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Abstract—Automatic abstraction is an important component
of modern formal verification flows. A number of effective SAT-
based automatic abstraction methods use unsatisfiable cores to
guide the construction of abstractions. In this paper we analyze
the impact of unsatisfiable core minimization, using state-of-
the-art algorithms for the computation of minimally unsatis-
fiable subformulas (MUSes), on the effectiveness of a hybrid
(counterexample-based and proof-based) abstraction engine. We
demonstrate empirically that core minimization can lead to a
significant reduction in the total verification time, particularly
on difficult testcases. However, the resulting abstractions are not
necessarily smaller. We notice that by varying the minimization
effort the abstraction size can be controlled in a non-trivial
manner. Based on this observation, we achieve a further reduction
in the total verification time.

I. INTRODUCTION

Abstraction engines are essential for ensuring the scalability
of modern formal verification flows. A number of SAT-based
abstraction methods rely on the capability of SAT solvers to
derive unsatisfiable cores — the subsets of unsatisfiable CNF
formulas that are sufficient to establish their inconsistency.
Cores are used in proof-based abstraction (PBA) engines,
introduced by Gupta et al. [1] and McMillan and Amla [2],
to focus the abstraction process on the parts of the design
that are (heuristically) relevant to the proof of the property
under verification, and remove those parts that are known to be
irrelevant, thus shrinking the abstraction size. However, while
unsatisfiable cores are typically indeed significantly smaller
than the formulas they are derived from, they may still contain
many redundant clauses. Detection and removal of redundant
clauses from unsatisfiable CNF formulas is essential reason for
algorithms for computation of minimally unsatisfiable subfor-
mulas (MUSes) — an MUS is an unsatisfiable subformula
that is minimal in the sense that removing any of its clauses
makes it satisfiable. In recent years, a number of efficient
algorithms for computing MUS have emerged (see [3] for
a survey, and [4], [5] for recent developments). While the
recently developed algorithms can handle very large problems
successfully, computation of MUSes can still be a resource-
intensive process — the related problem of testing the minimal
unsatisfiability of propositional formula is complete for the
complexity class DP1[6], and the current algorithms compute
MUSes using iterative calls to a SAT solver. However, given
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1DP is the set of languages L for which there are two languages L1 ∈ NP,

L2 ∈ coNP such that L = L1 ∩ L2.

that the size and the quality of abstraction typically has a
very significant impact on the success of the downstream
verification flow, the computational resources spent on MUS-
based core minimization might be offset and superseded by the
subsequent gains. While the idea of using core minimization
procedures in abstraction is not new, to our knowledge it has
not been thoroughly evaluated.

In this paper we present the results of the first, to our
knowledge, detailed study of the effects of core minimization
using MUS in SAT-based abstraction algorithms. Specifically,
we analyze the impact of the MUS-based minimization on
a hybrid (counterexample- and proof-based) abstraction en-
gine GLA (Gate Level Abstraction) [7] implemented in the
publicly available verification framework ABC [8]. GLA is
a highly optimized version of the single-instance SAT-based
hybrid abstraction algorithm proposed in [9], although geared
towards gate-level abstraction. We demonstrate empirically
that, indeed, MUS-based core minimization can have a very
significant impact on the size of the produced abstractions,
and furthermore, that the computational overhead from min-
imization is often offset by the gains from the reduction in
the subsequent proof time. Curiously, we also find that core
minimization can at times result in larger abstractions. We
investigate this issue further, and arrive at the conclusion that
in order to get smaller abstractions, minimization has to be
applied judiciously. We present the results of our study on a
large set of industrial testcases from HWMCC’11 [10], and
demonstrate that MUS-based minimization can result in over
5x reduction in the total verification time on a number of
particularly difficult testcases.

II. RELATED WORK

Core minimization procedure based on re-running SAT
solver with different parameters has been proposed by Gupta
et al. [1] in the context of iterative SAT-based abstraction
framework. In the same work the authors propose a heuristic
to reduce the number of latches in the abstraction. As opposed
to the work presented in this paper, neither of these procedures
produce minimal cores. The work of Nadel [11] discusses a
number of applications of MUS extraction in formal verifi-
cation, one of which is in proof-based abstraction. However,
the impact of MUS-based core minimization on the resulting
abstraction size and quality (in terms of the proof time) has not
been investigated in this work. Furthermore, in this paper, we
use MUS-based minimization in a hybrid (counterexample and



proof-based) abstraction framework — in Section V we argue
that, in fact, hybrid abstraction frameworks are better suited
for MUS-based core minimization than purely proof-based.

