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Abstract—This paper presents a technique for automatically
extracting analytical behavioral models from the netlist of a
nonlinear analog circuit. Subsequent snapshots of the internal
circuit Jacobian are sampled during time-domain analysis and
are then processed into Transfer Function Trajectories (TFT).
The TFT data project the nonlinear dynamics of the system
onto a hyperplane in the mixed state-space/frequency domain.
Next Recursive Vector Fitting (RVF) algorithm is used to extract
an analytical Hammerstein model out of the TFT data in an
automated fashion. The resulting RVF model equations are
implemented as an accurate nonlinear behavioral model in the
time domain. The model is guaranteed stable by construction and
can trade off complexity for accuracy. The technique is validated
on a high-speed analog buffer circuit containing 70 linear and
nonlinear components, showing a 7X speedup.

I. INTRODUCTION

Automated behavioral modeling of the time-domain re-

sponse of analog circuits still remains a tough challenge for

EDA developers. This bottleneck is mainly due to the custom

nature, the increasing complexity and the nonlinear behavior of

analog circuits. Although behavioral models that can simulate

faster are highly wanted in industry for system verification.

Recently, Model Order Reduction (MOR) techniques have

successfully been extended toward nonlinear circuits by in-

troducing trajectory piecewise (TPW) models [1], [2]. Such a

model is in essence a large database of reduced-order circuit

snapshots that are interpolated during model evaluation. This

often requires a non-standard interaction between the SPICE

simulator and the database of reduced-order snapshots.

Analytical equations can more easily be described by nu-

merous modeling languages such as VHDL-AMS, Verilog-

AMS and Matlab, which improve the portability of the TPW

modeling approaches. The focus of this paper is to auto-

matically extract a set of analytical equations from a TPW

approach by means of Transfer Function Trajectories [3], [4]

in a more general fashion. The TFT approach enhances the

transition from Modified Nodal Analysis (MNA) matrix sam-

ples toward analytical equations by transforming the samples

to a mixed state-space/frequency domain [4].

In this work, the resulting TFT data are modeled using a

recursive implementation of the Vector Fitting algorithm [5],

[6]. The RVF technique has formerly been used to fit the

frequency response of a linear circuit as a function of design

parameters. It is now extended to model the time-domain

response of a nonlinear circuit. The RVF model is composed

of a set of fixed poles {âp} and parameterized residues r̂p(.).
Afterwards, the poles and residues are converted to a system

of nonlinear analytical differential equations that serve as the

behavioral model. The CAFFEINE algorithm, described in [7],

gives an alternative for residue regression, however because

indefinite integration is required by the TFT data this cannot

be automated. A schematic representation of the modeling flow

from SPICE netlist to analytical differential equations is given

in Fig. 1.

Fig. 1. The extraction of analytical differential equations from a SPICE
netlist. Firstly, Jacobian samples are gathered throughout the state space,
which in turn are transformed to a TFT hyperplane. Analytical equations
are derived from this hyperplane by parametric rational approximation using
the Recursive Vector Fitting algorithm.

The first step of the algorithm extracts the MNA matrix

from the ELDO simulator at each time step tk during transient

simulation, see Fig. 1. Next, the snapshots of the circuit’s

internal matrix are transformed to the frequency domain as

TFT data which are then discretized along the frequency axis

[3]. This step is described in Section II. The TFT samples

are then fitted by the RVF algorithm and are translated to

a Hammerstein model, see Section III. The technique is

illustrated by a high-speed output buffer in section IV.

To summarize, the proposed technique enables us to:

1) extract an analytical behavioral model from a SPICE

netlist

2) with high accuracy

3) in an automated fashion.978-3-9815370-0-0/DATE13/ c©2013 EDAA



II. TRANSFER FUNCTION TRAJECTORIES

Consider the state-space description of a nonlinear dynam-

ical system of order N :

d

dt
q(v) + i(v) = Bu, y = DT

v (1)

which typically arises when modeling analog circuits using

modified nodal analysis (MNA). In this paper, v = v(t) ∈ R
N

is the state vector corresponding to node voltages and inductor

currents in the circuit and u = u(t) ∈ R
Mi are inputs to the

circuit. q(.) and i(.) ∈ R
N×N are matrix valued functions

describing the charges and currents of nonlinear components.

