
1

Formal Verification of Analog Circuit Parameters
Across Variation Utilizing SAT

Merritt Miller∗, and Forrest Brewer†

Department of Electrical and Computer Engineering, UCSB
∗merrittmiller@umail.ucsb.edu, †forrest@ece.ucsb.edu

1 Abstract—A fast technique for proving steady-state analog
circuit operation constraints is described. Based on SAT, the
technique is applicable to practical circuit design and modeling
scenarios as it does not require algebraic device models. Despite
the complexity of representing accurate transistor I/V character-
istics, run-time and problem scaling behavior is excellent.

Index Terms—Analog Verification, Discrete Representation,
Circuit Modeling, SAT

I. INTRODUCTION

Analog circuit verification has been a topic of rapidly
increasing interest in recent years with verification strategies
based on improving symbolic modular (SMT), interval anal-
ysis engines, as well as simulation mixed with other solution
strategies[20], [8], [11], [5]. The vast majority of these tech-
niques seek to create provable models that describe properties
of the time evolution of analog circuits. Our work has a much
more humble goal: quickly determining circuit steady-state
operational bounds over transistor and environment variation.
Classically, analog designers have relied on the tried and tested
Monte-Carlo characterization of the operating space and its
accelerated variants[16], [1] that depend on assumption on the
statistics of the variations and the simplicity of the boundary
topology. For complex circuits, however, or wide ranges of
device variability, both assumptions are problematic, and the
results are only stochastically conclusive.

The early work analog model checking was done by
Kurshan[13], who formalized arguments for discrete proof
spaces over continuous functions. Hartong[10] took a repre-
sentation tack including modeling Ids(Vds, Vgs) from data
as we have also done. Similar transistor modeling approches
were used by Little, Meyers[14] and Yan[19], [18]. All of these
works used specialized techniques to create discrete atomata
for the purpose of forward projection of the analog circuit
state. Hedrich did tolerancing verification based on polynomial
bounding and projecting symbolically, however, his transistor
models were linear approximations [11]. Work on variance
estimation by Nassif [15] abstracted the sources of variance
for timing and other parameters and performed stochastic
modeling. Alternative simulation acceleration approaches by
Signhee [16] improved the ability to simulate close to the
bounds of circuit margins.

Validation by Simulation has advantages and difficulties.
Simulation readily accepts circuit scales far larger than any

1978-3-9815370-0-0/DATE13/©2013 EDAA

verification scheme known to the authors. On the other hand,
it does not readily link to formal analysis or property proof.
To manage device and environmental variations with simu-
lation, Monte-Carlo methods (or similar means of extracting
statistics) are typically used, requiring a large number of
configurations to be checked. This process tends to be time
consuming. Additionally, due to its stochastic nature and
the complexity of analog circuit behavior, such methods are
usually incomplete. Abstractly, such methods verify behavioral
properties for single parameter selections and initial conditions
on each simulation run. In contrast, the methods proposed
in this work describe properties known to hold over sets of
intervals in the parameter space, providing formally supported
bounds on circuit parameters.

Practical use of analog verification techniques requires
methods that efficiently scale to typical problem sizes with
accuracy sufficient to at least match that of the device models.
They must provide concrete bounds on behavior regardless
of whether the nominal behavior or statistical distribution can
be compactly expressed. We believe that although the safety
property is formally simple, it is nonetheless quite important in
practical variance modeling and design for variance compensa-
tion. Its simplicity allows for practical scale robust verification
in reasonable time.

This work describes an approach to proving properties on
steady-state circuit behavior that scales to practical circuit
size and complexity while using practical (non-symbolic)
device models. The approach, by design, only utilizes methods
that can easily be mapped to a boolean satisfiability (SAT)
problem, a problem for which high quality solvers exist. De-
spite the limitation to steady-state properties, several valuable
properties such as operation points and margins, headroom can
be described and verified in very reasonable run times.

