
Substitute-and-Simplify: A Unified Design Paradigm
for Approximate and Quality Configurable Circuits

Swagath Venkataramani, Kaushik Roy and Anand Raghunathan
School of Electrical and Computer Engineering, Purdue University
{venkata0,kaushik,raghunathan}@purdue.edu

Abstract—Many applications are inherently resilient to in-
exactness or approximations in their underlying computations.
Approximate circuit design is an emerging paradigm that exploits
this inherent resilience to realize hardware implementations that
are highly efficient in energy or performance.

In this work, we propose Substitute-And-SIMplIfy (SASIMI),
a new systematic approach to the design and synthesis of ap-
proximate circuits. The key insight behind SASIMI is to identify
signal pairs in the circuit that assume the same value with
high probability, and substitute one for the other. While these
substitutions introduce functional approximations, if performed
judiciously, they result in some logic to be eliminated from the
circuit while also enabling downsizing of gates on critical paths
(simplification), resulting in significant power savings. We propose
an automatic synthesis framework that performs substitution
and simplification iteratively, while ensuring that a user-specified
quality constraint is satisfied. We extend the proposed framework
to perform automatic synthesis of quality configurable circuits that
can dynamically operate at different accuracy levels depending
on application requirements. We used SASIMI to automatically
synthesize approximate and quality configurable implementations
of a wide range of arithmetic units (Adders, Multipliers, MAC),
complex data paths (SAD, FFT butterfly, Euclidean distance) and
ISCAS85 benchmarks, using various error metrics such as error
rate and average error magnitude. The synthesized approximate
circuits demonstrate power improvements of 10%-28% for tight
error constraints, and 30%-60% for relaxed error constraints. The
quality configurable circuits obtain between 14%-40% improve-
ment in energy in the approximate mode, while incurring no energy
overheads in the accurate mode.

Index Terms—Low Power Design, Approximate Computing,
Approximate Circuits, Logic Synthesis

I. INTRODUCTION

Many application domains — including multimedia process-
ing, graphics, digital signal processing, and emerging appli-
cation domains such as search, data analytics, recognition,
mining, and synthesis — exhibit an inherent resilience to
their underlying computations being performed in an inexact
or approximate manner. This resilience is owed to several
factors, including redundancies in the input data, statistical
nature of computations, lack of a golden result, and limitations
in human perception [1], [2]. Approximate computing is a
rapidly evolving area of research that exploits the forgiving
nature of applications to improve the energy consumption and
performance of computing platforms.

A promising and popular approach to approximate computing
is to design approximate circuits that have lower hardware
complexity (switched capacitance, leakage, and critical path)
while evaluating the required function within a specified ac-
curacy or quality constraint. In some cases, this tradeoff be-
tween efficiency and quality may be performed at design time.
However, in many applications, the degree of resilience often
varies depending on the application context or the dataset being
processed [3]. In such scenarios, it is desirable to construct
quality-configurable circuits, or circuits that are capable of

reconfiguring to adapt their accuracy at run-time. Tradition-
ally, approximations in circuits have been introduced in two
different forms: (i) Timing approximation, where the circuit
is subject to voltage over-scaling resulting in timing errors,
and (ii) Functional approximation, where the circuit realizes
a slightly different logic function than specified, resulting in a
more efficient implementation.

Most research efforts in the area of approximate circuits
can be summarized as manual designs of simple arithmetic
circuits such as adders [4]–[7] and multipliers [8]. However, the
broader adoption of approximate circuits requires a systematic
methodology to design approximate implementations for any
arbitrary circuit. Moreover, it is critical that such a methodology
enable the generation of “correct-by-construction” approximate
circuits that are guaranteed to satisfy designer-specified quality
constraints, which is often not the case for the aforementioned
manual designs.

A few efforts have addressed the problem of automatic
synthesis of approximate circuits by pruning gates from a
conventional implementation [9], [10], or by identifying certain
inputs as external don’t cares [11], [12]. Although the problem
that we address (in part) is the same, we take a very different
approach that significantly extends the scope of optimizations
that can be applied to approximate circuit synthesis. In addi-
tion, we propose the first automatic synthesis framework for
quality-configurable circuits. It is worth noting that the quality-
configurable circuits generated using our approach demonstrate
significant energy savings in the approximate modes, without
incurring any energy overheads when full accuracy is desired.

