
Enhancing Multicore Reliability through Wear
Compensation in Online Assignment and Scheduling

Thidapat Chantem
Department of ECE

Utah State University
Logan, UT 84322

tam.chantem@usu.edu

Yun Xiang
Department of EECS

University of Michigan
Ann Arbor, MI 48109
xiangyun@umich.edu

X. Sharon Hu
Department of CSE

University of Notre Dame
Notre Dame, IN 46556

shu@nd.edu

Robert P. Dick
Department of EECS

University of Michigan
Ann Arbor, MI 48109

dickrp@umich.edu

Abstract—System reliability is a crucial concern especially
in multicore systems which tend to have high power density
and hence temperature. Existing reliability-aware methods are
either slow and non-adaptive (offline techniques) or do not use
task assignment and scheduling to compensate for uneven core
wear states (online techniques). In this article, we present a
dynamically-activated task assignment and scheduling algorithm
based on theoretical results that explicitly optimizes system life-
time. We also propose a data distillation method that dramatically
reduces the size of the thermal profiles to make full system
reliability analysis viable online. Simulation results show that our
algorithm results in between 27–291% improvement to system
lifetime compared to existing techniques for four-core systems.

I. INTRODUCTION & CONTRIBUTIONS

While multicore systems offer superior performance and
power efficiency, reliability issues have become a major con-
cern. Shrinking device sizes and increasing transistor counts
result in high power density and hence temperature. System
reliability is a strong function of temperature; a 10–15 ◦C
difference in operating temperature can result in a 2× dif-
ference in the lifespan of a device [1]. For many applications,
maximizing system lifetime is an important and challenging
goal in order to avoid the cost of replacing an entire system and
maintain quality of service (QoS) such as user’s satisfaction.

According to Hartman et al., temperature-aware approaches
(e.g., [2]–[9]) are not sufficient in maximizing system life-
time [10]. There are a few research papers on reliability-aware
multicore systems (e.g., [10]–[12]). However, since finding a
task assignment and scheduling solution that optimizes the
system mean time to failure (MTTF) usually involves some
type of search algorithm, existing approaches usually only
provides offline solution that cannot adapt to dynamic changes
in application requirements. Coskun et al. presented a collec-
tion of online techniques to reduce a job’s impact on system
reliability [12]. However, these techniques do not directly
consider the wear state of a core and do not compensate for
wear imbalance, which reduces system MTTF. The work by
Paterna et al. exploited core activity duty cycling to regulate the
percentage of idle time on cores that are more likely to fail [13]
but did not specifically account for thermal cycling. Hartman
and Thomas [14] relied on the existence of wear sensors to
remap tasks online. Unfortunately, wear sensors [15], [16] are
not yet widely available and cannot detect all common IC

This work was supported in part by Utah State University, in part by a research
contract from the Sandia National Laboratories, and in part by the NSF under
award CCF-0964763.
978-3-9815370-0-0/DATE13/ c©2013 EDAA

failure mechanisms. In contrast to existing work, we make
the following main contributions.

1) We analytically determine the thermal profile that
maximizes system MTTF for any given workload.
Our analysis allows for a trade-off between two
factors that significantly impact system reliability:
temperature and thermal cycling.

2) We present an online task assignment and scheduling
algorithm to maximize system lifetime.

3) To reduce runtime overhead, we propose a method
to adaptively adjust the activation frequency of our
online algorithm.

4) To make full system reliability analysis viable online,
we propose a high-fidelity data reduction method to
compress potentially large temperature traces using
temperature and frequency bins.

II. SYSTEM MODEL AND ASSUMPTIONS

The system consists of |M | heterogeneous cores,
m0,m1, · · · ,m|M |. Each core is equipped with a temperature
sensor that continuously outputs the core’s temperature. Any
reading inaccuracy due to temperature sensor time lag can be
ignored since it is extremely unlikely for a core’s temperature
to change drastically within that time lag. The system operating
temperature is between 45 ◦C and 100 ◦C and no processor
throttling takes place in this temperature range.

The system workload consists of a number of non-
preemptive, periodic, and independent tasks. The workload
may change over time due to changes in user inputs or system
state. When it is executing on core mj , task τi has an execution
time Ci,j . The utilization of τi on mj is the percentage of
time τi requires from mj . Task τi is also characterized by
pi,j , which is its average power consumption when executing
on mj . Since we consider a heterogeneous system, we define
pi to be the average power consumption of τi when executing
on some reference processor. This makes it possible to rank
tasks by power consumption. No migration is allowed once a
task starts executing on a core.