III. BACKGROUND

In this paper we focus on model-checking safety properties
of synchronous, single-clock hardware designs. To simplify
the discussion, we assume that the design and a single safety
property are given as a sequential And-Inverter-Graph (AIG)
with a designated output gate p that represents the negation of
the property — that is, the property is violated when p gets
value 1. We will view such AIG as a set of (input, output,
AND, flop) gates A. By BMC(A, k) we will refer to the
CNF formula obtained by unrolling A for k time frames (as,
for example, in [12]), and asserting the value of the output gate
p at frame k to 1. Thus, BMC(A, k) is unsatisfiable if and
only if A has no counterexamples of length k. By cls(g, i),
0 ≤ i ≤ k we will refer to the set of clauses that correspond
to the representation of the gate g ∈ A at time frame i in
the formula BMC(A, k). Given a CNF F ⊆ BMC(A, k),
we will say that a gate g ∈ A is included in F if for some
0 ≤ i ≤ k, F ∩ cls(g, i) 6= ∅.

A. Abstraction

Let A′ be any subset of gates of A that includes the output
gate p — the output signals of the gates from A \ A′ are
replaced by pseudo-primary inputs. Then, A′ constitutes a
conservative abstraction of A — that is, A′ preserves all
behaviours of A, and so if the property p holds in A′ it also
holds in A. We will say that conservative abstraction A′ of A
is precise to frame k if A′ has no counterexample of length
k or less. Methods that construct conservative abstractions
by removing logic that is deemed irrelevant to the proof
of the property are referred to as localization abstraction
methods. A number of methods for construction of localiza-
tion abstractions have been proposed. Following [13], SAT-
based abstraction methods can be classified into proof-based
[1], [2] (those that use unsatisfiable cores to remove logic
unnecessary to the proof), counterexample-based [14] (that
build abstractions by adding logic to refute counterexamples),
and hybrid counterexample- and proof-based [15], [9] (that
alternate proof-based and counterexample-based stages). Note
that in counterexample-based abstraction (CBA) the abstrac-
tion is built ground-up, starting from an empty set of gates,
while PBA works in the opposite way — it starts from
the full design, and removes logic, resulting in successively
smaller abstractions. Additionally, abstraction methods are
classified as gate-based vs latch-based, depending on whether
the abstraction constructed from individual gates, or the latches
together with their entire fanin cones.

B. MUS extraction

A CNF formula F is minimally unsatisfiable if (i) F ∈
UNSAT, and (ii) for any clause C ∈ F , F \ {C} ∈ SAT.
A CNF formula F ′ is a minimally unsatisfiable subformula
(MUS) of a formula F if F ′ ⊆ F and F ′ is minimally
unsatisfiable. In general, a given unsatisfiable formula F may
have more than one MUS.

Motivated by several applications (including PBA), minimal
unsatisfiability and related concepts have been extended to
CNF formulas where clauses are partitioned into disjoint sets
called groups [16], [11].

Definition 1: Given an explicitly partitioned unsatisfiable
CNF formula F = G0 ∪ · · · ∪ Gn (a group-CNF formula),
a group oriented MUS (or, group-MUS) of F is a subset
F ′ = G0 ∪ Gi1 ∪ · · · ∪ Gik of F such that F ′ is unsatisfiable
and, for every 1 ≤ j ≤ k, F ′ \ Gij is satisfiable.
Note the special role of Go (group-0) — the clauses of this
group are always included in the GMUS. In a way, the set of
groups G1, . . . ,Gn is minimized with respect to G0.

Over the years a number of effective MUS and GMUS
computation algorithms have been developed. At the moment,
the most efficient algorithms are based on a variation of the
deletion-based approach, whereby clauses (resp. groups) are
removed one at a time and the resulting formula is tested
for satisfiability. If the formula is satisfiable, the clause (resp.
group) is necessary and is included in the computed MUS
(resp. GMUS). Some of the additional necessary clauses
(resp. groups) can be detected using a technique called model
rotation [17]. If the formula is unsatisfiable, the clause (resp.
group) is removed, together with any other clause (resp. group)
that does not appear in the unsatisfiable core returned by
the SAT solver. See [4] for an example state-of-the-art MUS
extraction algorithm.