The key insight behind the proposed approach, called
Substitute-And-Simplify (SASIMI), is to identify near-identical
signal pairs, or signal pairs that assume the same value with high
probability, and substitute one for the other. Such substitutions
may introduce functional approximations — when an input
causes the substituted signal to assume an incorrect value,
and also causes the incorrect value to propagate to a circuit
output. Naturally, it is important to restrict the substitutions
chosen such that the impact on output quality is not excessive.
On the other hand, well-chosen substitutions can lead to the
simplification of the circuit by eliminating some of the logic that
generates the substituted signal, while also downsizing logic in
its transitive fan-out (since the substitution may introduce timing
slack). We propose a procedure to automatically synthesize
approximate circuits by iterating substitute-and-simplify in a
quality-constrained loop.

We extend SASIMI to the synthesis of quality configurable
circuits, by augmenting the approximate circuit to detect when
errors are incurred at runtime, and utilizing an additional
clock cycle to re-compute the logic in the transitive fanout
of the substituted signal, thereby “correcting” the error. The
error correction may be performed universally or selectively,
or completely skipped based on the desired accuracy level.978-3-9815370-0-0/DATE13/ c©2013 EDAA

While the accurate mode of operation is reminiscent of variable-
latency circuits [13]–[16], we note that our design and synthesis
approach differ significantly as the quality constraints imposed
in the other approximate modes are considered. In contrast,
traditional variable-latency design methodologies are oblivious
to the degradation in output quality, since errors are always
corrected.

In summary, the key contributions of this work are as follows:
• We propose a novel design technique, Substitute-and-

Simplify, that judiciously employs signal substitutions to
reduce the circuit’s power consumption while satisfying
the user-specified quality constraints.

• We propose the first approach to synthesize quality config-
urable circuits by selectively utilizing an additional clock
cycle to correct errors that may violate the desired quality.

• We prototype and evaluate an automatic synthesis frame-
work that embodies these concepts, demonstrating signif-
icant benefits in power and area across a wide range of
arithmetic units, data paths and ISCAS85 benchmarks.

The rest of the paper is organized as follows. Section 2
presents an overview of related previous work. Section 3
details the SASIMI methodology and outlines the trade-offs
involved. Section 4 explains the experimental methodology used
to evaluate SASIMI, and the results are presented in section 5.
Section 6 summarizes and concludes the paper.

II. RELATED WORK

The topic of approximate computing has drawn great interest
in the research community, with design techniques spanning
software, architecture, and circuits. We limit our discussion to
previous efforts on approximate circuit design.

Several approximate design techniques for simple arithmetic
blocks have been proposed, including adaptive voltage over-
scaling [17], functional approximation [4], [5], [7], [8] and
output significance aware error compensation [4], [18]. A recent
effort proposed a design for a quality configurable adder based
on partial summations [6]. While these efforts demonstrate
promising results, a systematic methodology that enables syn-
thesis of arbitrary circuits using any specified quality metric is
necessary to bring these approaches into the mainstream.

Approximate designs that employ voltage over-scaling to
reduce energy consumption are limited when a large number
of paths are critical or near-critical, resulting in drastic increase
in errors beyond a critical operating point. To ensure a more
graceful degradation in quality, techniques based on cell siz-
ing [19] and common case promotion [20] have been proposed
in the context of recovery based designs.

The first synthesis technique for functional approximation de-
rived reduced sum-of-products implementations of two level cir-
cuits by designating selected minterms as don’t cares [12]. For
multi-level circuits, [9] proposed a scheme where stuck-at-faults
are injected at selected nodes and the circuit is approximated by
propagating this redundancy. Path activation probabilities were
used in [10] to prune portions of the circuit that are activated
the least. In contrast, [11] forms quality constraint circuits to
identify external don’t cares to the circuit and uses conventional
Boolean optimizations for logic approximation.

