AVF-driven Parity Optimization for MBU
Protection of In-core Memory Arrays

Michail Maniatakos
Electrical and Computer Engineering
New York University Abu Dhabi
michail.maniatakos @nyu.edu

Abstract—We propose an AVF-driven parity selection method
for protecting modern microprocessor in-core memory arrays
against MBUs. As MBUs constitute more than 50% of the
upsets in latest technologies, error correcting codes or physical
interleaving are typically employed to effectively protect out-of-
core memory structures, such as caches. However, such methods
are not applicable to high-performance in-core arrays, due to
computational complexity, high delay and area overhead. To
this end, we revisit parity as an effective mechanism to detect
errors and we resort to pipeline flushing and checkpointing for
correction. We demonstrate that optimal parity tree construc-
tion for MBU detection is a computationally complex problem,
which we then formulate as an integer-linear-program (ILP).
Experimental results on Alpha 21264 and Intel P6 in-core
memory arrays demonstrate that optimal parity tree selection
can achieve great vulnerability reduction, even when a small
number of bits are added to the parity trees, compared to simple
heuristics. Furthermore, the ILP formulation allows us to find
better solutions by effectively exploring the solution space in the
presence of multiple parity trees; results show that the presence
of 2 parity trees offers a vulnerability reduction of more than
50% over a single parity tree.

I. INTRODUCTION

Single event upsets (SEUs), attributed to alpha particle or
neutron strikes [1], have been extensively studied over the
last decade and various countermeasures have been developed
to address the resulting transient errors affecting modern
microprocessors [2]. Recent radiation-induced soft error rate
(SER) scaling trends show that, while the single-bit soft error
rate for SRAMs continues to decrease and the error rate for
sequential and static combinational devices has not changed,
the multi-bit SER has increased dramatically [3].

In the presence of a multi-bit upset (MBU), two or more
physically adjacent SRAM bits are upset by a single neutron
particle [4]. During an MBU, multiple bit errors in a single
word can be introduced, as well as single bit errors in mul-
tiple adjacent words [5]. As contemporary memory structures
exhibit an increasing multi-bit failure rate, the importance of
MBU analysis has been highlighted in several recent publica-
tions [6], [7]. Recent work showed that MBUs can affect up
to 8 adjacent cells [8].

Considering both single-bit and multi-bit upsets becomes
particularly important when assessing vulnerability of mod-
ern microprocessors, as they typically include numerous in-
core memory arrays in order to support high-performance
execution. Besides the use of SRAMs for large memory
structures, such as instruction and data caches, low power
budget dictates the use of SRAM-based structures for various
in-core memory arrays, such as the instruction queue or the

978-3-9815370-0-0/DATE13/(©2013 EDAA

Maria K. Michael
Electrical and Computer Engineering
University of Cyprus
mmichael @ucy.ac.cy

Yiorgos Makris
Electrical Engineering
University of Texas at Dallas
yiorgos.makris @utdallas.edu

register allocation table [9]. Modern microprocessor designs
incorporate Content Addressable Memory (CAM)/RAM-based
structures [10] instead of latch-based memories, in order
to achieve power savings of 36% on average [11]. These
structures are built using SRAM technology, with a CAM
cell consisting of two SRAM cells [10]. As SRAMs come
at the cost of increased susceptibility to single and multiple
bit errors, counter measures against radiation induced errors
need to be put in place.

Typical methodologies for MBU protection include physical
interleaving [12], Error Correcting Codes (ECC) [13], and
parity. Interleaving refers to the creation of logical checkwords
from physically dispersed locations of the memory array,
forcing the MBUs to appear as multiple single-bit errors,
instead of a multi-bit error. Checkwords are generated based
on a specified ECC scheme, thus interleaved memories rely
on advanced error correcting codes. However, while applying
ECC protection to out-of-core memories (such as the caches)
is the state-of-the-art method for resiliency enhancement,
generation of checkwords at core clock speed is infeasible,
due to computational complexity. Thus, efficient ECC methods
cannot be applied to the fast, in-core memory arrays.