It is important to note that a similar effort was made by
Tiwary et al.[17]. The general concept of modeling method and
behavior discovery were the same, on the other hand a SMT
solver was used instead of a ILP or SAT solver, and hence
different assumptions about the bounds of the problem were
made as well as having a slightly different formulation. This
work also has device variation considered within the presented
model.

II. VERIFICATION

This work targets the verification of steady-state properties
of analog circuits. The verification process considers both a

2

Figure 1. Simple circuit showing nodes (A, B, VDD, GND), devices
(transistors p1, p2, n1, n2 and a voltage supply) and branch currents for
node A

circuit description and a set of imposed constraints. A circuit
is defined as a bi-partite graph of nodes and devices. All edges
common to a node share a common potential. In general,
voltages are defined as differences in potential between two
nodes. All voltages are expressed as relative to a single ground
(GND) node. The modeled behavior is time invariant (steady
state), hence the circuit state is precisely the set of voltages
on all circuit nodes. This representation implicitly enforces
Kirchoff’s voltage law (KVL), requireing the total voltage drop
around a loop to be zero. There are additional constraints on
nodes (enforcing current balance) and on devices which map
voltages to currents that must also hold for a valid circuit
model. In general, a circuit may have multiple or even infinite
sets of states that meet all constraints, these states are called
’operating points’. Our interest in verification is to determine
exterior bounds on node voltages for which no operating points
exist given the circuit and imposed constraints.

An example analog circuit is shown in Fig. 1. In addition
to containing the state of the circuit, nodes also serve connect
currents for the devices. In the example circuit VDD, GND,
A, and B are all nodes of interest and interact with at least
two devices each. Kirchoff’s current law (KCL) requires that
nodes have currents balance into and out of the node. Fig. 1’s
node A has its currents marked by small arrows. The currents
flowing in the direction of these arrows must sum to 0 for the
circuit to represent a physical system. This gives a constraint
on valid circuits – Eq. 1.

∀n, n ∈ Nodes
∑

i∈n′s currents

i = 0 (1)

Devices are connected to nodes and direct currents between
nodes. Fig. 1 has four devices N1, N2, P1,and P2 representing
two types of transistors (NMOS & PMOS) as well as a
source device. In simplest form, FET transistors have a single
dominant current flowing between source (S) and drain (D);
The current is a function of two voltages: the difference
between the gate (G) and the source, and between the drain
and the source. For FETs, ignoring the influence of the back
, two differential voltages (Vds, Vgs) determine the current
flow (Ids). While the methodology can fully support models
of body bias, for simplicity this was left out of the models
treated here.

Device modeling is a critical part of the process. A fully
specified device in a design can have a range of different
behaviors in implementation due to manufacturing variation as

well as aging processes. This work uses a bounded behavior
model; such a model is very general – agnostic to the nature
or cause of device variation. This model can be built with just
test data and no need for other known physical parameters
Fig. 3 shows a slice of a transistor model that can be used for
bounded behavior proofs. The model, by definition, captures
the outer bounds of possible behavior for the device. Bounds
that are conservative can still be used without invalidating the
proof, mathematically expressed as Eq 2.

flower({nodes}) ≤ idevice ≤ fupper({nodes}) (2)

The computed bounds on circuit behavior, as compared to
monte-carlo simulation is depicted in Fig. 2 with lines repre-
senting computed bounds and points representing simulation.
This is a result generated from the circuit shown in Fig. 1
over all potential variations in the FET device models. This
simple bound will be used later in the paper to determine
verifiable properties of interest to the user. The discrete solver
implementation to efficiently and conservatively determine
these bounds is discussed below.

III. MAPPING TO SAT

This work approaches verification using a discrete solver
to handle the proof elements of the procedure. The end goal
is to use a SAT solver in specific. To ease the translation of
constraints the problem is first cast as a 0-1 ILP, also known as
Psuedo-Boolean, problem (a known NP complete problem[4]).
There are a number of translation techniques that will allow
such a problem to be easily re-cast as a SAT problem[6], [2].
The high quality of existing SAT solvers is what makes them
attractive for practical application. The solver used here is a
version of MiniSat+, described in [6], modified to take SAT
clauses in addition to Pseudo-Boolean constraints.

