclusively,
and are able to exchange messages with each other via ap-
propriate communication architectures like distributed shared
memory or network-on-chips.

A. Problem Definition

With this notation, it is now possible to formalize the core
allocation problem tackled in this paper.

Definition 1. A vector ~C = (C1, ..., CN)T is called a core
allocation and assigns each application i a number of cores

Ci. For a feasible core allocation,
N∑
i=1

Ci ≤ C must hold.

The goal is to provide a decentralized scheme for deter-
mining feasible core allocations that maximize the average
speedup of all N applications being executed. This objective
is expressed by

maximize η ·
N∑
i=1

Si(Ci), (3)

where the normalizing factor η = 1
N will be ignored in the

following.

B. Optimal Core Allocation
The sum of speedups in Eq. (3) can be rewritten equivalently

using the speedup gradients from Eq. (2) as follows:

Si(Ci) = ∆Si(Ci) + Si(Ci − 1)

= ∆Si(Ci) + ∆Si(Ci − 1) + Si(Ci − 2)

= ∆Si(Ci) + ∆Si(Ci − 1) + ...+ ∆Si(1) + 0

=

Ci∑
n=1

∆Si(n). (4)

Likewise, the overall sum of speedups can be rewritten by
using the gradients:

N∑
i=1

Si(Ci) =

N∑
i=1

Ci∑
n=1

∆Si(n). (5)

Now, it is possible to derive two important characteristics
of an optimal core allocation ~Copt = (Copt

1 , ..., Copt
N)T:

1) W.l.o.g it allocates exactly C cores1:
N∑
i=1

Copt
i = C. (6)

2) The sum of speedups of Eq. (5) can not be increased
when exchanging cores between applications. This can
be formalized according to

min
i=1,...,N

{∆Si(C
opt
i)} ≥ max

j=1,...,N
{∆Sj(C

opt
j + 1)}. (7)

meaning that the minimal speedup loss is equal or bigger
than the maximal speedup gain when cores would be
transferred between any applications.

C. Game-Theoretical Formulation of Core Allocation
In the following section, a game-theoretical formulation of

the decentralized core allocation problem is presented that
serves as a basis for subsequently being able to derive and
compare different strategies. In a fully decentralized system as
considered here, each application is assumed to request and
also allocate a number of cores by itself. In this case, each
application may be regarded as one player of a game with a
set of actions to allocate and deallocate cores. The outcome of

1Note that an application with Ci allocated cores does not necessarily have
to execute programs on each of these cores, particularly when ∆Si(Ci) = 0.
However, for our theoretical analysis, we assume that also allocated idle cores
are blocked for the other applications.

this game is a core allocation ~C. A player’s gain, called utility,
depends on this outcome and is defined by a utility function
ui(~C). The goal of each player is to maximize its utility.

IV. ANALYSIS OF THE LOCAL USAGE OF INVADE/RETREAT

In a game-theoretical formulation, the goal of optimizing
the average speedup can be expressed by the following utility
function:

ui(~C) =


∑

j∈Ni

Sj(Cj), if
N∑

k=1

Ck ≤ C

0, else
, (8)

where Ni denotes those applications that application i is aware
of. The utility shows that application i tries to maximize the
average speedup of all applications in this neighborhood, as
long as the amount of claimed cores stays within the number
C of available cores. Fig. 1 illustrates some neighborhood
relations: (a) in a purely local setup, each application is
only aware of itself. The neighborhood can be extended by
including neighborhood relations with more neighbors, cf.
(b) and (c). In a global setup, the neighborhood includes all
applications, cf. (d). Formally, the relations may be expressed
by a neighborhood graph G(V,E) where each application i is
represented by a vertex vi ∈ V and each undirected edge
(vi, vj) ∈ E specifies which applications vi and vj may
exchange information.