SASIMI differs significantly from previous techniques in the
following important respects.
• It introduces a new approach for circuit approximation

that takes advantage of the correlations (or similarities)

that exist among nodes in any circuit implementation, and
uses node substitution (and subsequent circuit simplifica-
tion) as a general approach to approximate circuit design.
The circuit optimizations that are discovered through this
approach cannot be realized by previous techniques such
as removal of gates from the circuit.

• It proposes the first solution to the problem of synthesizing
quality configurable circuits. Previous approaches cannot
be directly applied or easily extended towards this purpose.

III. SUBSTITUTE-AND-SIMPLIFY: DESIGN APPROACH AND
METHODOLOGY

The goal of approximate logic synthesis is to synthesize
an approximate version of the given original circuit while
meeting specifications for quality or error1 at the output. In
case of quality configurable circuits, the aim is synthesize
a configurable version of the original circuit that, based on
additional inputs to indicate the desired quality mode, scales
the energy it expends to compute the output while satisfying
the corresponding quality constraint. As mentioned earlier,
Substitute-and-Simplify (SASIMI) provides a unified paradigm
for the design of both types of circuits. This section outlines the
basic design approach and the automatic design methodology
that is proposed.

A. SASIMI: Design Approach

Figure 1 illustrates the basic approach adopted in SASIMI.
The key idea is to identify pairs of signals in the circuit
that are similar to each other in their logic functionality and
substitute one signal in place of the other, thereby functionally
approximating the circuit. The signal that is being replaced
is called the target signal (TS) and the signal substituting
TS is termed the substitute signal (SS). The candidates for
SS can be logic zero, logic one and other signals (and their
complements) in the circuit. If chosen judiciously, substitutions
have the ability to bring about circuit simplifications (detailed
below) that yield significant savings in area and power. For
approximate circuit design, the substitute-and-simplify steps are
performed successively until the approximate circuit reaches the
target error constraint.

Target Signal (TS)

Original Circuit

Substitute Signal (SS)

Difference (DIFF)

FF
s

FF
s

CLK CLK

Approximate Circuit

Deleted
gates

Downsized gates

TS = SS PDIFF 0
TS = !SS PDIFF 1

SS FF
s

FF
s

CLK CLK

Downsized gates

Approximate Circuit

Deleted
gates

Downsized gates

TS = SS PDIFF 0
TS = !SS PDIFF 1

SS FF
s

FF
s

CLK CLK

Downsized gates

Target Signal
(TS)

Original Circuit

Substitute Signal (SS)

Difference (DIFF)

FF
s

FF
s

CLK CLK

Approximate Circuit

Deleted
gates

Downsized gates

TS = SS PDIFF 0
TS = !SS PDIFF 1

SS FF
s

FF
s

CLK CLK

Downsized
gates

Target Signal
(TS)

Original Circuit

Substitute
Signal (SS)

Difference
(DIFF)

FF
s

FF
s

CLK

Fig. 1: Approximate circuit design using SASIMI
The trade-offs and desired criteria in choosing the TS-SS

substitution pair are discussed below.
As seen from Figure 1, when the target signal gets substituted,

the gates that are exclusive to the cone of logic that generates
TS can be deleted. The logic in the transitive fan-out of TS,
whose timing requirements are constrained by TS, is potentially
downsized since the substitution with SS introduces timing
slack. Further, the transitive fan-ins of TS that fan-out to other
logic cones in the circuit can be sized independent of TS. Thus,

1Note that the terms “quality constraints” and “error constraints” are used
interchangeably since quality is expressed in terms of acceptable error at the
outputs of the circuit

in choosing TS, both the direct effect of logic elimination and
the indirect impact of logic downsizing should be considered.
Also, signals that fan-out to outputs that cannot tolerate errors,
or signals that cause unacceptable degradation in output quality,
are undesirable choices for TS.