There are several device lifetime failure mechanisms that
are presently dominant for ICs: electromigration (EM) [17],
[18], time-dependent dielectric breakdown (TDDB) [17], [19],
stress migration (SM) [17], and thermal cycling (TC) [20].
Please refer to our technical report [21] for details.

To maximize system MTTF, we start by noting that in
general, the lower the temperature, the better the reliability.
This observation has been made by several researchers, e.g.,

s = 0.5

s = 0.5

Core 0

Core 1

(a) Setup 1. MTTF is 31.58 years.

s = 1

s = 0

s = 1

s = 0

Core 0

Core 1

(b) Setup 2. MTTF is 1.10 years.

s = 1

s = 0

s = 1

s = 0

Core 0

Core 1

(c) Setup 3. MTTF is 3.14 years

Fig. 1: Impact of thermal cycling on system MTTF.

[10]–[12]. For EM, TDDB, and SM, the failure rates are
exponential functions of temperature. For TC, however, the
amplitudes and frequencies of the thermal cycles matter as
much as the maximum temperatures of those cycles. While
some existing work has highlighted the importance of TC and
proposed techniques to reduce the frequencies and amplitudes
of thermal cycles [12], a general solution to achieve the
conflicting goal of reducing temperature and reducing the
amplitudes and frequencies of thermal cycles is still needed.

III. IDEAL HOMOGENEOUS CORES

We first focus on the ideal setup where the system is
homogeneous. Details on our reliability model as well as
proofs to lemmas and theorems can be found in our technical
report [21].

Theorem 1. Assume a 2n-core system which consists of
homogeneous cores with identical lateral and vertical thermal
and electrical characteristics and identical initial wear state
at time t. Further assume that the power distribution is fixed
during the time interval [t, t+ ∆t] for each core. Then at time
t+∆t the system MTTF is maximized if and only if the power
is distributed evenly among the cores during [t, t+ ∆t].

It follows that to maximize system MTTF, perfect spatial
and temporal load balancing must be achieved. In other words,
the maximum core wear state among all the cores must be
minimized. We use an example to demonstrate the significant
impact of load balancing on system lifetime. (For this example
and the rest of the paper, system MTTF values are obtained
using a system-level reliability modeling tool [22].) Consider
two ideal homogeneous cores with a maximum power con-
sumption of 65 W. There are ten tasks with a utilization of 0.1
each. The system MTTF is only 3.27 years if all the tasks are
executed on only one core. On the other hand, if the workload
is evenly distributed (i.e., five tasks per core), the system
MTTF is 31.6 years, which is almost a 10× improvement.

Due to task execution granularity and performance con-
straints such as response times, achieving absolute spatial and
temporal load balancing is rarely possible. The goal, then, is to
understand which types of load unbalances have the smallest
impacts on system reliability.

IV. NON-IDEAL CORES

We discuss lifetime optimization on heterogeneous systems
and the trade-offs between temperature and thermal cycles.

A. Heterogeneous Core and Cores with Uneven Wear States

We start with some general observations pertaining to
any multicore system. For a system that initially consists of
perfectly homogeneous cores, the cores will eventually have
different wear states unless perfect spatial and temporal load

balancing is maintained at all times. One way to slow down
the wear process is to use wear compensation, which is the
process of assigning loads to cores in such a way that the
maximum difference among all core wear states is minimized.
For a system that initially consists of perfectly homogeneous
cores and for which perfect spatial and temporal load balancing
cannot be achieved, wear compensation helps to maximize
system MTTF, as demonstrated by the following example.

Consider again the multicore system in Section III. Assume
that the total system utilization is 1.6, which means that both
cores are needed by the system. Ideally, each core should
execute half of the workload. However, workload may not
be perfectly divisible. Assume, for example, that the task set
consists of 5 tasks τ1, τ2, . . . , τ5, where the utilization of τ1
and τ2 is 0.5 each and the utilization of τ3, τ4, and τ5 is 0.2
each. If τ1, τ3, and τ4 are assigned to m0 and τ2 and τ5 on
m1, the system MTTF is 1.57 years. If wear compensation is
applied by swapping the loads on the cores after half of the
time duration, the system MTTF increases to 1.95 years, which
is a 24% improvement.