Parity-based methods, however, which are far less complex,
may still constitute a feasible solution. While parity offers only
detection capabilities, it is sufficient for in-core memory arrays
of modern microprocessors as other correction mechanisms,
such as pipeline flushing and checkpoint restoring, can be
applied after the fault has been detected. Yet, blindly applying
parity across the board not only incurs significant area, power
and delay overhead but may also reduce the achieved coverage.
Furthermore, parity protection of certain bits is unnecessary,
as they may, ultimately, have a low probability of affecting
the application outcome. Instead, similar to the low-overhead
parity selection optimization methods that were introduced in
different contexts in [14] and [15], judicious parity construc-
tion is necessary to minimize vulnerability. As we discuss in
Section II, optimal parity selection for MBU detection is not
straightforward and simple heuristics yield sub-optimal results.
Thus, in Section III we formulate the problem as an integer
linear program (ILP). Results are presented in Section IV,
followed by conclusions in Section V.

II. SELECTIVE PARITY

While parity is a potentially viable option for protecting in-
core memory arrays, adding all bits to a single parity tree is
not a good idea for the following two reasons:

e In-core memory arrays in modern microprocessors are
typically quite wide, in order to store all the information
needed for out-of-order instruction execution. For exam-
ple, the information appended to an instruction word in
the Alpha 21264 ranges between 160 and 290 bits. Since
up to 32 instructions can be in-flight, the microprocessor
employs several large in-core memory arrays to support
the pipelined execution engine. Hence, adding parity trees
for all the bits in each word of these memory arrays
would incur significant overhead in terms of area, power
consumption, and delay.

o More importantly, such a parity tree would only detect
MBUs causing an odd number of errors. Therefore, the
parity scheme would fail to detect 2-bit MBUs, 4-bit
MBUs etc., which constitute a significant portion of
current MBU distributions.

Evidently, connecting only a carefully selected subset of
bits to the parity tree might yield better overall protection
from MBUs. Moreover, not all bits in such words are equally
critical. Indeed, since the type of information stored by each bit
is known in advance, we can characterize a priori its relative
importance and vulnerability. For this purpose, we can use the
Architectural Vulnerability Factor (AVF) of each bit, which
was first introduced in [16] and which captures the probability
that a bit-flip will cause a system-visible error. Consider, for
instance, the word of a sample 8-bit memory array, shown
in Fig. 1, and let us assume that bit 79 has an AVF of 0.5.
In this case, only half of the faults in this particular bit will
affect the end-user. Similarly, let us assume that bit ¢o has
an AVF of 0, therefore no faults affecting it can produce a
visible error. An example of such a case could be a memory
array storing information related to branch prediction, which
is used to populate the branch history table. The impact of a
fault affecting bit ¢35 would only result in a different prediction,
but not to a system-visible error.

By taking into account the vulnerability of each bit, we can
select the most appropriate subset of bits to add to the parity
tree, effectively introducing an AVF-driven parity optimization
method. In our example, since bits i3 and i3 have an AVF of
0, including them in the parity tree is unnecessary. In other
words, a parity tree including the remaining 6 bits would be
equally effective as a parity tree including all 8 bits, yet it
would incur less area, power, and delay overhead. Also, note
that bit ¢g, which has a very low AVF of 0.2, is adjacent to
bit 77, which has a very high AVF of 0.9. This implies that
MBUs which affect both of these bits will be masked. Leaving
ig out of the tree will enable detection of such MBUs, which
have a high probability of becoming visible to the system, at
the cost of allowing single errors on i to propagate (with low
probability) to the system level. In other words, careful AVF-
driven selection of bits to include in the parity tree can be
beneficial both in terms of overhead and in terms of coverage.