In choosing the substitute signal, the potential error caused
by the substitution should be considered. The error introduced
can be inferred using the signal probability of the difference
signal (PDIFF), which is the XOR of TS and SS. Since each
signal and its complement are SS candidates, the ones with least
probability product - PDIFF ∗ (1−PDIFF) - of being different
from TS is desired. However, it is worth noting that an error
at TS need not be sensitized at the primary outputs and hence
the actual circuit error has to be separately estimated. Further,
to facilitate logic downsizing, substitute signals that introduce
as larger slack at TS are desirable. We also impose a constraint
that substitutions should not cause combinational cycles in the
circuit.

B. Quality Configurable circuit design using SASIMI

TSnew

SS

DIFF

Downsized gates

CLK

Gated CLK

FF
s

FF
s

Clk
Ext. ckt

TS Sub.
Ckt

STALL

Quality
selection
logic

Q
Error
Indicator

TSnew

SS

DIFF

Downsized gates

CLK

Gated CLK

FF
s

 F
Fs

Clk
Ext. ckt

TS Sub.
Ckt

STALL

Quality
selection
Circuit

Q

Gated CLK

Gated CLK

Error
Indicator

Fig. 2: Quality configurable circuit design using SASIMI
The above approach can be directly applied to the synthesis

of quality configurable circuits with multiple quality modes.
Without loss of generality, the approach is explained considering
two quality modes - the accurate mode and the approximate
mode. The key idea is to make the quality configurable circuit
latency elastic and “recover” from errors caused due to approx-
imations when the circuit is in the accurate mode. As illustrated
in Figure 2, substitutions are performed in the circuit but the
logic generating TS is retained and the difference between TS
and SS is monitored. In the accurate mode, the circuit operates
in a single cycle if TS and SS take the same value. Otherwise,
an additional cycle is provided in which the correct result is
re-computed from the point of substitution. In the approximate
mode, since the error caused by the substitution is tolerable, any
difference between TS and SS is ignored and the circuit always
operates in a single cycle. Thus, based on the quality mode, the
circuit selectively recovers from errors caused by substitutions
that are intolerable. As shown in Figure 2, additional control
inputs Q to the circuit indicate the desired quality mode.

Realizing quality configurable operation requires additional
circuits for selective substitution, quality selection and clock
extension, which are shown in Figure 3. The substitution circuit
detects the difference between TS and SS, and allows the
clock extension circuit to choose which of these signals is fed
to downstream logic. At the start of every operation, the SSi

signals are chosen by default and the difference (DIFFi) from
all substitutions are accumulated (DSacc). The quality selection
circuit uses the accumulated difference signal (DSacc) and the
quality control bits (Q) to determine the need for a second

clock cycle. If required, the clock extension circuit then gates
the clock for a cycle and also sets the EFF flip-flop so that
all substitution circuits select the corresponding TSi signals in
the second cycle, thereby correcting the error.

DSacc

CLK

TSi
SSi

Gated
CLK Clock Extension Circuit STALL

Substitution Circuit

EFF

0
1

Q
DIFF0

TSi,new

DIFFi

Quality Selection Circuit

Error Indicator

EFF

Fig. 3: Selective substitution, quality selection and clock exten-
sion circuits

For correct operation of quality configurable circuits, the
following timing constraints have to be satisfied. First, to ensure
completion of single cycle operations, Equation 1a constrains
the delay of paths from inputs to outputs through SSi. The
terms Tcq(IFF) and Tsp(OFF) refer to C-Q delay and setup
times of input and output FFs, respectively. Equation 1b and 1c
ensure that the difference in substitutions are detected and the
signals for EFF update and clock extension settle within the
clock period. Finally, Equation 1d requires all paths originating
from EFF to evaluate within the clock period, thereby ensuring
two cycle operation.

Tcq (IFF) + Tmax (I → SSi → O) + Tsp (OFF) ≤ Tclk

(1a)
Tcq (IFF) + Tmax (I → TSi → STALL) + Tsp (EFF) ≤ Tclk

(1b)
Tclk tr + Tcq (IFF) + Tmax (I → TSi → STALL) ≤ Tclk

(1c)
Tcq (EFF) + Tmax (EFF → O) + Tsp (OFF) ≤ Tclk (1d)

Note that clock skew is ignored in the above constraints for
ease of explanation, but can be considered and addressed using
conventional techniques.