We can also apply the concept of wear compensation to
heterogeneous cores. That is, for such a system, maximizing
its MTTF is equivalent to maximizing the MTTF of a homo-
geneous system where cores have unequal wear.

B. Trade-Offs Between Temperature and Thermal Cycles

In contrast to wear due to EM, TDDB, and SM, which
primarily depend on temperature, wear due to TC also depends
on the amplitudes and frequencies of the thermal cycles. We
use a simple example to illustrate the impact of thermal cycles
on system lifetime. Let us reconsider the system and task set
from earlier. In addition, consider the three task execution
patterns shown in Fig. 1. In the first two setups, the system is
spatially balanced. However, the thermal profile from Setup 2
contains large and frequent thermal cycles, which cause system
MTTF to be reduced by more than 30×. On the other hand, a
thermal profile that is neither spatially nor temporally balanced
but with smaller thermal cycles (Setup 3) lead to better system
MTTF.

For the rest of this section, we describe how to determine
the most desirable thermal profile for the practical scenarios
where thermal cycles cannot be avoided. Essentially, for some
fixed workload, we wish to determine the execution (and hence
power) profile that maximizes system reliability. In order to
compare any two thermal profiles T1 and T2, we observe that
there are three aspects of thermal cycling, which lead to eight
different cases (or four unique cases), as shown in Tab. I. We
now present each unique case.

Lemma 1. Given two thermal profiles T1 and T2. Let ∆T1

and ∆T2 denote the maximum amplitudes of all thermal cycles
in T1 and T2, respectively, C1 and C2 be the numbers
of thermal cycles in T1 and T2, respectively, and Tmax1

TABLE I: A comparison between any two thermal profiles will result in one of these four cases.

Case Amplitudes Frequencies Max. temps. Reliability
1 ∆T1 ≥ ∆T2 C1 ≥ C2 Tmax1 ≥ Tmax2 MTTF1 ≤MTTF2

2 ∆T1 ≥ ∆T2 C1 ≥ C2 Tmax1 ≤ Tmax2 MTTF1 ≤MTTF2 if C1
C2
≥ 9.56 or ∆T1

∆T2
≥ 3.09

3 ∆T1 ≥ ∆T2 C1 ≤ C2 Tmax1 ≥ Tmax2 MTTF1 ≤MTTF2 if C2
C1
≤

(
∆T1
∆T2

)2

4 ∆T1 ≥ ∆T2 C1 ≤ C2 Tmax1 ≤ Tmax2 MTTF1 ≤MTTF2 if
(

∆T1
∆T2

)2
≥ 9.56

C2
C1

or MTTF1 ≥MTTF2 if C2
C1
≥

(
∆T1
∆T2

)2

and Tmax2 be the maximum temperatures in T1 and T2,
respectively. Assume that the system operating temperature is
between 45 ◦C and 100 ◦C. Further assume that the number
of cycles to failure due to Ti is Ni = A · ∆T−bi e

Ea
κTmaxi ,

where A is some constant, Ea = 0.42, κ = 8.62× 10−5, and
b = 2. If ∆T1 ≥ ∆T2, C1 ≥ C2, and Tmax1 ≥ Tmax2, then
MTTF 1 ≤ MTTF 2.

Lemma 2. Given two thermal profiles T1 and T2, the system
operating temperature range, and the number of cycles to
failure as described in Lemma 1. If ∆T1 ≥ ∆T2, C1 ≥ C2,
and Tmax1 ≤ Tmax2, then MTTF 1 ≤ MTTF 2 if C1

C2
≥ 9.56

or ∆T1

∆T2
≥ 3.09.

Lemma 3. Given two thermal profiles T1 and T2, the system
operating temperature range, and the number of cycles to
failure as described in Lemma 1. If ∆T1 ≥ ∆T2, C1 ≤ C2, and

Tmax1 ≥ Tmax2, then MTTF 1 ≤ MTTF 2 if C2

C1
≤

(
∆T1

∆T2

)2

.

Lemma 4. Given two thermal profiles T1 and T2, the system
operating temperature range, and the number of cycles to
failure as described in Lemma 1. If ∆T1 ≥ ∆T2, C1 ≤ C2,

and Tmax1 ≤ Tmax2, then MTTF 1 ≤ MTTF2 if
(

∆T1

∆T2

)2

≥

9.56C2

C1
or MTTF1 ≥MTTF2 if C2

C1
≥

(
∆T1

∆T2

)2

.