B ∈ R
N×Mi is a constant incidence matrix, which maps the

inputs to the internal nodes of the circuit. D ∈ R
N×Mo is the

output matrix and y = y(t) ∈ R
Mo the output variables.

A nonlinear system approximation for (1) is derived by

approximating the Jacobians at each location k in state space

by a rational function in the frequency domain [3], [4]. If one is

able to fix the poles âp of the model over the entire state space,

then the nonlinear functionality of the system approximation is

fully embedded in the residues, which in turn is approximated

by a rational function. The resulting approximation decouples

the nonlinear functionality from the filtering function:







0 = f(
d

dt
v,v,u)

y = g(v,u)
⇒







v̂ = f̂(x)

d

dt
ŷ = Âŷ + B̂v̂

(2)

The hat notation denotes approximated quantities and x is a

state estimator comprising the input u(t) and delayed versions

of the input, as explained in more detail below.

The extraction of MNA samples in the time domain and

their transform to the frequency domain is described in detail

in [3], [4]. The latter results in a state-dependent transfer

function H
(k)
lm (s) between input l and output m around state

k (t = tk):

H
(k)
lm (s) =

Y
(k)
lm (s)

U
(k)
l (s)

= DT
m

(

∂i

∂v

(k)

+ s ·
∂q

∂v

(k)
)−1

Bl. (3)

Here, Ylm is the portion of the output Ym due to the contri-

bution of signal source Ul and H
(k)
lm (0) = DT

m

(

∂i
∂v

(k)
)−1

Bl

represents the instantaneous small-signal conductance around

a trajectory or large-signal pump. The static nonlinear function

v = i−1(u) can be reconstructed up to a constant from this

set of small-signal conductance samples by indefinite integra-

tion over the input trajectory [4]. The remaining dynamical

nonlinear part equals H
(k)

lm (s) = H
(k)
lm (s)−H

(k)
lm (0) [8].

The mapping of each state k of the state space onto a low-

dimensional state estimator x(t) ∈ R
q+1 can be constructed

by adding q delays ∆qi
of the input signal u(t) until each

state k is uniquely defined by x(tk) = x
(k):

k −→ x(t) = (u(t), · · · ,u(t−∆q−1)) (4)

A TFT approximation of the state-dependent transfer func-

tion H
(k)
lm (s) with P ≪ N poles is given by its pole-residue

form [4]:

H
(k)
lm (s) ≈ Tlm(x(k), s) =

P
∑

p=1

r̂p,lm(x(k))

s− âp,lm(x(k))
(5)

A model composed of a parallel Hammerstein structure with

fixed poles was proposed in [4] and is illustrated in Fig. 2.

The TFT expression (5) for the parallel Hammerstein structure

equals [4]:

Tlm(x(k), s) =
Ŷlm(s)

Ul(s)
=

P
∑

p=1

∂
∂ul

f̂p,lm(x)
∣

∣

∣

x(k)

s− âp,lm

(6)

Fig. 2. Block diagram of a parallel Hammerstein TFT model.

Assuming that r̂p,lm(x) can be fitted by an analytical

function, the static nonlinear stages are reconstructed by

integration. The corresponding time-domain representation is:



















v̂p,lm = f̂p,lm,0 +

∫

r̂p,lm(x)dul

d

dt
ŷp,lm = âp,lmŷp,lm + v̂p,lm, ŷlm =

P
∑

p=1

ŷp,lm

(7)

The residue functions r̂p,lm(x) are now modeled by recur-

sively locating a set of common poles for each state-space

variable by means of Recursive Vector Fitting. The advantage

of this approach is that the indefinite integral in (7) exists

for RVF base functions. Moreover, the integral solution is

compact and only needs to be calculated once, opposed to

e.g. CAFFEINE base functions. As a summary, a schematic

representation of the proposed modeling chain is depicted in

Fig. 3.