Node voltages are represented as fixed point binary numbers
stored as an unsigned magnitude and a sign bit. The solver has
a single scale factor for all voltages to be represented. The
proof will be invalidated if values that are unrepresentable are
needed creating a lower bound on the scale factor. A scale
factor that is larger than needed will require more bits in
representation to achieve the same precision as one that is
sufficient yet smaller. The single discrete value of a voltage
will be used to represent an entire range of voltages in the
continuous version of the problem.Mathematically the range
of possible values for a representation V is expressed in Eq.3,
where n is the number of representation bits. The smallest
difference between adjacent binary representations is called
the Least Significant Bit Value or LSB for short.

voltage ∈ scale factor × (V + [−0.5, 0.5]); V ∈ Bn (3)

Device currents are handled in a distinct manner from the
node voltages. Devices are specified by an upper and lower
bounding function on currents given voltages. This means that
a binary representation of a current can have exactly one value
when mapped back into continuous space; the model bears
the requirement of providing a range of possible values by

3

providing a lower and upper bound value; this constraint is
expressed in Eq. 4.

repr(ilower) < ilower ≤ iupper < repr(iupper) (4)

The implementation of KCL in the system requires the
current into and out of a given node to balance. This constraint
is implemented by taking a sum of all of the currents into and
out of a node and then constraining it to have a small absolute
value. Two constraints, Eqs. 5 and 6, are created to implement
this.

inode =
∑

devices

idevice (5)

−ε < inode < ε; ε = scale factor ×#currentsnode (6)

Eq. 5 creates a requirement that each node have a list of
currents going into and out of it. During circuit translation the
software keeps such a list while implementing the constraints
due to device models. As a final step the currents associated
with the nodes are then summed to create this constraint.

Eq. 6 uses a small absolute value to prevent two specific
cases from failing. One case arises for nodes where devices
have no tolerance in their current representations (for example
when the model is built expecting higher resolution than what
the solver chooses to use). Another case occurs when a scaling
factor within the system (eg IA = 2IB) is used and can cause
a similar problem. Due to the discretization of circuit state
and device models, a sum may have as much as half a bit
of error (relative to the underlying model) per device current
so an amount of slop equal to this potential error is allowed.
Increasing the solver resolution reduces this tolerance relative
to any absolute value presented, hence the resulting error can
be made arbitrarily small.

The discretization of the state creates subsets of the con-
tinuous state space that contain potential operating points of
the circuit. The conjunction of the above Pseudo-Boolean
constraints cannot be satisfied for any discrete state whose
patch does not contain an operating point. Thus the solver
finds all states in the desired exterior bounds as unsatisfiable.
Bounds on operation are found by iteratively looking for
the largest satisfying value for any voltage of interest. By
construction, these bounds can be determined to any level of
accuracy by simply decreasing the granularity of the discrete
space. In practice, FET models derived from measurements
provide sensible limits to increasing accuracy of the analysis.

The circuit introduced in Fig. 1 has two nodes that are non-
trivial to specify: A and B. In actual operation the voltage of
these nodes is highly dependent on device models. Validation
by simulation gives a set of operating points that is graphed in
Fig. 2. This figure shows a region where the behavior of circuit
A is likely to be and a large region where no simulation found
operating points. For any interval or value of one parameter,
the verification above can quickly find upper and lower voltage
bounds on the other parameter providing an absolute limit to
potential operating points since one or more circuit constraints
must be violated. The value of this is that circuit properties are
complex in general and there is no simple way to determine the

Figure 2. Map of verification results for circuit in Fig.1

practical bounds on operating regions (i.e. extrema of Monte-
Carlo searches). This technique can find such bounds directly.