In the most basic form of the core allocation game, each
player, resp. application has the following options according
to the idea of invasive computing [3]:
• invade(n): try to allocate n additional cores.
• retreat(n): deallocate n claimed cores.
For the theoretical investigations, we analyze the equilib-

ria of this game. An equilibrium is reached, possibly after
repeatedly playing the game, when no player has any gain if
changing its strategy. Thus, equilibria represent the possible
outcomes of decentralized core allocation. In the following,
we focus on Nash equilibria of the game.

Definition 2. A core allocation game is in a Nash Equilibrium
iff the players have reached a core allocation ~C∗ for which it
holds that

ui(~C
∗
−i, Ci) ≤ ui(~C∗−i, C∗i), ∀Ci ∈ [0, C], ∀i, (9)

where ~C∗−i = (C∗1 , ..., C
∗
i−1, C

∗
i+1, ..., C

∗
N) contains the core

allocations of all applications except those of application i.

This definition states that a Nash equilibrium is an outcome
~C∗ of the game where no player achieves a better utility when
unilaterally choosing a different number of cores Ci 6= C∗i
while all other players j 6= i keep their cores C∗j .

Theorem 1. Not every equilibrium of the core allocation game
corresponds to an optimal core allocation ~Copt.

Proof: We will show that each core allocation ~C∗ with
N∑
j=1

C∗j = C is a Nash equilibrium. While the optimal core

allocation fulfills this condition, also does a multitude of sub-
optimal allocations. Thus, proving this statement suffices as
proof of the theorem as it shows that sub-optimal allocations
may also be equilibria of the game.

(a) none (b) chain (c) mesh (d) full
Fig. 1. Examples of possible topologies of neighborhood relations where
none, some, or all applications (vertices) exchange information with each other
(acc. to the edges).

Take any core allocation ~C∗ fulfilling this condition. We
will now analyze the change of each player’s utility, when
it chooses the action invade(n) or retreat(n), respec-
tively.

If player i chooses to play invade(n), it claims C∗i + n
cores. This means that

N∑
j=1

C∗j + n > C (10)

which is an infeasible core allocation and implies that utility
ui(~C

∗
−i, C

∗
i + n) = 0 < ui(~C

∗) according to Eq. (8).
If player i chooses to play retreat(n), it claims C∗i −n

cores. As the utility corresponds to the sum of speedups, we
get as a result

ui(~C
∗
−i, C

∗
i − n) =

∑
j∈Ni

Sj(C
∗
j)− (Si(C

∗
i)− Si(C

∗
i − n))︸ ︷︷ ︸

≥0

.

(11)
As the speedup is monotonously increasing, the decision of
reducing the number of cores also leads to no increase of the
utility so that ui(~C∗−i, C

∗
i − n) ≤ ui(~C∗−i, C∗i).

Thus, neither invade() nor retreat() improves the
utility.

In the following, we show that by extending the set of pos-
sible actions it is possible to reach and guarantee optimality.
The additional option is the following:
• transfer(n, j): specifies a synchronized

retreat/invade which basically means that the calling
player retreats from n cores while simultaneously player
j invades these n cores.

Optimality guarantees for this game, however, depend on the
neighborhood relations.

Theorem 2. When including option transfer(), each
outcome is optimal for neighborhood Ni = {1, 2, ..., N}, ∀i
(cf. Fig. 1 (d)). However, if ∃i for which Ni ⊂ {1, 2, ..., N}
(e.g., Fig. 1 (a)-(c)), results may also be sub-optimal.

Proof: Consider any core allocation ~C which is not
optimal. For such an allocation, we can conclude from Eq. (7)
that there is a ∆Si(Ci) and there is a ∆Sj(Cj + 1) for which
it holds that

∆Si(Ci) < ∆Sj(Cj + 1). (12)

• If the neighborhood of every player i is Ni =
{1, 2, ..., N}, player i playing transfer(1,j) results
in a sum of speedups as:

N∑
k∈Ni

Sk(Ck)︸ ︷︷ ︸
ui(~C)

+ ∆Sj(Cj + 1)−∆Si(Ci)︸ ︷︷ ︸
>0

> ui(~C).