A summary of our findings is provided in Tab. I. Numerical
values 9.56 and 3.09 depend on the system operating temper-
ature range.

V. ONLINE ALGORITHM

We now present our online reliability-aware task assign-
ment and scheduling algorithm for multicore systems.

A. Overview & Formal Problem Statement

One way to achieve perfect spatial and temporal load
balancing is to perform constant task migration. Unfortunately,
such a solution is not practical due to migration overhead.
The solution also assumes a continuous stream of infinitesimal
tasks that can be distributed in a perfectly balanced manner,
which is unrealistic. In our approach, we adopt an online
algorithm to solve the reliability problem in multicore systems.
We focus on periodically assigning and scheduling tasks to
compensate for existing spatial and temporal load imbalances
without unnecessarily increasing the schedule length. Specifi-
cally, we aim to solve the following problem.

Problem 1: Given a system of heterogeneous cores with some
initial wear states, determine online task to core assignment
and task scheduling such that the schedule length is minimized
and system MTTF is maximized.

B. Reliability-Aware Task Assignment and Scheduling

The main idea of our algorithm is to balance core wear
states during the task assignment phase without putting unnec-
essarily loads on any given core so as to slow down the wear
process. Then, during the task scheduling phase, we use our
prior knowledge of the desirable thermal profile to schedule
tasks on a given core. Our algorithm is described in Alg. 1. The
algorithm takes as inputs a set of cores M , a set of tasks Γ, and
a system parameter Tcutoff , which is used to decide whether
a core is considered hot or cool. We start by estimating the
wear state of each core using some system-level reliability
modeling tool (Line 1). Such a tool returns a structure ri
for core mi, which contains wear state due to EM (ri.EM),
TDDB (ri.TDDB), SM (ri.SM), TC (ri.TC), as well as the
overall wear state of core mi (ri.totalWear). To slow down
the wear process on the cores by as much as possible, we adopt
a largest-task first (LTF)-based algorithm [23] to assign tasks
to cores. The LTF-based algorithm, which attempts to spatially
balance load, processes tasks in a non-increasing order of
energy consumption and assign them to the core with the least
total energy consumption (Lines 2–6). Once a task is assigned
to a core, the core’s total energy consumption is updated. Since
the power consumption and execution time of each task on a
core is known (Section II), the task’s energy consumption can
be easily calculated. Also, while we do not consider dynamic
voltage and frequency scaling (DVFS) here, existing DVFS
techniques can be readily incorporated.

To make scheduling decisions, we start by comparing the
wear states of the cores in the system to those of the least
worn core. Specifically, we first determine, for the least worn
core, the average core wear state due to EM, SM, and TDDB
(Line 7), as well as the core wear state due to TC (Line 8).
Recall that while wear due to EM, SM, and TDDB primarily
depend on temperature, wear due to TC also depends on
the amplitudes and frequencies of the thermal cycles. In the
following for-loop (Lines 9–14), Alg. 1 classifies each core in
the system according to its wear characteristics (Lines 11–14).

Next, each core is classified as either hot (Line 16) or cool
(Line 28) by comparing the core’s current temperature from
the appropriate temperature sensor to Tcutoff . If a core is only
worn due to TC, cycles should be avoided (Lines 17–18) and
tasks are ordered in a non-increasing (non-decreasing, resp.)
order of average power consumption for a hot (cool, resp.)
core. Average power is a good estimation of a task’s impact on
a core’s temperature since temperature is a function of power.
That is, a hot (cool, resp.) core will execute tasks that are
expected to raise (lower, resp.) the core’s temperature first to
ensure a smoother thermal profile, i.e., one with fewer cycles.