IV. GLA— GATE-LEVEL, HYBRID ABSTRACTION

In this paper we work with a gate-level version of the SAT-
based hybrid abstraction algorithm developed in [9]. A number
of important optimizations to this algorithm have been recently
developed and implemented in the publicly available version
of the verification framework ABC [8] (&gla command in
ABC). The details of the optimizations are described in [7].

Given a sequential AIG A, the algorithm starts with the
abstraction A′ that includes only the output gate p of A.
Beginning at frame k = 0, the algorithm adds gates to A′

as long as the formula BMC(A′, k = 0) is satisfiable, i.e. as
long as A′ has counterexamples of length 0. If no gates can be
added, the property is violated in frame 0, and the algorithm
terminates. Otherwise, when BMC(A′, 0) becomes unsatisfi-
able, A′ is precise to frame 0. However, given that the gates of
A′ that do not appear in the unsatisfiable core of the formula
(returned by the underlying SAT solver) are not needed to
prove the absence of counter-examples of length 0, these gates
can removed from A′ resulting in a smaller abstraction, that is
still precise to frame 0. On the next iteration, the frame number
k is incremented, and the algorithm proceeds to eliminate all
counterexamples of length k = 1, by adding gates to A′ until
the formula BMC(A′, k = 1) is unsatisfiable. Once again, the
unsatisfiable core of BMC(A′, k = 1) is analyzed to remove
some of the gates from A′ — note that this time care must
be taken to remove only those gates (outside of the core) that
do not appear in the abstraction A′ computed in the previous
iteration. The high-level flow of the algorithm is presented in
Alg. 1. Here the abstraction Atmp is used so that the algorithm
has access to the abstraction A′ computed in the previous iter-
ation. The function Refine-Abstraction(Atmp, A, τ, k)



Alg. 1: GLA(m) — Gate-Level Abstraction (with core
minimization)
Input : Sequential AIG A, frame number k
Output: CEX or abstraction A′ ⊆ A precise to frame k

1 A′ ← {p} // the output gate only, initially
2 k′ ← 0 // time-frame number, 0 ≤ k′ ≤ k

3 while k′ ≤ k do
4 Atmp ← A′

5 while BMC(Atmp, k
′) ∈ SAT do

6 τ ← satisfying assignment of BMC(Atmp, k
′)

7 Ga ← Refine-Abstraction(Atmp, A, τ, k)
8 if Ga = ∅ then return CEX
9 Atmp ← Atmp ∪Ga

// BMC(Atmp, k
′) ∈ UNSAT here

10 Gr ← gates incl. in unsat. core of BMC(Atmp, k
′)

MIN Gr ← Minimize(Gr, A
′, k′) // minimization

11 A′ ← A′ ∪Gr // Inv: A′ is precise to k′

12 k′ ← k′ + 1

return A′ // A′ is precise to k

returns a set of gates whose addition to Atmp will eliminate the
counterexample represented by assignment τ . If the returned
set is empty, the counterexample cannot be eliminated, i.e.
it is a true counterexample. The details of the refinement
algorithm are not relevant for this paper. However, it is worth
to mention that in the implementation of GLA in ABC the
refinement is performed using a priority-based refinement
scheme introduced in [13].

The loop invariant (stated on line 11) guarantees that
when the algorithm terminates and returns abstraction A′, the
abstraction is precise to frame k. In the typical verification
flow, the abstraction is passed to a complete proof engine,
which either determines that the property holds in A′ (and,
thus, in A), or finds a counterexample of length > k. If
the counterexample is spurious (i.e. does not hold in A), one
possibility is to re-run the abstraction algorithm with a higher
frame bound, and initialized with A′.

One of the key advantages of the algorithm is that, as
demonstrated in [9], it can be implemented using a single
instance of an incremental SAT solver. This also makes it
particularly suitable for the integration of MUS-based core
minimization procedure, as described below.

V. CORE MINIMIZATION IN ABSTRACTION

Earlier work that suggested to use MUS-based minimization
in the context of PBA [11], has proposed to extract group-
MUS from the BMC unrolling of the final abstraction. Here
we are interested in “on-line” core minimization — that is,
the goal is to shrink the current abstraction at the end of each
major iteration of the algorithm Alg. 1. We note that hybrid
abstraction algorithms (as opposed to PBA-based approaches)
are particularly well suited for the application of MUS-based
core minimization. This is due to the fact that abstractions are
constructed ground-up and incrementally, and so the typical
minimization problems that arise in this context are not too
difficult for MUS extractors.