IV. DEVICE MODELS

Device models are the functions used to map nodal voltages
into device currents. The models specifically map into a range
of currents representing the possible upper and lower limits
on device current for a given circuit state. The voltages
at the nodes the device is attached to are the dependent
variables in this mapping and the resultant device current is
the independent variable. The device model must obey Eq.4
so the solver can correctly operate on the exterior bounds of
circuit operation. The device model creates a solver variable,
Idevice, and places bounds on that variable. The bounds created
may or may not be dependent on the voltages at the devices
terminals.

A. Linear devices

Linear terms are easy to express in the pseudo-Boolean
language making the modeling of linear devices easy. There
are three kinds of linear device modeled in this work: voltage
sources, current sources, and resistors. Each device adds
simple constraints to the system. All three kinds of device
have only two terminals. For two terminal devices there is
one voltage of interest; the difference potential between the
two nodes. Since each voltage number actually represents a
range of voltages, this difference has an associated range of
values. The magnitude of this range is the combined ranges
of the two underlying voltages. To limit error a differential
voltage is not computed directly, instead the software tracks
the difference and incorporates it algebraically in to subsequent
calculations.

1) Current sources: Current sources have a single systemic
constraint; they must have a specified current flowing through
them. This is modeled as two constants, a lower bound on
current and an upper bound on current. This creates a simple
device constraint defined in Eq. 7. The lower and upper bound
of operation are constants given as part of the definition of the
source.

Ilower−bound ≤ Idevice ≤ Iupper−bound (7)

4

2) Voltage sources: Voltages sources also have a single
constraint; they limit the difference in voltages between their
terminals. The voltage source requires the differential voltage
constraint in Eq. ?? and adds a constraint expressed in Eq. 8.
Ideal voltage sources provide whatever current is required to
keep the voltage between its terminals as expected. The current
flow through the device is effectively unbound. Because of the
KCL constraint, the source has to have a unbound current
specified, so the system also adds Eq. 9 to the systemic
constraints.

Vlower−bound ≤ Vdiff ≤ Vupper−bound (8)

−Imax ≤ Idevice ≤ Imax (9)

3) Resistors: Resistors have a current that is proportional
to the voltage difference between their two terminals. Like the
current source they add a relation to current but now the upper
and lower bounds are dependent on the terminal voltages.
The resistor is specified as having a minimal and maximal
resistance Rmin and Rmax respectively. The computed voltage
difference becomes a constraint expressed in Eq. ??; the
resistor model is implemented as described in Eq. 10.

Rmin × Vdiff ≤ Idevice ≤ Rmax × Vdiff (10)

B. Non-linear devices

There is one type of non-linear device of interest for this
work: the transistor. Mapping non-linear devices in 0-1 ILP
requires multiple linear constraints to create a non-linear one.
Due to the nature of 0-1 ILP (and ILP in general) polytopes
are easy to express; the models used are expressed as a union
of polytopes.While the solver can understand models of this
generality creating them efficiently is difficult. Generating
meshes with bounded error has a number of heuristics [7],
[12]. For simplicity, this work chooses all edges to be parallel
to one of the variables defining the space. Because of the
underlying SAT solver used, the union is written as a series
of constraint cubes, one of which must be obeyed. This can
be visualized in the model shown in Fig. 3. This figure shows
the continuous space boundaries of behavior and the step like
polytope approximation.

Models of this type have proven useful in other appli-
cations. For example, sub-division of continuous space is a
useful method for solving for time domain transitions[9], [10].
Piecewise transistor models have also been used to make
computation easier in simulators[3]. Union of polygons was
also used in the interval based solver in [11]

1) Spice/Monte-Carlo Extraction based models: The first
set of transistor models this work considers were based on
an underlying data set created by Monte-Carlo simulation
preformed in spice. These models are based on a .13µ Tech-
nology. The bounding region was determined by the central
99.9% of 30,000 Monte-Carlo runs performed in spice. The
monte-carlo runs took approximately 15 minutes of computer
time to execute and a further minute or so to reduce to an
acceptable model. A number of models were built from this
data set. The main PMOS and NMOS models were created

Figure 3. Transistor model, showing natural gutter of acceptable behavior
and conservative discrete union of polytope model

with 50mV resolution in Vgs and Vds and a 100nA resolution
in Ids. This yielded models that consists of 230 and 188 cubes
in Vgs,Vds,I. A version limited to 40 cubes in each using
a 150mV step was also created for faster approximations.
Another much higher resolution model set with more than
10,000 cubes per transistor was created for scalability testing.
This more accurate model required much more data; it was
built with an expanded 100,000 point run, and still had
insufficient data in some scattered regions. The high cube
count model could be improved with a larger data set.