Fig. 3. Flow diagram of the TFT model extraction using RVF. The
contribution of this work, RVF, is emphasized in bold.



III. TIME-DOMAIN RECURSIVE VECTOR FITTING

A. Vector Fitting

The goal of the Vector Fitting algorithm is to compute

a set of stable rational functions H̃(k)(s) from the state-

dependent frequency response data {s, k, H(k)(s)}. The fre-

quency response data are simply obtained by discretization of

the TFT samples (3) along the frequency axis. For the sake

of notation we consider Single-Input Single-Output (SISO)

systems, i.e. Hlm(s) = H(s). The extension towards Multiple-

Input Multiple-Output (MIMO) systems is very straightfor-

ward. A standard implementation of the relaxed Vector Fitting

technique [9] returns a minimal state-space representation with

P stable poles {ap} and corresponding parameterized residues

R̃(k):

(

Ã B̃

R̃(k) Ẽ

)

(8)

The minimal state-space representation can be obtained by

parallel connection of minimal subsystems or fractions with:

Ãp = ap B̃p = 1 R̃(k)
p = r̃(k)

p Ẽp = 0 (9)

provided that ap is real. When ap and ap+1 constitute a

complex pole pair (i.e. ap+1 = a∗
p), the corresponding state-

space realization of the minimal fraction equals:

Ãp =

(

ℜ{ãp} ℑ{ãp}
−ℑ{ãp} ℜ{ãp}

)

B̃p =

(

2
0

)

R̃
(k)
p =

(

ℜ{r̃
(k)
p } ℑ{r̃

(k)
p }

)

Ẽp = 0

(10)

The frequency transform of (8) in each state k becomes:

H̃(k)(s) = R̃(k) · (sI − Ã)−1 · B̃ (11)

The abstraction of a multiport LTI system by a paramet-

ric macromodel of the form (11) can be used for efficient

design space exploration, optimization or sensitivity analysis.

However, the formulation of the VF algorithm requires some

slight modifications compared to [9] in order to cover the time-

domain response of nonlinear dynamical systems such as the

proposed parallel Hammerstein model (7). Therefore, some

adaptations to the recursive VF model are now described for

enabling nonlinear system modeling.

TFT expression (6) reveals that dynamical system (1) can be

approximated as a parallel Hammerstein model by matching

the state-dependent transfer functions H(k)(s) in each state

k. When considering the Vector Fitting as a pole-residue

regression tool, the state-space representation needs to be

compatible with the Hammerstein structure.

It can be seen from (6) and (11) that the state-dependent

residue samples R̃(k) coincide with the partial derivative of the

nonlinear function f̂(.) in the Hammerstein model. A block

diagram of a single VF fraction is illustrated in the top of Fig.

4. Full compatibility of the VF model with the Hammerstein

model requires the parameterized residue R̃(k) to be shifted

towards the input. This shifted configuration is represented in

the bottom part of Fig. 4.

Fig. 4. Top: Block diagram of a VF fraction. Bottom: Block diagram of the
transformed VF fraction, suitable for parallel Hammerstein TFT models.

A minimal state-space representation of (8) with the residue

shifted towards the input (i.e. before the filtering operation) is

given by:

(

Â R̂(k)

D̂ 0

)

(12)

with a minimal fraction for real poles ap equal to:

Âp = Ãp = ap R̂(k)
p = R̃(k)

p = r̂(k)
p D̂p = 1 (13)

Setting (8) equal to (12) at an arbitrary state k, the input-

shifted residue for a complex conjugate pole pair can be

calculated as:

R̂(k)
p =

(

ℜ{r̂
(k)
p }+ ℑ{r̂

(k)
p }

ℜ{r̂
(k)
p } − ℑ{r̂

(k)
p }

)

D̂p =
(

1 1
)

(14)

Using (12), the TFT expression (6) becomes:

T (x(k), s) = D̂ · (sI − Â)−1 · R̂(k) (15)

The remaining parameterized residue R̂(k) will be modeled

as a partial fraction expansion in function of the state estimator

x(t) by the Recursive Vector Fitting algorithm.