The function Minimize(Gr, A
′, k′) on line MIN of Alg.

1 constructs a group-CNF instance from the current BMC for-
mula, and runs a group-MUS extractor with the goal to reduce
the number of gates added during the last refinement. The
encoding to group-CNF is performed in the following way.
Since the algorithm grows the abstraction monotonically, all
gates that are included in the abstraction A′ (from the previous
time frame) must be included in the new abstraction. As such,
the gates in A′ are not subject to minimization, and so the
image of these gates over the time-frames 0, . . . , k′ is added
to group 0 (recall, this is the group that contains background
clauses with respect to which the group-MUS computation is
performed). Additionally, the property assertion p for frame k′

is inserted into group 0. The gates from the set Gr that are not
in A′ are the new gates, added by the refinement procedure,
and these are the gates on which we perform minimization.
For each such gate g, we create a group Gg that contains the
clauses that represent g in all time frames from 0 to k′, that
is Gg =

⋃
0≤i≤k′ cls(g, i). The resulting group-CNF instance

is then passed to a group-MUS extraction algorithm (we will
describe the implementation details below), and the gates that
correspond to the groups not included in the computed group-
MUS are removed from Gr. Note that by the definition of
group-MUS, the resulting set of groups, together with group
0, is unsatisfiable, and so the invariant of Alg. 1 still holds.

The fact that the final set of gates included in the abstraction
is selected by the core minimization procedure (as opposed
to being constructed by the SAT solver during the refutation
of the BMC formula) allows a fine-grained control over the
gates that are likely to end up in the abstraction. For once,
group-MUS extractor may vary the order in which the groups
are tested for necessity — groups that are tested first, and
so the corresponding gates, are more likely to be removed.
For example, we can force group-MUS extractor to first try
to remove groups with a smaller total clause length — in
the setting of GLA, this corresponds to removing flops, and
thus prioritizing AND gates (keeping them in the abstraction).
The reverse order would prioritize flops instead. Finally, we
can force the extractor to keep particular gates by putting
them into group-0. Additional possibility is to minimize the
full set of gates in Atmp \ A′, rather than the core Gr

returned by the SAT solver. This is likely to cause additional
overhead due to the minimization. However it might also give
the extractor’s heuristics more freedom to prioritize certain,
“good”, gates. Finally, we can also control the time limit for
each call to Minimize — when the time limit is reached,
a group-MUS over-approximation is returned to the main
algorithm. Although we have implemented these fine-grained
control options in our prototype (discussed below), in this
paper we mostly deal with the results of a more high-level
control of the minimization effort — this refers to making
the decision on whether or not to apply minimization on a
particular timeframe, or a range of timeframes. For example,
minimization can be applied on every frame, or only on the
first half of the frames, or only on the last 5 frames. As
we found out, the minimization effort has a very peculiar,
and somewhat unexpected, impact on the size of the resulting



abstractions. We will come back to this point in Section VII.

VI. EXPERIMENTAL STUDY

A. Implementation details

We built a prototype implementation of GLAm by inte-
grating an open-source MUS extractor MUSer2 [18] into the
optimized implementation of GLA available in the public
version of the verification framework ABC [8]. The MUS
extractor in this prototype uses its own, separate, instance
of a SAT solver, that is re-initialized in every invocation of
Minimize in GLAm. Clearly this causes a large performance
penalty since the SAT solver inside MUSer2 has to re-prove
the instance on every call. To perform an objective comparison
we forced MUSer2 to perform an initial call to the SAT solver
with the instance prior to removing any groups, and discounted
the time of this call. In the final version of GLAm the
extraction will be performed using the SAT solver employed in
GLA for BMC queries and refinement. This can be achieved,
for example, by adding the activation literals to the clauses that
correspond to the gates added during refinement, minimizing
the core using the activation literals (as it is done in MUSer2),
and asserting the activation literals for the removed and the
remaining clauses correspondingly. Given that the number of
refinement gates is typically relatively small, the overhead
from activation literals is unlikely to be significant.

B. Experimental set-up and methodology

The set of benchmark testcases for our experiments was
drawn from the set of single-property unsatisfiable (i.e. cor-
rect) benchmarks from HWMCC’11. The purpose of abstrac-
tion is to help verify properties that cannot be proved, or are
very difficult to prove, on the full design. As such, to evaluate
the effects of minimization in the context of abstraction, we
selected those instances from the set that could not be proven
with a modern proof engine within a non-trivial timeout. The
proof engine for our experiments was chosen to be PDR [19]
(also available in ABC) — a highly-optimized implementation
of the powerful model-checking algorithm IC3 [20]. The
instances that could not be proven in under 900 seconds were
selected for our experiments.