(13)

1 / 1.5 / 2

1

3
2

4

1.9 / 2.7 / 3.0

2.9 / 3.8 / 4.1
1 / 1.9 / 2.7 0 / 1 / 1.3

0 / 1 / 1.3 0 / 1 / 1.3

-0.1 / -0.6

-0.7 / 0.0

-0.5 / 0.0

-0.7 / -0
.5 -0.2 / -0.5

-0.5 / -0.5

-0
.7

 /
-0

.7

-0.7 / -0.6-0.1 / -0.6 -0.7 / -0.6

0 / 1 / 1.3

-0.7 / -0
.7-0.2 / -0.6

-0.7 / -0.7

Fig. 2. Illustration of applications with neighborhood relations (indicated by
the edges). The labels at each vertex vi specify the speedup of the current
core allocation, as well as the speedup when allocating or deallocating a core
by giving Si(Ci − 1) / Si(Ci) / Si(Ci + 1). Each edge (vi, vj) is labeled
with ∆i→j / ∆i←j where ∆i→j and ∆i←j denote the speedup increase
when transferring one core from i to j and j to i, respectively.

This means that ~C 6= ~Copt is no Nash equilibrium.
• If, however, Ni ⊆ {1, ..., j − 1, j + 2, ...N}, player i is

not aware of j and will not play transfer(1,j). As
a consequence, also sub-optimal results may be obtained.

Example: Fig. 2 illustrates an example neighborhood graph
illustrating the latter case. The labels at the applications
specify the speedup of the current core allocation. Each
edge (vi, vj) is labeled with the speedup increases obtainable
when exchanging one core between i and j. Note that in
this scenario, despite application 3 being aware of all other
applications, all edge labels are equal or less than 0. Thus,
no speedup increase is possible by locally transferring cores,
and no application has an incentive to execute transfer().
However, when transferring cores from application 4 to ap-
plication 1, it would be possible to increase the accumulated
speedup by +0.3 (what also leads to an increase of the average
speedup).

V. COMMUNICATION SCHEME FOR PROVABLY REACHING
OPTIMAL CORE ALLOCATIONS

As a solution to the above problem, this section provides a
communication scheme with which it is possible to provably
reach optimal core allocations, even if there are applications
i with local neighborhoods Ni ⊂ {1, 2, ..., N}. The idea
of our communication scheme is to use the local neighbor-
hood relations for establishing an overlay network to globally
communicate information. Each player i keeps track of that
player indi that has the highest speedup gradient known to
it. Furthermore, each player communicates this information
to its neighborhood Ni. Following this scheme, indi denotes
either the player i itself or the player indj known to any of its
neighbors j ∈ Ni, depending on which one has the maximal
value:

indi = arg max
l∈{i}∪

{indj |j∈Ni}

{∆Sl(Cl + 1)}. (14)

Consequently, in this scenario, the set of known players N ′i
used for utility computation (thus, replacing Ni in Eq. (8)) is
given as the union of i’s neighbors and indi:

N ′i = Ni ∪ {indi}. (15)

By doing this, it is possible to communicate the maximal
known speedup gradient in the network of players by for-
warding it to all neighbors, which again forward it to their
neighbors, and so on. The preliminary for this approach is,
however, that each player i is connected with every other
player j possibly transitively over several neighborhoods.
This means that the neighborhood graph G(V,E) has to be
connected, i.e.,
∀i, j, ∃k1, k2, ..., kn :

(vj , vk1), (vk1 , vk2), ..., (vkn−1 , vkn), (vkn , vi) ∈ E. (16)

Theorem 3. Each Nash equilibrium is an optimal solution
when applying the communication scheme.