Let p = {pi}, i = 1, . . . , |Γ|. If a core is worn due to
high temperature (Lines 19–20), tasks are scheduled in the
following order for the hot core: task with the lowest value
in p, task with the highest value in p, task with the second

Algorithm 1 Online Rel Aware Algorithm(M , Γ, Tcutoff)

1: r← sys rel(M) // Compute wear state of each core
2: sort M in a non-decreasing order of ri.totalWear , i =

1, . . . , |M |
3: sort Γ in a non-increasing order of energy consumption
Ei = pi · Ci, i = 1, . . . , |Γ|

4: M ′ ← LTF Energy(Γ, M) // M ′ is sorted in a non-
increasing order of total energy of assigned tasks

5: for i = 1, . . . , |M | do // Least worn cores receive largest
load

6: assign tasks on m′i to mi, m′i ∈M ′, mi ∈M
7: w∗T ←

r0.EM+r0.SM+r0.TDDB
3 // m0: least worn core

8: w∗TC ← r0.TC
9: for each mi ∈M do // Compare wear states of each core

to those of the least worn core to identify weaknesses
10: stateT i ← false , stateTC i ← false
11: if ri.EM+ri.SM+ri.TDDB

3 > w∗T then
12: stateT i ← true
13: if ri.TC > w∗TC then
14: stateTC i ← true
15: for each mi ∈M do // Order tasks on this core to optimize

the thermal profile according to the weaknesses of the core
16: if Tcurr i > Tcutoff then // Core temperature from

sensor exceeds the cut-off temperature and is considered
hot

17: if stateT i = false and stateTC i = true then //
Case A: avoid cycles

18: schedule tasks in a non-increasing order of pi, i =
1, . . . , |Γ|

19: else if stateT i = true and stateTC i = false then
// Case B: avoid high temperature

20: schedule tasks in the following order:
argmaxi=1,...,|Γ|pi, argmini=1,...,|Γ|pi, . . .,
i = 1, . . . , |Γ|

21: else
22: result ← compare Cases A and B according

to Tab. I
23: if result = inconclusive then
24: if ri.TC > ri.EM+ri.SMri.TDDB

3 then
25: apply case A
26: else
27: apply case B
28: else // Core temperature is below the cut-off temperature

and is considered cool
29: // Similar to the case where the core is considered

hot (Lines 17–27)

lowest value in p, and so on. In this way, a thermal profile
with more thermal cycles but lower temperature is achieved.
If the core is cool, tasks are scheduled in the same manner
except that we start with the task with the highest value in p.
Finally, if both high temperature and large and frequent thermal
cycles should be avoided, we use the conditions in Tab. I to
determine the best course of action (Lines 21–22). However,
since there may be cases that fall outside the conditions
in Tab. I, a definite answer cannot always be obtained. In such
a case, task scheduling decisions are based on whether the core
under consideration is more worn due to high temperature or
cycles (Lines 23–27). The time complexity of our algorithm
is O(|M | · |Γ| + |M | · TA + R), where O(TA) and O(R)
are the run-time complexity of a thermal analysis tool and a

Algorithm 2 Dyn Calibration Interval(M , emax, eold)

1: e← max∀mi,mj∈M |ri.totalWear − rj .totalWear |
2: if e ≥ emax or e ≥ eold then
3: activate Algorithm 1
4: return e

system-level reliability modeling tool, respectively.

VI. PRACTICAL CONSIDERATIONS

There are still unanswered questions. First, we need to
determine how often to invoke Alg. 1. Second, most system-
level reliability modeling tools tend to be slow because they
use Monte Carlo simulation to find system MTTF and the size
of the thermal trace needed can be very large depending on
the invocation period of the algorithm. Third, we have not
considered the overhead of using our algorithm online.

A. Algorithm Activation Frequency

Alg. 1 should only be activated infrequently to reduce
runtime overhead. In addition, a periodic invocation of Alg. 1
may not be desirable since a core’s wear state is a nonlinear
function that depends on current wear state. Depending on the
current wear state, it may take anywhere from a few days to
several months to increase system wear state by 10%.

We propose to dynamically calibrate the activation fre-
quency of Alg. 1 by leveraging a control-based approach,
as shown in Alg. 2. There are two situations that will in-
voke Alg. 1: (i) if the maximum difference in core wear state is
larger than the maximum tolerable difference emax, which can
be obtained via profiling, and (ii), if the maximum difference
among the wear states of the cores are increasing over time.

B. Reliability Data Reduction Method

While a complete system-level reliability analysis tool
allows us to accurately determine the wear state of each core,
it takes as an input a thermal trace, which can be in gigabytes
for a one-day run. To reduce the size of the data that must be
kept, we propose using bins to collect temperature values.