2) ASU PTM Corner-case transistor curve based model
set: The models generated for the examples in this paper
were created form the ASU PTM models from their nano-
spice tool. 3σcorner models were downloaded for the 130nm
process node and considered the outside bounds of operation
for the transistors in question. The devices were crafted with
5% variation in Leff and 15mV in Vth variation. These models
were subdivided using regular steps then these regions were
merged as to maintain an error less than a given threshold a
model using 20mV steps in VGS and VDS and 2% accuracy
in IDS . This gives a model with approximately 2,000 cubes
for each of NMOS and PMOS. Because of the smooth and
simple nature of the PTM model re-casting these models is
easy by comparison to the Monte-Carlo method.

C. Model impacts on problem complexity

The design of optimal models is beyond the scope of this
work but remains important. A device model is needed for
each device in the circuit. Clauses that represent the model are
added to the constraint set for each device instance that uses
that model. Thus the SAT problem complexity will roughly
grow linearly with the number of polytopes used in the device
models.

V. APPLIED CASES

A. Resistor divider – output voltage

The resistor divider is a very basic case to test some of the
concepts of the system. As a basic test a divider is constructed
using two resistors each 1kΩ ± 5% with a voltage source of
1.5V. The solver is asked to find the minimum and maximum
exterior bounds for the possible values of the output voltage.

5

Source Monte #1 Monte#2 ASU PTM
Vgs steps 125mV 50mV 20mV
Vds steps 375mV Acc. Dependent

Idev accuracy Fixed Vds 10% 2%
NMOS cubes 40 188 1936
PMOS cubes 40 230 1936

Runtime (amp.sp) 1.7s 16.2s 397s
#Vars 4402 21062 190210

#Constraints 5090 26510 243986

Figure 4. Table of models. The amp.sp test has 14 transistors and finds 8
bounds and is discussed more fully in Sec. V-B

Figure 5. Differential amplifier with multiple bias points

For this example case the solver quickly gives the answer: the
output value is bound on the upper side by 0.7875V and the
lower side by 0.7125V. Due to the finite nature of the solver
these values will be rounded to the nearest least significant bit
of the representation. The maximum value is rounded up and
the minimum is rounded down because the exterior bound is
being discovered, if the actual bound cannot be represented a
safer approximation is used.

B. Differential amplifier – requirements on bias voltages to
support output current

The differential amplifier test is a more complicated case.
The circuit shown in figure5 is translated into a spice file
along with some designer constraints. first a output drive
requirement:|V (on) − V (op)| < .05; Iload(on, op) = 50µA.
Next a limit on the required input to create that drive:|V (ia)−
V (ib)| < .1. Finally a restriction that the answer must be close
to centered relative to the supply:.45 × V (vdd) < V (ia) <
.55× V (vdd)

The more complex constraints added allow for setting up
the exterior conditions on the amp. In this case the delivered
load is 50µA the inputs are within 5% of mid-way between
the rails and with an offset less than .1v. The bias voltages
deemed viable are the ranges of bias voltages that make the
circuit work given the presented conditions. In other words
bounds placed on pbias are imply that pbias for a working
circuit would never be outside that range.

Figure 6. Time to solve for 4 bias voltages of circuit from Fig. 5 vs number
of bits used to represent a voltage or current

Figure 7. Sram cell

Given the higher transistor complexity of this amplifier it
makes it ripe for a study in how bit-width impacts operational
speed of the solver. Fig. 6 shows the time dependence of
solution on number of bits used in the representation. The
growth is close to linear and an approximate fit is shown.