Nevertheless, any such single parity tree will continue to
be ineffective in detecting MBUs that affect an even number
of bits among those connected to the tree. To alleviate the
problem, a possible solution is the addition of multiple parity

I;O () %}’\sa/) (
? T T \T/ \T/ \T,

Memory
word:

AVF: 0.5 0.1 0 0 0.6 0.9 0.2 0.9

Fig. 1. Example of parity selection for protecting memory words

trees. In our previous example, if a 2-bit wide upset affects
bits 7o and ¢1, it will propagate undetected; however, if 7o and
i1 are connected to different parity trees, an error affecting
both will be detected separately by the two parity bits. Adding
more parity trees comes at the cost of an extra parity bit which
needs to be stored per word. However, assuming that the total
number of bits connected to the parity trees is the same, it does
not require additional XOR gates. In fact, it speeds up parity
computation since the depth of each tree is smaller than that
of a single tree. We also note that the maximum number of
trees that one should consider does not exceed the maximum
width of the expected MBUs. Indeed if, for example, a single
event upset affects at most 2 adjacent bits of a memory word,
addition of a third parity tree is superfluous since all the pairs
of potentially erroneous bits can be split into the two trees.
The same holds true when there are no adjacent bits with high
AVF, essentially implying that a very small number of parity
trees will suffice.

To summarize the problem at hand, given (i) the expected
MBU distribution, (ii) the vulnerability of the individual bits,
(iii) the maximum number b of bits that the budget allows
to connect to parity trees, and (iv) the number ¢ of available
parity trees, we seek to choose which bits to add to each of the
parity trees in order to maximize the protection of the memory
word from MBUs.

A. Simple Algorithm

A straightforward algorithm for selecting which bits to add
to each of the parity trees is to select and place the b most
vulnerable bits to the ¢ parity trees in a round-robin fashion.
In the example shown in Fig. 1, for b = 5 and for ¢t = 2, bits
{io, 14, 15, g, 17} Will be selected, with {7, i5, i7} connected
to the first parity tree and {i4, i} to the second.

This simple algorithm, however, may yield sub-optimal
results, especially since it does not take into account the
distribution of MBU faults. For instance, a 4-bit wide upset
affecting bits {44, i5, 16,97} Will go undetected as both parity
trees will experience an even number of errors. Given the
high AVFs of the corresponding bits, this MBU will most
likely affect the user. However, if ig was omitted from the
trees, this particular MBU would be detected, although the
word would now be vulnerable to single bit upsets affecting
bit 7. As the latter has a very low AVF (0.2), its exclusion can
give better results than the previous configuration. Evidently,
a wider range of solutions needs to be explored in order to
obtain the optimal subset.

Given a word of k bits and a budget of b bits to connect to
parity trees, the size of the solution space for a single parity
tree is (7). In a commercial design such as the Alpha 21264
which has a k=219-bit instruction queue memory array, this
implies that with a budget of =44 bits (20%), the number of
possible solutions is (24149) ~ 2.21e + 46. This space increases
dramatically as more trees are added. This huge solution
space, in combination with the inability of simple heuristics
to provide an optimal solution to this Cover-like problem (as
further demonstrated in Section IV), pinpoint the need for a
more general solution. To this end, in the next section we
formulate parity selection as an Integer Linear Program and we
use dedicated ILP solvers for obtaining the optimal solution.

III. FORMULATION OF PARITY OPTIMIZATION ILP
A. ILP formulation

The goal of the parity optimization problem is to minimize
the vulnerability of the in-core memory array. Since we add
parity per memory word, the developed cost function will refer
to each individual word. Thus, in order to formulate the cost
function to be minimized, called Memory Word Vulnerability
Factor (MWVF), we define the following ILP:

Given the parameters:

o k: Number of bits in the memory word

o V;: Architectural vulnerability factor of bit ¢, V; € [0, 1]

e d: Maximum MBU distance, defined by fault model

e P;: Probability of a j-wide MBU, defined by fault model,

P01, je{1,2,...d}, Y P=1
o t: The number of parity trees, ¢ > 1
e b: Maximum number of bits to be added to the parity
trees, 1 > b >k
Solve for:

. Si,r S {0, 1}

o Yijmyr €4{0,1}

® Tijmyr € {0, 1,..., |_j/2J}

e Zijm € {0, 1,...,t— 1}

o Wijm € {0, 1}

in the domain i € {1,2,...,k}, j € {1,2,...,d}, m €
{1,2,....,5}, re{1,2,...,t}

Minimize cost function:
k i p. j
D Vid Y wigm (1
i =1) m=1

Subject to constraints:
o Y Yo Sig <b
® 21:1 Si—j+m+n—1,r = 2xi,j,m,r + Yi jm,r
® Zf«:l(l - yi,j,m,r) =1* Wi jm + Zijm