Proof: First, we prove that an optimal core allocation ~Copt

is a Nash equilibrium. For any player i, player indi is known
to be the player with biggest speedup gain ∆Sindi(Cindi +1).
However, for an optimal core allocation, we can conclude from
Eq. (7) that

∆Si(C
opt
i) ≥ ∆Sindi(Cindi + 1) (17)

and all players i have no incentive to trade cores.
Second, we prove that any non-optimal core allocation ~C is

no Nash equilibrium. In a non-optimal allocation, it holds that
there is at least one ∆Sj(Cj + 1) > ∆Si(Ci), acc. to Eq. (7).
From Eq. (16), there exists a path over k1, ..., kn connecting
i and j. Player j’s speedup gradient is then forwarded via
this path according to the communication scheme that is
formalized in Eq. (14). This means, that, after the information
is forwarded via j, k1, ..., kn, the known players of i eventually
are N ′i = Ni ∪ {j}. As a consequence, the following holds

ui(~C) <
∑
k∈N ′i

Ck∑
n=1

∆Sk(n)

︸ ︷︷ ︸
ui(~C)

+ ∆Sj(Cj + 1)−∆Si(Ci)︸ ︷︷ ︸
>0

(18)

and player i has an incentive to play transfer(1,j) to
increase the utility accordingly by ∆Sj(Cj + 1) −∆Si(Ci).

Example: Consider the example from Fig. 2. Application 1
has a speedup gradient ∆S1(C1 + 1) = 0.8. This information
is communicated, e.g., via 2 and 3 to application 4, which
has a speedup loss of ∆S4(C4) = 0.5. So, application 4 will
transfer cores to application 1 to increase the overall speedup
by +0.3.

The algorithm implementing the above communication
scheme is illustrated by the flowchart in Fig. 3. Each applica-
tion i starts with an initial invasion where cores are claimed
until it is unsuccessful. As a consequence, we reach a core

allocation ~C where
N∑
j=1

Cj = C. As already mentioned before,

the applications don’t actually have to execute threads on the
invaded cores, but still block them for other applications.

In the next step, requests from other applications are
processed if any are available. Such requests come from
neighboring applications and specify an application j and
its (expected) speedup gain ∆Sj(Cj + 1) for retrieving one
additional core. Now, this request is compared to the own
speedup gain ∆Si(Ci + 1). If the request is smaller, the
application sends a request on its own. Otherwise, if the own

send own
request with
my speedup

gain to
neighbors

yes
offer

available?

send offer to
inquirer and

wait for acknow-
ledgment

select one offer and
reject the other offers;

send acknowlegments
accordingly

forward the
inquirer’s request to
my neighbors (it has

a better speedup
gain than my own

request would yield)

transfer(): transfer core from
offerer to inquirer by means of

synchonized invade()/
retreat()

offer
accepted?

request
available?

yesno

yes

yes

yes

com
m

unicate requests

make
request

make offer

invade(1):
invade one
further core

invade
successful?

no

yes

initial invasion

inquirer’s
speedup gain

>
my speedup

loss

∆ (+1) ∆ ()

no

no

no

my
speedup gain

inquirer’s speed-
up gain

∆ (+1)≥∆ (+1)

no

start

Fig. 3. Flowchart illustrating the communication scheme.

speedup loss ∆Si(Ci) is smaller than the speedup gain of j,
application i sends an offer to j via the network of neighboring
applications. When it receives an accepting acknowledgment,
it executes transfer(). In a possible implementation of
this behavior, cores at the common boundary of adjacent
applications can be handed over subsequently according to the
neighborhood relations. For example, consider Fig. 2. Even
if applications 4 and 1 are not adjacent, application 4 can
transfer cores to application 1 by exchanging cores between
the highlighted path of applications. So, cores are transferred
locally between applications which are located adjacent on
the chip along the path that was previously used to send the
speedup information from 4 to 1.

VI. EXPERIMENTAL EVALUATION

In the following experiments, we compare the optimality
and convergence overhead of the fully connected (called full),
mesh, and chain neighborhood topologies, cf. Fig. 1. For
the mesh and chain topologies, we test the scheme of local
information exchange from Section IV (called local mesh and
local chain), as well as the communication scheme introduced
in Section V (called mesh+comm and chain+comm). All
experiments are performed by simulating the execution of
the algorithm from Fig. 3 synchronously for each application.
Thus, we are able to measure the speedups and exchanged
messages over simulation time (=̂ rounds playing the alloca-
tion game).