The trade-offs involved in quality configurable synthesis are
similar to approximate synthesis with one notable difference -
since no logic is deleted, the potential for logic downsizing is
critical. As shown in Figure 2, both the transitive fan-out and
the independent logic of TS can be downsized as the timing
constraint is relaxed at that point. However, additional area and
power is consumed by the substitution, quality selection and
clock extension circuits. Also, the occasional need for addi-
tional clock cycles in the accurate mode impacts performance.
Our experiments demonstrate that, despite these overheads, by
choosing proper substitution candidates, the energy consumed
is lowered even in the accurate mode. The energy savings are
larger in the approximate mode, with no impact on performance.
If the switch between quality modes is coarse grained, then the
clock extension circuit can be power gated in the approximate
mode, leading to additional savings in power/energy. Note that
the actual error in the approximate mode is evaluated at the
circuit outputs as before. The error indicator output, shown in
Figure 2, is conservative since the difference in TS and SS
may not be sensitized to the circuit’s output.

In cases where multiple approximate modes exist, the sub-
stitutions are grouped such that an additional cycle is provided
only to selected substitutions that cause intolerable errors. Thus

from exclusive single cycle operation, the quality configurable
circuit progressively recovers from more and more errors (or
substitutions) as the quality constraints are tightened.

C. Methodology
This section details the automation of the proposed approach

for approximate and quality configurable circuit synthesis.
Algorithm 1 Pseudo-code for SASIMI-Approximate
Input: Original Circuit: Cktorig, Target Error: ERR
Output: Approximate Circuit: Cktapprox

1: Begin
2: Initialize: NewCktapprox = Cktorig

3: Approximate Circuit Error: ACE = 0
4: while ACE ≤ ERR do
5: Cktapprox = NewCktapprox

6: <TS,SS> = get substitution candidate(Cktapprox)
7: NewCktapprox = substitute TS=SS in Cktapprox

8: Simplify (NewCktapprox)
9: ACE = compute error (Cktorig, NewCktapprox)

10: end while
11: return Cktapprox

12: End
Algorithm 1 describes the procedure for approximate circuit

synthesis. The inputs to the algorithm are the original circuit
(Cktorig) and the target error acceptable in its approximate
implementation (ERR). The algorithm is iterative (lines 4-10)
and performs successive substitutions until the imposed target
error constraints are violated. In each iteration, the following
steps are carried out: (i) the best candidate signal pair for sub-
stitution is identified (line 6), (ii) the substitution is performed
(line 7) and the circuit is simplified (line 8), and (iii) the error
in the approximate circuit is estimated (line 9). The algorithm
proceeds to the next iteration if the approximate circuit error
is less than the specified target error constraint (line 4). If not,
the last legal approximate circuit is produced as the output (line
11).

The procedure used in the identification of candidate signal
pairs for substitution is detailed in Algorithm 2. For each signal
(S) in the given circuit, the following metrics are computed in
lines 6-10. S.TFIind (line 6) calculates the size of the indepen-
dent logic that can be removed if S is substituted. This gives
the measure of the logic deletion potential of S. S.TFOcrit

(line 8) is the size of the transitive fan-out of S, whose arrival
times are constrained by it. This can be evaluated by setting
the arrival time at S to be zero and recomputing the arrival
times of its transitive fan-outs and identifying the gates whose
arrival times have been relaxed. This, combined with the actual
arrival time of S (maximum slack that can be introduced) gives
the maximum potential for logic downsizing of S. A weighted
sum of the normalized deletion and downsizing potentials is
used to compute the signal score (S.Score) in line 10. The
S.Sens field (line 9) indicates if the signal fans-out to an output
that cannot tolerate errors, in which case the S.Score is made
zero. Note that all the above fields can be computed efficiently
in a single topological and reverse topological traversal of the
circuit. The signals within a top fraction of the maximum score
are designated as target signal TS candidates (TScandidates).