B. Formulating cost function

Let us now explain how this cost function was derived and
why it reflects the choice and distribution of bits to parity
trees which minimizes vulnerability of an in-core memory
word to MBUs. This vulnerability, which we termed MWVE,

[[[]

i

1-bit wide

MBU Case 1: Probability: 0.45/1 = 0.45

L[Teles] 1]

o-bitwide Case 1: Probability: 0.18/2 = 0.09

WO L e][]

Case 2: Probability: 0.18/2 = 0.09

‘ i-2(i-1 1 ‘ ‘ ‘ ‘

Case 1: Probability: 0.10/3 = 0.033

3-bit wide ‘ ‘ il e ‘ ‘ ‘
MBU

Case 2: Probability: 0.10/3 = 0.033

Case 3: Probability: 0.10/3 = 0.033

i+l

i+2

£l

Fig. 2. Bitwise probability distribution in j-wide MBUs

is defined as the sum of the individual MBU vulnerabilities
of all bits in the word. The vulnerability of each individual
bit is defined as the product of the bit AVF (V;) multiplied by
the probability that a j-wide MBU will affect bit <. Thus, the
initial formulation of MWVF is the following:

k

> Vi (probability of a j-wide MBU affecting bit i) (2)

i=1

Given an MBU distribution, bit ¢ might be part of a 1-bit
wide MBU (or single bit upset - SBU), a 2-bit wide MBU,
a 3-bit wide MBU etc. For example, given that bit ¢ has two
neighboring bits, a 2-bit wide MBU might affect the pair {i—1,
i} or the pair {i, i + 1}. For the presented formulation, we
assume that MBUs affect bits horizontally; vertical MBUs are
dealt with by observing that each memory word is protected
by different parity bits.

The MBU fault model defines how the MBUs manifest to
the memory array. For instance, an MBU distribution, taken
from [8] for 65nm memories, is [1: 0.45, 2: 0.18, 3: 0.10, 4:
0.27]. This distribution indicates that with 0.45 probability, the
MBU will affect one bit, with 0.18 probability it will affect
two bits, etc. In case of a 2-bit wide MBU, a fault that includes
bit ¢ should be analyzed seperately in case ¢ — 1 and ¢ bits are
affected, and in case 7 and 7+ 1 are affected. This distiction is
essential, because the vulnerability factor changes according
to whether ¢ — 1 or ¢ + 1 is included in a parity tree.

In this study, we make the assumption that the two cases
have equal probability. Given the MBU distribution described
earlier, we assume that the probability of a 2-bit wide MBU
affecting bits ¢ — 1 and ¢ is 0.09 (0.18/2), and the probability
of an MBU affecting bits ¢, ¢ 4+ 1 is also 0.09. Therefore, in
case of a j-wide MBU, the probabilities are distributed equally
among all cases, as shown in Fig. 2. Equation 2 now becomes:

k J
P.

> Vid =LY (j-wide MBU affects bit i) (3)
J

i=1 j=1 7 m=1

In the simple case of one parity tree (r = 1), a j-wide
MBU will affect bit ¢ if an even number of these j bits are
protected by parity. For example, in case bits ¢+ — 1, i, and

i+ 1 are affected by an MBU, the error will be detected if
Si—1 + S; + Si1 is an odd number, implying that 1 or 3
of these bits are protected by parity. In case 0 or 2 bits are
protected, the error will be masked, and will affect the user
with probability V; * P3/3.

Therefore, in case the sum of S of the j affected bits is
even, the corresponding case should be set to 1, otherwise it
should be set to 0. Equation 3 now becomes:

Z‘/LZ] Z 1_((2 Si+m+n—j—1)

i=1 7j=1 '7 m=1 n=1

mod 2)) (4)

Note that the inclusion of the mod operator converts the
problem to non-linear. In the next section we present the
transformations to linearize it.