A. Case Study
A many-core system containing 100 cores serves as a

case study. Initially, 25 applications are concurrently started.
Fig. 4 illustrates their accumulated speedup and the number of
messages exchanged between applications over the simulation
time. The global approach full and the approaches applying
the communication scheme all reach the optimum, while the
local approaches converge to a sub-optimal core allocation.

0 100 200 300 400
25

50

75

simulation time

ac
cu

m
ul

at
ed

sp
ee

du
ps

full mesh+comm
chain+comm local mesh
local chain optimum

0 100 200 300 400
0

200

400

600

simulation time

#m
es

sa
ge

s

Fig. 4. Speedup and number of messages over simulation time for the case
study.

At time step 300, 20 cores are switched off. This decision
may be triggered by a run-time management mechanism for
temperature or power saving reasons. The figure shows that
all approaches react by trying to optimize the speedup of the
running applications for the new system constellation. Again,
only the global approach full and the approaches applying
the communication scheme are able to reach the optimal core
allocation. However, it can also be seen that approach full has
a high overhead regarding the number of exchanged messages.

This case study illustrates that (a) run-time management is
required to dynamically and optimally react on changes of the
system, and (b) sophisticated strategies have to be applied to
reduce the management overhead.

B. Scalability
For being able to compare the scalability of the different

decentralized core allocation schemes, two sets of experiments
are performed. Fig. 5 presents the results of the first set, where
25 applications are concurrently started on a 100 processor
many-core. Different scenarios are generated, where 100%,
60%, 50%, 40%, 20%, and 0% of the 25 applications are
embarrassingly parallel (with speedup characteristics chosen
according to signal/image processing applications), and the
rest is moderately parallelizable. For each scenario, 100 test
cases are generated, and their average results with standard
deviations are depicted in Fig. 5. It shows the resulting avg.
speedups (normalized, so that 100% represents the optimal
result), as well as the number of messages exchanged between
two applications and the convergence time (in number of
simulation steps) until the equilibrium is reached.

When having a high amount of embarrassingly parallel
applications, optimal or near-optimal speedups can be pro-
duced by each approach. However, when other applications are
included, local allocation schemes degenerate while the pro-
posed communication scheme guarantees optimality. Finally, if
no embarrassingly parallel applications are included, the archi-
tecture provides sufficient cores to speedup all 25 applications,
and all approaches produce (near-)optimal results.

We furthermore see that in the most cases the commu-
nication scheme applied on meshes and chains exchanges
less messages than the global allocation scheme. Note that,
in addition, in a fully connected approach, the messages
have to be sent over longer communication distances, e.g.,

100% 60% 50% 40% 20% 0%
0

50

100
sp

ee
du

p
[%

]

100% 60% 50% 40% 20% 0%
0

0.5

1

1.5

·104

#m
es

sa
ge

s

100% 60% 50% 40% 20% 0%
0

200

400

co
nv

er
ge

nc
e

tim
e

Fig. 5. Results for 100 cores and 25 applications for scenarios which include
different amounts of embarrassingly parallel applications (from left to right
for each scenario: full, mesh+comm, chain+comm, local mesh, local chain).

on a network-on-chip, resulting in longer latencies. Whereas,
neighboring applications in mesh and chain topologies are
located adjacent on the chip, and thus have shorter commu-
nication distances. While the communication overhead of a
fully connected allocation scheme is consequently higher, it
only converges slightly faster to the optimal allocation than
the communication scheme on the mesh topology. The chain
topology requires the longest time.