As the ultimate goal of abstraction is to simplify property
verification, the quality of abstraction should be associated not
only with its size, but also with the effort (time) required to
prove the correctness of the abstracted design. The following
experiments focus on the evaluation of the quality of abstrac-
tions: to prove a property, an abstraction with higher quality
requires shorter run-times. For each instance, the following
steps are performed until the property is proved: starting from
abstraction depth k = 1, (i) compute abstraction to depth k
using GLA or GLAm (ABC command &gla with the default
parameters is used for GLA) with the timeout of 900 seconds;
(ii) perform model checking using PDR [19] (ABC command
pdr) with the timeout of 900 seconds; (iii) if the property is
proved, terminate and report k, otherwise increase k by 1, and
peform steps (i)− (iii) again. If an algorithm cannot produce
an abstraction that can be proven within the allowed iterations
(k from 1 to 99), abstraction depth is marked as >99.

C. Discussion of the initial results

The results of the initial set of experiments are presented
in the left and the centre plots of Figure 1 and in Table I.
The left plot in Figure 1 presents the comparison of the
sizes of abstractions computed by GLA and GLAm — for
each instance the two algorithms were run to the same frame
number, and the size of abstraction, divided by the initial size
of the instance, is plotted. The plot demonstrates that on the
vast majority of the testcases the abstractions constructed by
GLAm are smaller. However, what is unexpected, is that for
some testcases the resulting abstraction is actually larger with
minimization than without it. This motivated a deeper study
of the impact of the minimization on the abstraction size —
we discuss the results in Section VII.

It should come as no surprise that MUS-based core mini-
mization does not come for free. The centre plot of Figure 1
compares the run-times of the GLA algorithm with and
without core minimization. We observe that although for the
majority of the instances the overhead is within the factor of
2, in some cases the overhead can be very significant.

So, is it worth to use MUS-based minimization in GLA ? To
answer this question, we looked at the impact of minimization
on the total verification time, that is, the time for abstraction
plus the time for the subsequent proof (with PDR), if one could
be constructed. The results of the comparison are presented
in Table I. In the table, columns #Obj, Dep, AbsT, PdrT
and TotT denote the number of AIG Objects, BMC depth,
CPU time for abstraction, CPU time for proving using PDR
and total CPU Time required for verification, respectively.
We observe that for the easier testcases minimization leads
to an increase in the verification time. However, for the
difficult instances the situation is very different. Consider,
for example, 6s8 — the precise abstraction was constructed
in half the time, and one third of the frame bound, and,
more significantly, the proof engine handled the abstraction
from GLAm in just under 500 seconds, while the abstraction
produced without minimization could only be proven in over
1400 seconds, giving, in total, 3x reduction in verification time.
On intel011 and intel015, the gain from minimization
was 2x. Finally, GLA was unable to construct a precise
abstraction for intel031 in under 100 frames, while GLAm
has built and proved the abstraction in 500 seconds. Notice
that on neclaftp1002 we observe 13x speed-up in total
verification time, due to reduced abtraction computation time.

The current set of results suggests that MUS-based min-
imization can provide a significant performance boost on
difficult to verify testcases.

VII. MINIMIZATION AND THE SIZE OF ABSTRACTION

As discussed in Sec. V the effort put into the core mini-
mization procedure can be controlled in a number of ways.
One of the possibilities is to adjust the time limit for each
call to Minimize in Alg. 1, in effect performing less pre-
cise minimization at higher time-frames. This effect can be
replicated by controlling the start and end time-frames for
minimization instead. By GLAm[α, β] we refer to the version
of GLAm algorithm where the minimization is performed only



Fig. 1. Comparison between various abstraction algorithms: left — GLA vs GLAm in terms of abstraction size (normalized to the size of the original instance);
center — GLA vs GLAm in terms of CPU time; right — GLA vs GLAm[0, 0.5] and GLA vs GLAm[0.5, 1] in terms of abstraction size (normalized).