Equation 4 assumes that only one parity tree is used. In
order to account for ¢ multiple trees, Equation 4 is extended
to the following equation:

(1—(ZSHWM j—1,) mod 2))

4)
The expression (1 — (327 _; Sitmtn—j—1,,) mod 2)is 0
when, in case of a j-wide MBU, there is at least one case
(out of the j cases) that the error will be detected by parity.
Therefore, the addition of the product operator ensures that
the contribution of the particular case to the total vulnerability
will be 0 if there is at least one parity tree that detects the
corresponding fault. For instance, if only parity tree 2 out of
3 trees detects the tested case, the product will be 1x0x1 = 0,
implying that the error is detected by the current configuration
of S, and will not contribute to the total MWVE.
Equation 5 is the cost function that we want to minimize.
Since we indicate that b out of the k bits will be added to the
parity trees, the following constraint is added:

k t
>N S <h (6)

i=1 j=1

Note that this constraint does not preclude the inclusion of
a bit to multiple trees.

C. Converting cost function to linear

The inclusion of the mod and the product operators make
this optimization problem non-linear. In this section, we intro-
duce two transformations to convert it back to linear.

In order to remove the mod operator, the expression
(X)) Sitman—j—1,,) mod 2) is re-written as (Yi m,nj,r)s
and the following constraints are added:

J
§ Si7j+m+n71,'r
n=1

Yijmr € {0,112 jmr €{0,1,...,

- 2xi,j,m,r + Yi,jm,r (7)

L3/2]}

The variables %; j mr, Yijm, are added to the solver.

Expression 7 implies that y; ;. will be O when

Zi:l Si—j+m+n—1, 1S an even number, otherwise it will be
1. This effectively replaces the mod operator, and our cost
function now becomeS'

>uy 2

The final step of converting the cost function to linear is
the removal of the product operator. Similarly to the previous
operation, we replace H::1 (1=Yi,m,n,jr) With w; ; ., adding
the following constraints:

t

Z(l — Yijomr) =X Wi jm + Zijm)

r=1

Zijm € {0, 1,...,t

NI

m=1r=1

yi,m,n,j,r) (8)

— 1},wi,j7m S {0,].}

Since the term z; ;,, is a positive number smaller than ¢,
Wi j.m Will be 1iff S0 (1 =i jm.r) = t. The latter implies
that all y terms are 0, thus there is no parity tree detecting the
corresponding fault. If at least one tree detects the fault, its y
term will be 1 and w will be forced to 0.

Therefore, the final optimization function which we feed to
the ILP solver is the following:

k d
dViy
i=1 j=1

given constraints (6, 7, 9). We used GNU MathProg [17] to
model the ILP, and SCIP (Solving Constraint Integer Prob-
lems) [18] to obtain the solution to the optimization problem.

j
E:wm

m=1

(10)

<. ‘:U

IV. RESULTS

In this section, we discuss the results of the proposed parity
optimization method on two different in-core memory arrays:
The Alpha 21264 219-bit instruction queue, and an in-core
memory array part of the P6 36-entry reservation station.
Due to a non-disclosure agreement with Intel Corporation, we
do not present implementation details or vulnerability factors
of this in-core array. However, this is not required for this
study, as the main focus is the relative vulnerability reduction
achieved by selecting the optimal percentage and distribution
of bits to include in the parity trees. The AVF numbers used
for the two in-core memory arrays are obtained through the
method described by the authors of [19].

Two different fault models, representing the probability of
an N-Bit Upset (BU), are used in this study:

e Fm65: 45% 1BU, 18% 2BUs, 10% 3BUs, 27% 4BUs
(taken from [8] for 65nm memories)

o FmNew: 20% 1BU, 16% 2BUs, 16% 3BUs, 16% 4BUs,
16% 5BUs, 16% 6BUs

A. MWVF reduction for various configurations

Optimal selection of parity bits: Figs. 3a and 3b present the
MWVF reduction obtained by adding a increasing number of
bits to the parity trees, for the Alpha instruction queue and the
P6 reservation station respectively, for each of the two fault
models. Zero bits indicates that no parity is added. The axis