C. SRAM characterization

SRAM cells, due to the large number that are produced, are
a common area of study for failure. Because of the multiple
operating states of an SRAM cell there are steps to analysis, so
that individual states can be isolated and studied. Additional
constraints are added to the system to cut the space into
cases. One case will be established to discover bounds on
the metastable region, and another is constructed to find the
bounds of the stable states.

1) Meta-stable region: The first operating point of the
SRAM cell that we can discover is the region where the meta-
stable point exists. The meta-stable region is the region where
there is neither strong drive out of the region, nor any attraction
to the region. If we assume that for a given cell there is
reasonable transistor matching there is an easy condition for
meta-stability: when the two storage voltages are equal (sa
and sb in the schematic in Fig 7). The additional constraint is
written formally as V (sa) = V (sb).

With the models described above the solver determines that
this meta-stable state is bounded within the region of .6v ≤
sa, sb ≤ .8v

2) Stable state: The next operating mode of the cell to be
considered is the behavior when the cell stores a value. In
this case one of the voltage storage nodes is above the other.
Due to the nature of the transistor models used the meta stable
region can also satisfy this requirement, so the answer requires

6

Figure 8. Schematic of SRAM array test. 10 SRAM cells used as part of
this test

the exclusion of the meta stable region. Due to the symmetry
of the problem the constraint V (sa) > .8 ; V (sb) < .6 is
sufficient for this exclusion

The results of this run indicate that 1.4v ≤ sa ≤ 1.5v and
0v ≤ sb ≤ .1v. This means that the high storage value can be
as low as 1.4v and the low storage voltage can be as high as
.1v given the model and other circuit assumptions

D. SRAM array

The SRAM array test consists of an array of SRAM cells
connected by a power network that has resistive elements, and
hence a voltage drop that is state dependent. The cells used
are the same as the cells from Sec. V-C; from that analysis the
voltage required to force the cells out of the meta stable region
is known (not between .6V&.8V when the supply is 1.5V).
The network topology used is shown in Fig. 8. The successive
drops means that each cell is operating at a different voltage
than the other cells; which should impact the behavior. The
array test seeks to verify the properties of an SRAM cell that is
the 10th in the chain. The test thus has 20 NMOS transistors,
20 PMOS transistors and 10 resistors with non-trivial relation
to the result.

The test exercises the limits of the ability of the solver. With
the medium complexity transistor model the problem contains
75k Pseudo Boolean constraints. The run takes approximately
20 minutes to verify that, for the last cell, the voltage drop
is significant enough that the final SRAM cell is incapable
of reliably storing a bit (the model predicts that cells that will
always store one value or another are possible outcomes). This
is consistent with the single cell test since the voltage droop
is approximated to be down to .9v in worst case, allowing the
lower edge of meta-stable to crash into the low-stable state.

VI. CONCLUSIONS

This work presents a practical method of verifying safety
in steady state. Models agnostic to the physics of a device
are used to produce bounds on total circuit behavior. The
method presented uses proven and stable solvers to render
rapid solution to problems containing many devices with
reasonable scaling with problem complexity. Proof resource
and time scaling with problem size was roughly linear showing
the potential for large circuit utility. A problem was noted
with the scaling of device models was noted and future work
may readily improve computation time by reducing model
complexity required for a given level of accuracy.

REFERENCES

[1] K.J. Antreich, H.E. Graeb, and C.U. Wieser. Circuit analysis and
optimization driven by worst-case distances. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 13(1):57 –
71, jan 1994.

[2] O. Bailleux, Y. Boufkhad, O. Roussel, et al. A translation of pseudo
boolean constraints to sat. Journal on Satisfiability, Boolean Modeling
and Computation, 2:191–200, 2006.

[3] Min Chen, Wei Zhao, Frank Liu, and Yu Cao. Fast statistical circuit
analysis with finite-point based transistor model. In Proceedings of the
conference on Design, automation and test in Europe, DATE ’07, pages
1391–1396, San Jose, CA, USA, 2007. EDA Consortium.