In the second set of experiments, 40 applications are started
on a 500 processor many-core. The results are shown in
Fig. 6. The resulting speedup characteristics are similar to
those before. However, we see that the mesh topology can
reduce the overhead in terms of exchanged messages and
convergence time compared to the fully connected and the
chain topologies. Comparing the mesh topology with the fully
connected approach, an average reduction of 61.4% of the
communication and of 13.4% of the convergence time can
be observed for the scenario containing 50% embarrassingly
parallel applications.

The experiments show that, particularly when we have a
mixture of embarrassingly and moderately parallel applica-
tions, it becomes necessary to apply either the global allocation
scheme or the communication scheme to achieve good results.
Comparing these approaches, the overhead scales best for the
communication scheme applied on the mesh topology. The
local allocation schemes have the lowest overhead, however,
to the expense of producing sub-optimal results.

VII. CONCLUSION

In this paper, we analyzed the optimality of decentralized
core allocation for many-core systems, where the goal is to
maximize the average speedup of running applications at any
point in time. The theoretical results show that basic primitives
for claiming and releasing cores suffice so that applications
can autonomously reach global optimality assuming global
knowledge. In addition, we presented a more realistic model
that relies only on limited local communication for negotiation

100% 60% 50% 40% 20% 0%
0

50

100

sp
ee

du
p

[%
]

100% 60% 50% 40% 20% 0%
0

0.5

1

·105

#m
es

sa
ge

s

100% 60% 50% 40% 20% 0%
0

500

1,000

co
nv

er
ge

nc
e

tim
e

Fig. 6. Results for 500 cores and 40 applications for scenarios include
different amounts of embarrassingly parallel applications (from left to right
for each scenario: full, mesh+comm, chain+comm, local mesh, local chain).

of cores, but still provably reaches a globally optimal core
allocation. The experimental evaluation showed that decentral-
ization schemes are of particular importance when a mixture of
embarrassingly parallel and other applications is executed. The
proposed approach works particularly well for large systems,
thus fulfilling the needs for future many-core architectures.
For future work, it is necessary to evaluate in how far our
theoretical model has to be adapted to more realistic architec-
tural properties. This includes, e.g., communication overheads,
memory accesses, and heterogeneous processing cores.

Acknowledgement
This work was partly supported by the German Research

Foundation (DFG) as part of the Transregional Collaborative
Research Centre ”Invasive Computing” (SFB/TR 89).

REFERENCES

[1] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency
in software,” Dr. Dobbs Journal, no. 3, pp. 202–210.

[2] S. Borkar, “Thousand core chips: a technology perspective,” in Proceed-
ings of Design Automation Conference (DAC), 2007, pp. 746–749.

[3] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schröder-
Preikschat, and G. Snelting, “Invasive computing: An overview,” in
Multiprocessor System-on-Chip – Hardware Design and Tool Integration,
M. Hübner and J. Becker, Eds. Springer, Berlin, Heidelberg, 2011, pp.
241–268.

[4] M. Al Faruque, R. Krist, and J. Henkel, “ADAM: Run-time agent-
based distributed application mapping for on-chip communication,” in
Proceedings of Design Automation Conference (DAC), 2008, pp. 760–
765.

[5] S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat, and J. Henkel,
“DistRM: distributed resource management for on-chip many-core sys-
tems,” in Proceedings of CODES+ISSS, 2011, pp. 119–128.

[6] M. Shafique, L. Bauer, W. Ahmed, and J. Henkel, “Minority-game-based
resource allocation for run-time reconfigurable multi-core processors,” in
Proceedings of Design, Automation, and Test in Europe (DATE), 2011,
pp. 1 –6.

[7] K. Lam and H. Leung, “An adaptive strategy for resource allocation
modeled as minority game,” in Proceedings of SASO, 2007, pp. 193 –204.

[8] A. B. Downey, “A model for speedup of parallel programs,” Berkeley,
CA, USA, Tech. Rep., 1997.

[9] P. Sanders and J. Speck, “Energy efficient frequency scaling and schedul-
ing for malleable tasks,” in Euro-Par 2012, ser. LNCS. Springer Berlin
Heidelberg, 2012, vol. 7484, pp. 167–178.