For failure mechanisms such as EM, TDDB, and SM,
which depend on actual core temperature, we use a number
of temperature bins for each core. Each bin is labeled with
a temperature range and contains the total duration a core
spends at that temperature range since the last algorithm
activation time, as shown in Fig. 2(a). Since the ordering of
the temperature points does not matter for EM, TDDB, and
SM analyses, the temperature bins, each of which contains a
single float value, are a viable solution.

For thermal cycling, we observe that TC depends not only
on the frequencies of the cycles, but also on the maximum
temperatures during the cycles and their amplitudes. Hence,
collecting only the temperature data or the frequency data is
insufficient and can lead to large inaccuracies. For this reason,
we leverage the structure of each frequency bin to capture
the essential characteristics of each thermal cycle. Each bin
is labeled with a thermal cycle range and contains a number
of sub-bins. Each sub-bin, which is tagged with a maximum
temperature range, keeps track of the number of times (i.e.,
frequency) a core experiences cycles in that range with the

[60°C-65°C)

[55°C-60°C)

[50°C-55°C)

[45°C-50°C)

...

4

2

1

0

At time 7

(a) Example tempera-
ture bins.

[15°C-20°C)

[10°C-15°C)

[5°C-10°C)

[0°C-5°C)

...

65°C
1

At time 10

65°C
0

65°C
1

65°C
0

60°C
0

60°C
0

60°C
0

60°C
0

55°C
0

55°C
0

55°C
0

55°C
0

(b) Example frequency bins. Here, there
are three sub-bins for each frequency bin.
For example, the leftmost sub-bin of the
[0◦C, 5◦C) bin indicates that one cycle of
less than 5◦C occurred at a maximum tem-
perature between 60◦C and 65◦C.

Fig. 2: Bin example.

maximum temperature falling inside the tagged maximum
temperature range. Fig. 2(b) shows some example frequency
bins. Note that thermal cycles can be detected online using the
one-pass rainflow counting algorithm [24].

The number of bins is chosen a priori. Offline simulations
can be performed to select the appropriate number of tem-
perature and frequency bins. For temperature bins, a set of
simulations involving 10,000 randomly generated datapoints
showed that having each bin span about 0.5 ◦C (e.g., a bin for
80 ◦C–80.5 ◦C) is sufficient to maintain over 99% accuracy in
core wear states. Roughly, this translates to 110 bins for our
system. For frequency bins, about 500 bins are needed, along
with 500 sub-bins, for a total of 250,000 bins to maintain
96% accuracy. While a quarter of a million bins may seem
substantial, our data distillation method reduces storage space
from several gigabytes to just a few kilobytes (for temperature
bins) and a few megabytes (for frequency bins). Last but not
least, since the run time of the reliability modeling tool also
depends on the size of the thermal trace, we have effectively
reduced the overhead associated with using the tool online. In
summary, our proposed algorithm is viable for online use since
it only needs to be activated every few days at the maximum
and since the size of the thermal trace is substantially reduced.

VII. SIMULATION RESULTS

We compare the performance of our reliability-aware task
assignment and scheduling algorithm to the following set of
representative algorithms that have been proposed in the past.

Ideal algorithm (IA) where perfect spatial and temporal load
balancing are assumed. The resultant system MTTF is the
theoretical minimum and is provided for comparison only.

Random algorithm (RA) where task assignment and schedul-
ing is performed at random.

Energy-aware algorithm (EA) where loads are balanced spa-
tially but not temporally. Tasks are ordered in a non-decreasing
order of energy consumption and assigned to the core with the
minimum aggregated energy consumption.

Temperature-aware algorithm (TA) where temperature is re-
duced by alternately executing hot and cool tasks. This al-
gorithm is loosely based on an algorithm proposed by Huang
et al. [25]. Tasks are ordered in a non-decreasing order of
average power consumption and assigned to the core with the
minimum aggregated average power consumption.

We omit comparisons with offline techniques (due to their
inability to adapt) and online techniques that involve frequent
task migration since such techniques may incur large data
transfer overhead and are likely to change cache behavior.

Ten sets of benchmarks with 100 tasks and ten sets of
benchmarks with 1000 tasks were randomly generated. Task
execution times were generated using an exponential distri-
bution (λ = 1). Task power consumption segments follow a
uniform distribution. We assume that all tasks arrive at the
same time to model the worst-case workload. Our systems
consist of four or nine homogeneous cores. Each core is
based on the Alpha 21264 processor, with a maximum power
consumption of 120 W @ 4 GHz [6]. For a given system, initial
wear state can either be even or uneven. The initial temperature
at the start of the simulation is 60 ◦C and Tcutoff = 72.5 ◦C.
After a benchmark completes, the resultant thermal profile
from HotSpot 5.0 [26] is assumed to repeat. A system-level
reliability modeling tool [22] is used to obtain reliability data.