B. Recursive Vector Fitting

Similar to finding a common-pole set {âp} for the frequency
responses, a common-pole set {b̂p} can be found for each of

the state-dependent parameters of the parameterized residue

samples. After fitting each of the q state-dependent parameters

in x as a partial fraction expansion, the dimension of the

approximation problem decreases by 1 in each recursion step

[6]:

r̂p(x) = r̂p(u, x2, · · · , xq) =

P1
∑

p1

r̂p1(u, x2, · · · , xq−1)

jxq − b̂p1

(16)



Regarding (6), the partial derivative of the nonlinear func-

tion blocks in the Hammerstein structure matches the residue

approximation:

r̂p(x) =
∂

∂u
f̂p(x)

∣

∣

∣

∣

x(k)

(17)

The nonlinear function f̂p(x) can be found up to a constant

by indefinite integration over input u:

∫

r̂p(x) · du =

P1
∑

p1

1

jxq−1 − bp1

· · · · ·

Pq
∑

pq

∫

r̂{pq}

ju− b̂{pq}

· du

(18)

with

∫

r̂{pq}

ju− b̂{pq}

· du = jr̂{pq} · log(ju− b̂{pq}). (19)

Here, {pq} = p1, · · · , pq is a combination of all indices of

previous iterations in the RVF model. To analytically enforce

that the state-dependent base functions have a zero-phase

angle, all poles b̂pq−1 and b̂pq
are chosen as complex pairs,

which have a real part with opposite sign [10]. The remaining

constant after indefinite integration can be found using the DC

solution of the circuit at time t = 0. The number of frequency

and state-space poles is incremented until the error of the fitted

model is below a predefined error ε.

As can be seen from (15) and (19), the model is fully

described by the frequency and state-space poles and residues.

Since both frequency and state-dependent data is fitted using

the same regression engine, i.e. RVF, there is no need for

choosing an appropriate regressor. Also, when using more

complex regression tools for residue approximation such as

CAFFEINE [4], post-calculation of the integral functions

is required. A fixed regression template with existing and

compact integral functions resolves this issue, as explained

above in this section.

The complete time-domain RVF algorithm is listed in Al-

gorithm 1.

The MNA matrices are extracted from ELDO SPICE and

are imported into the Matlab environment. The TFT transform

and RVF modelling algorithm are implemented in Matlab and

the resulting RVF model was written out as a set of differential

equations. The resulting system of nonlinear differential equa-

tions can be simulated inside Matlab or are further translated

to the VHDL-AMS language.

IV. EXAMPLE: HIGH-SPEED OUTPUT BUFFER

The time-domain RVF algorithm is demonstrated by means

of an output buffer that is used for post-amplification in

an optical transimpedance amplifier. The bandwidth of the

buffer equals 3GHz and the DC-gain equals 2. The buffer

is implemented as a chain of 4 differential amplifiers using 27

transistors and was processed in the UMC 0.13µm CMOS

technology [11]. As the buffer drives large signal inputs,

Algorithm 1 Time-Domain RVF algorithm

1: INPUT: {C(k), G(k), B, D},uk,yk, {sL}, ε
2: OUTPUT: f̂(x), {âp}

Sample state-space data:

3: T = ∅; x = u;

4: for k=1:K do

5: H(k) ← ∅;
6: Evaluate H(k)(s):
7: for sl in {sL} do

8: H(k) ← H(k) ∪
(

D
[

G(k) + sl · C(k)
]−1

B
)