TABLE I
DETAILED COMPARISON BETWEEN GLA AND GLAM

HWMCC Original GLA GLAm
Name #Obj Dep #Obj AbsT PdrT TotT Dep #Obj AbsT PdrT TotT
6s19 14916 8 943 0.82 2.40 3.22 8 932 2.03 3.03 5.06
6s8 3413 92 2393 638.21 831.75 1469.96 39 2259 359.40 140.17 499.57
6s9 16163 8 976 0.82 3.33 4.15 8 963 1.60 3.79 5.39
intel011 8767 58 3385 85.15 474.24 559.39 64 3065 153.94 100.27 254.21
intel015 8293 64 3355 66.97 685.68 752.65 66 3249 136.20 356.01 492.21
intel018 6363 58 2510 40.79 57.56 98.35 58 2346 63.90 33.31 97.21
intel019 6611 60 2709 55.28 48.36 103.64 58 2513 84.09 17.42 101.51
intel020 5603 52 1888 21.52 12.16 33.68 54 1952 38.42 17.46 55.88
intel021 5739 54 1941 22.06 14.75 36.81 56 1993 42.43 24.26 66.69
intel022 8573 62 2914 98.45 15.65 114.10 62 2824 160.76 28.59 189.35
intel023 5585 60 2073 45.48 11.94 57.42 60 1919 61.26 8.99 70.25
intel024 5570 58 1911 35.45 5.96 41.41 58 1905 55.37 19.60 74.97
intel026 5955 48 1890 14.95 2.08 17.03 48 1861 26.35 1.79 28.14
intel029 8610 58 2679 91.04 12.36 103.40 58 2581 131.57 7.81 139.38
intel031 8627 >99 - - - - 85 4422 346.94 186.51 533.45
intel062 9895 23 7321 17.35 191.32 208.67 23 7298 39.58 184.57 224.15
neclaftp1001 71264 7 12205 2.91 0.31 3.22 6 10591 9.86 0.22 10.08
neclaftp1002 71264 17 14154 296.94 4.46 301.40 9 11571 22.10 0.17 22.27
neclaftp2001 43779 22 10027 233.79 7.44 241.23 15 9181 211.49 2.24 213.73
neclaftp2002 43779 19 9702 335.67 4.38 340.05 20 9320 243.74 6.59 250.33

TABLE II
DETAILED COMPARISON BETWEEN THE VARIOUS ALGORITHMS

HWMCC GLA GLAm GLAm[0, 0.5] GLAm[0.5, 1]
Name TotT Dep #Obj AbsT PdrT TotT Dep #Obj AbsT PdrT TotT Dep #Obj AbsT PdrT TotT
6s19 3.22 8 932 2.03 3.03 5.06 8 937 1.01 2.96 3.97 8 939 3.22 2.89 6.11
6s8 1469.96 39 2259 359.40 140.17 499.57 39 2321 183.91 101.64 285.55 39 2388 160.15 113.24 273.39
6s9 4.15 8 963 1.60 3.79 5.39 8 965 0.88 3.47 4.35 8 969 1.85 3.49 5.34
intel011 559.39 64 3065 153.94 100.27 254.21 62 3385 113.81 427.90 541.71 64 3062 150.60 136.41 287.01
intel015 752.65 66 3249 136.20 356.01 492.21 >99 - - - - 66 3211 181.86 138.00 319.86
intel018 98.35 58 2346 63.90 33.31 97.21 58 2510 51.65 63.41 115.06 58 2347 53.65 19.64 73.29
intel019 103.64 58 2513 84.09 17.42 101.51 60 2709 74.53 55.86 130.39 60 2464 79.92 43.31 123.23
intel020 33.68 54 1952 38.42 17.46 55.88 54 2103 30.45 12.93 43.38 52 1873 39.16 17.97 57.13
intel021 36.81 56 1993 42.43 24.26 66.69 54 1926 18.00 18.35 36.35 54 1917 22.95 15.42 38.37
intel022 114.10 62 2824 160.76 28.59 189.35 60 2879 63.59 16.05 79.64 62 2910 97.95 21.49 119.44
intel023 57.42 60 1919 61.26 8.99 70.25 60 1927 45.05 11.04 56.09 60 1919 57.91 9.63 67.54
intel024 41.41 58 1905 55.37 19.60 74.97 58 2006 53.47 15.58 69.05 58 1902 60.99 11.01 72.00
intel026 17.03 48 1861 26.35 1.79 28.14 48 1890 13.72 2.02 15.74 48 1861 16.40 1.64 18.04
intel029 103.40 58 2581 131.57 7.81 139.38 58 2679 102.66 13.00 115.66 58 2597 81.38 10.19 91.57
intel031 - 85 4422 346.94 186.51 533.45 >99 - - - - 58 4362 178.99 47.40 226.39
intel062 208.67 23 7298 39.58 184.57 224.15 23 7308 26.57 122.22 148.79 23 7306 31.37 152.03 183.40
neclaftp1001 3.22 6 10591 9.86 0.22 10.08 7 10592 15.45 0.32 15.77 7 12068 6.48 0.30 6.78
neclaftp1002 301.40 9 11571 22.10 0.17 22.27 12 12037 22.74 0.53 23.27 20 14150 350.96 2.30 353.26
neclaftp2001 241.23 15 9181 211.49 2.24 213.73 15 9482 150.34 4.43 154.77 22 10026 322.05 7.23 329.28
neclaftp2002 340.05 20 9320 243.74 6.59 250.33 22 9350 158.27 4.61 162.88 19 9670 298.88 17.93 316.81