600

500

400 -+

MWVF
w
=3
S

200

100

a:&:a - 0-0 -0

BANE N

QO 1lpt
HE 2pt

¢ ¢ 3pt.
A A 4pt

-0

@ @ -

MWVF
=
MWVF

hiW
‘u\ﬂ‘ﬂwnﬂl

20 40 60 80
Bits to the parity tree(s) for FmNew

o 20 40
Bits to the parity tree(s) for Fm65

100

(a) Alpha 21264 instruction queue
Fig. 3.

values are omitted for the P6, as vulnerability estimates for the
Intel microprocessor cannot be disclosed. However, it is clear
from the graphs of both designs, that a careful construction of
parity trees can lead to a significant vulnerability reduction.
For example, adding 77 out of 219 bits of the Alpha array to
the parity tree reduces vulnerability by 93%. This allows the
designer the select the optimal number and distribution of bits
to the parity trees in order to meet cost and reliability goals.

We note that, in case the desired fault coverage for the Alpha
in-core memory array is 100%, a configuration of 99 bits split
among two parity trees offers complete immunity to faults.
Effect of adding parity trees: As a rich set of MBUs is
introduced using the Fm65 and FmNew fault models, it is clear
on Figs. 3a and 3b that for both microprocessors one parity
tree has limited potential for efficient MBU protection. This
difference is more apparent in the P6 in-core memory array,
where inclusion of a second parity tree leads to an immediate
additional MWVF reduction of 50%, even for a very small
numbers of bits added to the parity trees. Furthermore, the
overall MWVF reduction achieved by using only one parity
tree saturates after a certain point. For the Alpha instruction
queue, addition of more than 66 bits to the single parity tree
does not decrease the vulnerability of the structure; however,
44 bits splitted into two parity trees offers better protection to
MBUs than 66 or more bits in a single parity tree (80 MWVF
vs. 140 MWYVF). This key observation highlights the necessity
of formulating the parity problem as an ILP, as the optimal
selection and distribution of bits to parity trees is not intuitive.

Another key observation, concerning the number of parity
trees, is that adding more than 2 parity trees does not offer
significant MWVF reduction, even in the presence of 6-bit
wide MBUs (FmNew model). Since three and four parity trees
significantly increase area overhead, this observation allows us
to limit the number of parity trees to two. Evidently, this holds
true for the selected distribution of faults. As the distribution
of MBUs may change dramatically in future nodes, the ILP
will be able to handle and identify the need for more than two
parity trees.

B. Parity overhead

Table I presents the area and delay overheads of protecting
the Alpha 21264 instruction queue for a different number
of bits added to the parity trees. The instruction queue was
synthesized using Synopsys Design Compiler.

Bits to the parity tree(s) for Fm65 Bits to the parity tree(s) for FmNew

(b) Intel P6 Reservation Station structure

MW VF reduction for different configuration of parity trees

Area overhead: Using Table I, we can select the most desired
parity tree configuration to protect against MBUs. As expected,
the area overhead increases linearly as more bits are added to
the parity tree, which in turn increases the number of XOR
gates required. However, adding a second parity tree adds very
small area overhead, as only a flip-flop is added per word.
Delay overhead: Similarly, in terms of delay overhead, in-
creasing the depth of the parity tree increases the time required
to calculate the word parity. However, adding two parity trees
has a considerable advantage, as the depth of the XOR trees
decreases and the delay overhead is significantly reduced.

Therefore, since in the previous section we identified 2
parity trees as sufficient, possible candidates for the most cost-
effective resiliency enhancement should be selected among the
solutions involving 33, 44, 55 or 66 bits and 2 parity trees
(shown in boldface in Table I), which offer a MW VF reduction
of 67%, 78%, 87% and 92% respectively.

C. Comparison to simple algorithm

In this section, we discuss the quality of the solution
obtained by the ILP solver, as compared to the simple al-
gorithm described in Section II. Figs. 4a and 4b present the
MWVF reduction achieved by the solutions obtained by the
solver (ILP-) and the simple algorithm (ALG-), for the Fm65
and FmNew fault models, and for the Alpha and P6 in-core
memory arrays, respectively.