The normalized system MTTFs for the benchmarks with
100 tasks are shown in Figs. 3(a) and 3(b) for four-core
systems with initially even and uneven core wear states,
respectively. It is not surprising that IA produces solutions
that always maximizes system MTTF. Our reliability-aware
algorithm outperforms RA, EA, and TA by 39%, 63%, and
103% on average, respectively, for the system with initially
even core wear states, and 27%, 58%, and 97% on average,
respectively, for the system with initially uneven core wear
states. TA, which may be expected to perform better, is the
worst since it creates thermal cycles without regards to core
wear states.

For benchmarks with 1000 tasks, the normalized system
MTTFs are as shown in Figs. 3(c) and 3(d) for four-core
systems with initially even and uneven core wear states, re-
spectively. Again, our reliability-aware algorithm outperforms
RA, EA, and TA by 149%, 162%, and 291%, respectively for
the system with initially even core wear states. For the system
with initially uneven core wear states, the improvements are
142%, 157%, and 287%, respectively. It is clear that as the
number of tasks in the system increases, existing methods do
not come close to maximizing system reliability.

Finally, for nine-core systems, the results are more modest.
For benchmarks with 100 and 1000 tasks, the improvements
are between -4% to 23% and 8% to 128%, respectively. RA
sometimes outperforms our algorithm for smaller benchmarks,
though the average improvements of our algorithm over RA
for larger benchmarks are between 8% to 15% [21].

VIII. CONCLUSIONS & FUTURE WORK

We presented a practical, dynamically activated reliability-
aware algorithm that specifically considers core wear states
when making assignment and scheduling decisions. Our algo-
rithm was shown to improve system MTTF by at least 97%
compared to a temperature-aware algorithm. In the future, we
plan on extending our work to use DVFS for even finer-grained
controls and to consider real-time systems.

REFERENCES

[1] R. Viswanath, et al., “Thermal performance challenges from silicon to
systems,” Intel Technology J., vol. 4, no. 3, pp. 1–16, Aug. 2000.

100_4_bal

Page 1

1 2 3 4 5 6 7 8 9 10
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

Random Energy-Aware
Temperature-Aware Reliability-Aware

Benchmark

N
or

m
al

iz
ed

 S
ys

te
m

 M
TT

F

(a) 100-task system with initially even core wear states.

100_4_unb

Page 1

1 2 3 4 5 6 7 8 9 10
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

Random Energy-Aware
Temperature-Aware Reliability-Aware

Benchmark

N
or

m
al

iz
ed

 S
ys

te
m

 M
TT

F

(b) 100-task system with initially uneven core wear states.
1000_4_bal

Page 1

1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Random Energy-Aware
Temperature-Aware Reliability-Aware

Benchmark

N
or

m
al

iz
ed

 S
ys

te
m

 M
TT

F

(c) 1000-task system with initially even core wear states.

1000_4_unb

Page 1

1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Random Energy-Aware
Temperature-Aware Reliability-Aware

Benchmark

N
or

m
al

iz
ed

 S
ys

te
m

 M
TT

F
(d) 1000-task system with initially uneven core wear states.

Fig. 3: Results for four-core systems.

[2] N. Fisher, et al., “Thermal-aware global real-time scheduling on mul-
ticore systems,” in Proc. of the Real-Time and Embedded Technology
and Applications Symp., Apr. 2009, pp. 131–140.

[3] N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed scaling to manage
energy and temperature,” in Proc. Symp. on Foundations of Computer
Science, Oct. 2004, pp. 520–529.

[4] J.-J. Chen, S. Wang, and L. Thiele, “Proactive speed scheduling for real-
time tasks under thermal constraints,” in Proc. Real-Time and Embedded
Technology and Applications Symp., Apr. 2009, pp. 141–150.

[5] Y. Xie and W.-L. Hung, “Temperature-aware task allocation and
scheduling for embedded multiprocessor systems-on-chip (MPSoC)
design,” J. VLSI Signal Processing, vol. 45, no. 3, pp. 177–189, Dec.
2006.