;

9: end for

10: T ← T ∪H(k);

11: end for

12: Construct x =
(

u, · · · , dq−1

dtq−1 u

)

;

Model T (s,x) using RVF:

13: P = P1 = · · ·PQ = 0, {âp} = {b̂{pq}} = ∅
14: while error > ε do

15: P ← P + 2;
16: Identify {âp};
17: end while

18: for p=1:P do

19: for q=1:Q do

20: while error > ε do

21: Pq ← Pq + 2;

22: Recursively identify {b̂{pq}};
23: end while

24: end for

25: end for

Fig. 5. Schematic representation of the high-speed output buffer.

strongly nonlinear saturation occurs for large input amplitudes.

A schematic representation of the circuit is given in Fig. 5.

After simulating the circuit in SPICE with a low-frequency

high-amplitude sinusoidal input for 1 period, about 100 TFT

samples are collected. Only a few training points are needed

for robust model extraction, as the model is based upon the

internal circuit matrix. The resulting hyperplane is plotted as

a function of the state-space (x = u(t)) and frequency s in

Fig. 6.

After applying the RVF algorithm on the TFT dataset with

error bound ε = 10−3, 12 frequency poles âp and 10 state-

dependent poles b̂q for each corresponding residue function

r̂p are obtained. The modeled TFT hyperplane is plotted

together with the root mean square error (RMSE) in Fig. 7.

The maximum RMSE was −60dB for the gain and 150◦ for

the phase occuring at high frequencies and neglegible gain
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Fig. 6. TFT magnitude and phase plot of the output buffer as a function of
the state space (x = u(t)) and frequency s.

(< −70dB).
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Fig. 7. Top: TFT magnitude and phase plot of the RVF model. Bottom:
RMSE of both gain and phase of the RVF model compared with the TFT
data.

For comparison, the same TFT data is fitted using the

regular vector fitting algorithm [9] for frequency pole al-

location (P = 12) and the CAFFEINE regression toolbox

[7] is used for residue regression. The indefinite integral

of the residues that are computed by CAFFEINE need to

be computed manually, if they can be computed altogether.

Automation is the main drawback when using CAFFEINE

opposed to the RVF algorithm. The resulting error contours

are displayed in Fig. 8. The maximum RMSE reaches −20dB

for the gain and about 200◦ − 300◦ for the phase. It can be

seen that the error of the RVF model is lower and more equally

distributed over the state space and frequency compared to the

CAFFEINE model.

Finally a spectrally-rich bit pattern input at 2.5GS
s
is applied

for testing. For comparison of the RVF approach, relatively

simple base functions for the CAFFEINE algorithm are used

such that the indefinite integral could be calculated manually.

The results shown in Fig. 9 demonstrate a good accuracy for

each of the models, with the RVF model little outperform-

ing the CAFFEINE model. The accuracy, speed and model

building time are summarized in Table I. All calculations are

Fig. 8. RMSE of both the gain and phase of the CAFFEINE model compared
to the TFT data.

performed on a 4GHz dual quad-core CPU with 12GB RAM.

Fig. 9. Response of the different models compared to SPICE for a bit pattern
input.

TABLE I
COMPARISON BETWEEN THE RVF AND CAFFEINE MODEL.

Model Time Domain Build Speedup Fully
RMSE RMSE Time Automated

RVF -62 dB 0.0098 2 min 7X YES

CAFF -22 dB 0.0138 7 min 12X NO

V. CONCLUSION

We have presented a technique for automatically extracting

analytical equations from a nonlinear analog circuit. The Re-

cursive Vector Fitting (RVF) algorithm was used for automat-

ically allocating frequency poles and fitting residue functions.

The RVF model equations are implemented in the time domain

as a Hammerstein model, which can be exported to almost

any mathematical software package or behavioral description

language. The model has demonstrated great accuracy for a

7X speedup and was verified on a high-speed analog buffer

circuit.
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