As expected, the solution obtained by the ILP solver is
always better than that of the simple algorithm for all config-
urations of parity trees. Moreover, the simple algorithm yields
very poor results when selecting the subset of bits to add to
1 or 2 parity trees, for all structures and fault models. For
example, the average MWVF reduction obtained by the ILP
for one parity tree in the Alpha array is 83%, much higher
than the 50% achieved by the algorithm. This is attributed to
the effect presented in Section II, where exclusion of a bit
from the trees can lead to better protection from MBUs.

Furthermore, the simple algorithm exhibits an interesting
artifact when more than 30% of parity bits are included in 1
or 2 parity bits; adding more bits increases the vulnerability
of the in-core memory arrays. Indeed, adding more parity
bits to one tree increases the density of protected bits; thus,
blindly adding them to the tree increases the probability of
error masking, as more errors resulting in an even number of
bit-flips are introduced.

600

600

500! @@ ILP-Fm65 500! @@ ILP-Fm65 l\‘ @ @ ILP-Fm65 1 @ @ ILP-Fm65
\ HH ALG-Fm65 Y Bl ALG-Fm65 r - E | Bl ALG-Fm65 L N
400y ‘ 400} : ‘ e LR 5
w w \ el m-E-u B
> N > a > ®: 2 A
<300 o : <3001 : = @- - 2 N |
s J \-;. s A s : '~.,._'_‘ =L -
200 .\. ‘BE-E-g- 200 '\ 3 | ® m
_. . _ _ ~ ~ R ~ ~
100} LR B N 100 '\';" '\z\ _-m-N
o ‘ ‘ o ‘ g " -9 ! -0
20 40 60 80 100 0 20 40 60 80 100]))
Bits to the 1 parity tree(s) Bits to the 2 parity tree(s) Bits to the 1 parity tree(s) Bits to the 2 parity tree(s)
600 . 600 : . . w w
sool @@ ILP-FmNew 500! @ @ ILP-FmNew @ @ ILP-FmNew | @ ILP-FmNew
“\\ Bl ALG-FmNew i Bl ALG-FmNew [g Bl ALG-FmNew o HE ALG-FmNew
4001 Ny 4 400 Y L N
w w Iy w) - -l w [y .
2300 - : 2300] & = g YooY |
z emin ppunn: |8 = poe i
200} N 200} N @ L NI N
. ‘. q o - ® o-0-0-0-0-0 o g
9 0-0- .\.\"!_._.—: L AP Y
0 0 ‘ - i j |

100 o 20 40 o 80
Bits to the 2 parity tree(s)

20 40 60 80
Bits to the 1 parity tree(s)

100

(a) Alpha 21264 intruction queue

Bits to the 1 parity tree(s) Bits to the 2 parity tree(s)

(b) Intel P6 Reservation Station structure

Fig. 4. MWVF reduction of ILP solution compared to simple heuristic algorithm

TABLE I
OVERHEAD FOR DIFFERENT PARITY SCHEMES FOR THE ALPHA 21264
INSTRUCTION QUEUE

% of 1 Parity tree 2 Parity trees
protected Logic Delay MWYVF Logic Delay MWVF
bits overhead | overhead | reduction | overhead | overhead | reduction
5% 0.02% 2.27% 34.29% 0.13% 1.70% 42.41%
10% 0.20% 6.70% 52.16% 0.31% 4.38% 53.06%
15% 1.85% 8.15% 65.88% 1.96 % 5.36% 67.32%
20% 3.99% 8.40% 76.53% 4.10% 5.30% 78.33%
25% 5.53% 8.85% 84.83% 5.65% 5.60% 87.00%
30% 6.79% 9.02% 89.72% 6.91% 5.99% 92.23%
35% 8.01% 9.05% 93.14% 8.12% 5.84% 94.40%
40% 8.76% 9.08% 95.48% 8.87% 5.96% 98.73%
45% 10.66% 9.22% 96.57% 10.76% 6.01% 100%