[6] R. Rao and S. Vrudhula, “Performance optimal processor throttling un-
der thermal constraints,” in Proc. Int. Conf. on Compilers, Architecture,
and Synthesis for Embedded Systems, Oct. 2007, pp. 257–266.

[7] A. Mutapcic, et al., “Processor speed control with thermal constraints,”
IEEE Trans. Circuits and Systems I, vol. 56, no. 9, pp. 1994–2008,
Sept. 2009.

[8] S. Wang and R. Bettati, “Delay analysis in temperature-constrained hard
real-time systems with general task arrivals,” in Proc. Real-Time Systems
Symp., Dec. 2006, pp. 323–332.

[9] T. Chantem, X. S. Hu, and R. P. Dick, “Temperature-aware scheduling
and assignment for hard real-time applications on MPSoCs,” IEEE
Trans. VLSI Systems, vol. 19, no. 10, pp. 1884–1897, Oct. 2011.

[10] A. Hartman, D. Thomas, and B. Meyer, “A case for lifetime-aware
task mapping in embedded chip multiprocessors,” in Proc. Int. Conf.
Hardware/Software Codesign and System Synthesis, Oct. 2010, pp. 145–
154.

[11] Z. P. Gu, et al., “Application-specific MPSoC reliability optimization,”
IEEE Trans. VLSI Systems, vol. 16, no. 5, pp. 603–608, May 2008.

[12] A. K. Coskun, et al., “Evaluating the impact of job scheduling and
power management on processor lifetime for chip multiprocessors,” in
Int. Conf. on Measurement and Modeling of Computer Systems, June
2009, pp. 169–180.

[13] F. Paterna, et al., “Adaptive idleness distribution for non-uniform
aging tolerance in multiprocessor system-on-chip,” in Proc. Design,
Automation & Test in Europe Conf., Apr. 2009, pp. 906–909.

[14] A. Hartman and D. Thomas, “Lifetime improvement through runtime
wear-based task mapping,” in Proc. Int. Conf. Hardware/Software
Codesign and System Synthesis, Oct. 2012, pp. 13–22.

[15] J. Blome, et al., “Self-calibrating online wearout detection,” in Proc.
Int. Symp. Microarchitecture, Dec. 2007, pp. 109–122.

[16] M. Agarwal, et al., “Self-calibrating online wearout detection,” in Proc.
Int. Test Conf., Oct. 2008, pp. 1–10.

[17] “Failure mechanisms and models for semiconductor devices,” Joint
Electron Device Engineering Council, Tech. Rep., Aug. 2003, JEP 122-
B.

[18] J. R. Black, “Electromigration–a brief survey and some recent results,”
IEEE Trans. Electron Devices, vol. 16, no. 4, pp. 338–347, Apr. 1969.

[19] J. Srinivasan, et al., “Exploiting structural duplication for lifetime
reliability enhancement,” in Proc. Int. Symp. Computer Architecture,
June 2005, pp. 520–531.

[20] M. Ciappa, F. Carbognani, and W. Fichtner, “Lifetime prediction
and design of reliability tests for high-power devices in automotive
applications,” IEEE Trans. Device and Materials Reliability, vol. 3,
no. 4, pp. 191–196, Dec. 2003.

[21] T. Chantem, et al., “Enhancing multicore reliability through wear com-
pensation in online assignment and scheduling,” Utah State University,
Tech. Rep., Dec. 2013.

[22] Y. Xiang, et al., “System-level reliability modeling for MPSoCs,” in
Proc. Int. Conf. Hardware/Software Codesign and System Synthesis,
Oct. 2010, pp. 297–306.

[23] J.-J. Chen, et al., “Approximation algorithms for multiprocessor energy-
efficient scheduling of periodic real-time tasks with uncertain task
execution time,” in Proc. of the Real-Time and Embedded Technology
and Applications Symp., Apr. 2008, pp. 13–23.

[24] S. D. Downing and D. F. Socie, “Simple rainflow counting algorithms,”
Int. J. of Fatigue, vol. 4, no. 1, pp. 31–40, Jan. 1983.

[25] H. Huang, et al., “Throughput maximization for periodic real-time
systems under the maximal temperature constraint,” in Proc. Design
Automation Conf., June 2011, pp. 363–368.

[26] HotSpot 5.0. Computer Science Department, University of Virginia.
http://lava.cs.virginia.edu/HotSpot.