on frame numbers f , such that αk ≤ f ≤ βk, where k is
the number of frames passed to GLAm. The scatter plot on
the right of Figure 1 compares the sizes of the abstractions

produced by GLAm[0, 0.5] (whereby minimization is per-
formed only in the first half of the frames) and GLAm[0.5, 1]
(minimization is only during the second half of the frames)



with the size of abstraction produced by GLA. Interestingly,
while the minimization on the second half produces smaller
abstraction in all of the cases, the minimization on the first
half of the frames can sometimes produce larger abstractions
than without the minimization at all. We conjecture that this
effect is due to the fact that the aggressive minimization at
the beginning “squeezes” abstraction too much, forcing the
abstraction algorithm to compensate for the missing logic once
the minimization is disabled. Since, at that point, cores are not
minimized anymore, the cores from the SAT solver appear to
become less precise.

Nevertheless, as demonstrated in Table II the strategy seems
to work well for the easier testcases. However, the best results
for the difficult test cases are obtained with GLAm[0.5, 1]
which minimizes the cores in the second half of the frame-
range. Whereas GLA vs. GLAm results in 11 vs. 9 wins, the
use of GLAm[α, β] yields further improvements over GLA,
namely, 5 vs. 3, 7 and 5 wins for the different versions
of GLAm[α, β]. To gain a better insight into the effects of
varying the minimization effort on the size of abstraction we
ran an extended set of experiments on some of the more
difficult instances. In these experiments we ran GLAm[0, α)
for the values of α = 0, 0.1, . . . , 1, with [0, 0) denoting no
minimization, and [0, 1) denoting full minimization, as well as
GLAm(1− β, 1] for the same values of β. Thus, the “alpha”
experiments minimize starting from the beginning for larger
and larger intervals, as α grows, while the “beta” experiments
minimize at the end, again for larger and larger intervals, as
β grows. Figure 2 presents the results for two instances: 6s8
and intel011. We note that as we start minimization from
the beginning (red and blue lines), in both cases there is a peak
in the abstraction size, and as the minimization interval grows,
the abstraction gets tightened, although not proportionally to
the size of the interval. Eventually, the abstraction reaches
small size, although, for 6s8, not the smallest possible. The
impact of minimization at the end of the interval is entirely
different (green and purple lines) — initially, the size of
abstraction does not change, but at a certain point (β = 0.1
for intel011, β = 0.6 for 6s8) there is a sharp drop in
the abstraction size, however for 6s8 some of the reductions
disappear as we approach the full range.

Clearly, this behaviour requires a deeper analysis. However,
at the moment, it appears that minimization on the second
half of the interval is somewhat more robust — this is also
supported by the results in Table II.

VIII. CONCLUSIONS

This paper studies the use of core minimization using
MUS in SAT-based abstraction algorithms. Experimental re-
sults on difficult industrial testcases from HWMCC’11 show
that MUS-based core minimization can produce significant
reductions in proof time.

An interesting future research topic is to apply MUS-based
minimization during the refinement (i.e. in the inner while-
loop of Alg. 1). Although currently GLA is using priority-
based refinement, it can be easily modified to perform SAT
based refinement. In this case, whenever each of the coun-
terexamples is refuted, MUS-based minimization can be used

Fig. 2. Relationship between the minimization effort and the size of the
resulting abstraction.

immediately to clean the abstraction, before it gets polluted
with a large number of useless logic.
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