V. CONCLUSION

Recent radiation-induced experiments in contemporary tech-
nology nodes reveal a significant increase in multiple bit
upsets, highlighting the need for revisiting vulnerability anal-
ysis and developing novel methods for protecting modern
microprocessor in-core memory arrays against MBUs. To this
end, we propose AVF-driven parity selection as an efficient
method for detecting single and multi- bit upsets, and we
introduce an ILP formulation of the parity tree construction
optimization problem. Experimentation with several multi-bit
fault distributions injected into in-core memory arrays of the
Alpha 21264 and the Intel P6 instruction schedulers elucidates
that optimal single tree parity selection can achieve great vul-
nerability reduction, even when only a small number of bits are
added to the parity trees. Furthermore, the effective exploration
of the solution space allowed by the ILP formulation revealed
that the presence of 2 parity trees offers a vulnerability
reduction of more than 50% over a single parity tree. Finally,
the solutions obtained by the ILP solver are significantly better
than simple, intuitive heuristics, highlighting the usefulness of
the ILP formulation.

REFERENCES

[1] E. Normand, “Single event upset at ground level,” IEEE Transactions
on Nuclear Science, vol. 43, no. 6, pp. 2742-2750, 1996.

[2] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”
IEEE Micro, vol. 23, no. 4, pp. 14-19, 2003.

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

N. Seifert et al., “Radiation-induced soft error rates of advanced CMOS
bulk devices,” in IEEE International Reliability Physics Symposium
Proceedings, 2006, pp. 217-225.

R.A. Reed et al., “Heavy ion and proton-induced single event multiple
upset,” IEEE Transactions on Nuclear Science, vol. 44, no. 6, pp. 2224—
2229, 1997.

R. Koga, S.D. Pinkerton, T.J. Lie, and K.B. Crawford, “Single-word
multiple-bit upsets in static random access devices,” IEEE Transactions
on Nuclear Science, vol. 40, no. 6, pp. 1941-1946, 1993.

A.D. Tipton et al., “Multiple-bit upset in 130 nm CMOS technology,”
IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp. 3259-3264.
Y. Tosaka et al., “Comprehensive study of soft errors in advanced CMOS
circuits with 90/130 nm technology,” in IEEE International Electron
Devices Meeting, 2004, pp. 941-944.

G. Georgakos, P. Huber, M. Ostermayr, E. Amirante, and F. Ruckerbauer,
“Investigation of increased multi-bit failure rate due to neutron induced
SEU in advanced embedded SRAMSs,” in IEEE Symposium on VLSI
Circuits, 2007, pp. 80-81.

J. Abella, R. Canal, and A. Gonzalez, “Power- and complexity-aware
issue queue designs,” IEEE Micro, vol. 23, no. 5, pp. 50-58, 2003.

K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 3, pp. 712-727, 2006.

A. Buyuktosunoglu et al., “Tradeoffs in power-efficient issue queue
design,” in International Symposium on Low Power Electronics and
Design, 2002, pp. 184-189.

C.W. Slayman, “Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations,” [EEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp.
397-404, 2005.

R. Naseer and J. Draper, “Parallel double error correcting code design
to mitigate multi-bit upsets in SRAMS,” in IEEE European Solid-State
Circuits Conference, 2008, pp. 222-225.

S. Almukhaizim, P. Drineas, and Y. Makris, “Entropy-driven parity-
tree selection for low-overhead concurrent error detection in finite state
machines,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 8, pp. 1547-1554, 2006.

N.A. Touba and E.J. McCluskey, “Logic synthesis of multilevel circuits
with concurrent error detection,” IEEE Transactions on Computer-Aided
Design, vol. 16, no. 7, pp. 783-789, 1997.

S.S. Mukherjee et al., “A systematic methodology to compute the archi-
tectural vulnerability factors for a high-performance microprocessor,” in
IEEE International Symposium on Microarchitecture, 2003, pp. 29-40.
A. Makhorin, “Modeling language gnu mathprog,” Relatdrio Técnico,
Moscow Aviation Institute, 2000.

T. Achterberg, “SCIP: Solving constraint integer programs,” Mathemat-
ical Programming Computation, vol. 1, no. 1, pp. 1-41, 2009.

M. Maniatakos et al., “Global signal vulnerability (GSV) analysis for
selective state element hardening in modern microprocessors,” IEEE
Transactions on Computers, vol. 61, no. 10, pp. 1361-1370, 2012.