[4] Stephen A. Cook. The complexity of theorem-proving procedures.
In Proceedings of the third annual ACM symposium on Theory of
computing, STOC ’71, pages 151–158, New York, NY, USA, 1971.
ACM.

[5] W. Daems, G. Gielen, and W. Sansen. Simulation-based generation
of posynomial performance models for the sizing of analog integrated
circuits. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 22(5):517 – 534, may 2003.

[6] N. Eén and N. Sörensson. Translating pseudo-boolean constraints into
sat. Journal on Satisfiability, Boolean Modeling and Computation, 2(3-
4):1–25, 2006.

[7] Michael Garland and Paul S. Heckbert. Surface simplification using
quadric error metrics. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’97, pages
209–216, New York, NY, USA, 1997. ACM Press/Addison-Wesley
Publishing Co.

[8] G.G.E. Gielen and R.A. Rutenbar. Computer-aided design of analog and
mixed-signal integrated circuits. Proceedings of the IEEE, 88(12):1825
–1854, dec. 2000.

[9] S. Gupta, B. H. Krogh, and R. A. Rutenbar. Towards formal verification
of analog designs. In Proceedings of the 2004 IEEE/ACM International
conference on Computer-aided design, ICCAD ’04, pages 210–217,
Washington, DC, USA, 2004. IEEE Computer Society.

[10] W. Hartong, L. Hedrich, and E. Barke. Model checking algorithms
for analog verification. In Design Automation Conference, 2002.
Proceedings. 39th, pages 542 – 547, 2002.

[11] L. Hedrich and E. Barke. A formal approach to verification of
linear analog circuits wth parameter tolerances. In Proceedings of the
conference on Design, automation and test in Europe, DATE ’98, pages
649–655, Washington, DC, USA, 1998. IEEE Computer Society.

[12] A.D. Kalvin and R.H. Taylor. Superfaces: polygonal mesh simplification
with bounded error. Computer Graphics and Applications, IEEE,
16(3):64 –77, may 1996.

[13] R.P. Kurshan and K.L. McMillan. Analysis of digital circuits through
symbolic reduction. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 10(11):1356 –1371, nov 1991.

[14] S. Little, N. Seegmiller, D. Walter, C. Myers, and T. Yoneda. Verification
of analog/mixed-signal circuits using labeled hybrid petri nets. In
Computer-Aided Design, 2006. ICCAD ’06. IEEE/ACM International
Conference on, pages 275 –282, nov. 2006.

[15] S.R. Nassif. Modeling and analysis of manufacturing variations. In
Custom Integrated Circuits, 2001, IEEE Conference on., pages 223 –
228, 2001.

[16] Amith Singhee and Rob A. Rutenbar. From finance to flip flops: A study
of fast quasi-monte carlo methods from computational finance applied
to statistical circuit analysis. In Quality Electronic Design, 2007. ISQED
’07. 8th International Symposium on, pages 685 –692, march 2007.

[17] S.K. Tiwary, A. Gupta, J.R. Phillips, C. Pinello, and R. Zlatanovici. First
steps towards sat-based formal analog verification. In Computer-Aided
Design - Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM
International Conference on, pages 1 –8, nov. 2009.

[18] Chao Yan and M.R. Greenstreet. Verifying an arbiter circuit. In Formal
Methods in Computer-Aided Design, 2008. FMCAD ’08, pages 1 –9,
nov. 2008.

[19] Chao Yan, F. Ouchet, L. Fesquet, and K. Morin-Allory. Formal
verification of c-element circuits. In Asynchronous Circuits and Systems
(ASYNC), 2011 17th IEEE International Symposium on, pages 55 –64,
april 2011.

[20] Mohamed H. Zaki, Sofiï¿œne Tahar, and Guy Bois. Formal verification
of analog and mixed signal designs: A survey. Microelectronics Journal,
39(12):1395 – 1404, 2008.