Using the set TScandidates, the best substitution pair is
identified by lines 15-25 in Algorithm 2. For each signal
in TScandidates and each legitimate substitute signal (SS)
candidate, the substitution score (SUB.Score) is computed

in line 19. SUB.Score is similar to the signal score, except
that the estimates of logic deleted and downsizing possible are
refined. Further, the potential error introduced by the substitu-
tion (Pdiff) is also taken into account. Using SUB.Score as
the metric, the best substitution pair is identified. It is worth
noting that the computed SUB.Score can be reused in the
next iteration, if both TS and SS are unaffected during the
simplify step, greatly reducing the runtime of Algorithm 2. The
parameter α used to weight the logic deletion and downsizing
potentials is chosen empirically based on the objective of the
synthesis. In the case of approximate circuits, the deletion
potential is given higher weight (larger α), since it is more
significant that downsizing. In quality configurable synthesis,
since the independent logic is retained, the downsizing potential
carries more importance. For our experiments, α values of 0.75
and 0.25 were used for approximate and quality configurable
synthesis, respectively.
Algorithm 2 Pseudo-code to obtain Substitution Candidate
Input: Circuit: Ckt
Output: Target-Substitute signal pair: TSbest, SSbest

1: Begin
2: Read Ckt and sort signals in topological order
3: A = Area of the circuit
4: D = Delay of circuit
5: for each S: Signals ∈ Ckt do
6: S.TFIind = Independent logic size in Tr.fan-in of S
7: S.AT = Arrival time of S
8: S.TFOcrit = Size of Tr.fan-out made critical by S
9: S.Sens = 0 if S fans out to a sensitive output; else 1

10: S.Score = S.Sens ∗
h
α(S.TFIind

A
) + (1− α)(S.AT

D
)(S.TFOcrit

A
)
i

11: end for
12: TS max score = max(S.Score) ∀S ∈ Ckt
13: TScandidates = {S 3 (S.Score ≥ β ∗ TS max score)}
14: SUB max score = 0
15: for each TS ∈ TSset do
16: for each SS ∈ {0, 1, S ∈ Ckt 3 S.AT < TS.AT} do
17: Pdiff : Probability of TS 6= SS
18: SS = (Pdiff < 0.5) ? K : K
19: SUB.Score =

»
α
“

TS.TFIind−(TS.TFIind∩SS.TFIind)
A

”
+

(1− α)
“

TS.AT−SS.AT
D

”“
S.TFOcrit

A

”–ffi
Pdiff ∗ (1− Pdiff)

20: if (SUB.Score > SUB max score) then
21: SUB max score = SUB.Score
22: <TSbest, SSbest> = <TS, SS>
23: end if
24: end for
25: end for
26: return TSbest, SSbest

27: End
Note that in choosing the best substitution candidate for a

given circuit, the potential benefits in terms of logic deletion
and downsizing are weighed against the error introduced by the
substitution. Hence, although the substitutions are chosen in a
greedy manner within each iteration of Algorithm 1, the use
of benefits-to-error ratio (instead of choosing just based on the
benefits) in the selection process implies that the algorithm does
not entirely exhaust the error constraints in a given iteration but
rather retains some flexibility for future iterations.

Algorithm 3 describes the methodology for quality con-
figurable synthesis. A list of error constraints corresponding

to the desired quality modes is provided as input. For each
quality mode (lines 3-12), the procedure resembles approximate
synthesis (Algorithm 1), except that in addition, the substitutions
are grouped based on the quality mode in the quality selection
circuit (line 9). The substitution and clock extension circuits
are also appropriately added to the circuit. Note that, in the
proposed procedure, the set of substitutions causing two cycle
operation in a given quality mode is a strict super set of all
modes with lower quality constraints. This greatly simplifies
the design of the quality selection circuit.
Algorithm 3 Pseudo-code for SASIMI-Quality-Configurable
Input: Original Circuit: Cktorig, Error List: ERRlist

Output: Quality Configurable Circuit: Cktqc

1: Begin
2: Initialize: NewCktqc = Cktorig + Clk Extension Ckt
3: for each ERR ∈ ERRlist do
4: while QC Circuit Error: QCE < ERR do
5: Cktqc = NewCktqc

6: <TS,SS> = get substitution candidate(Cktqc)
7: # Insert substitution circuit
8: # Add substitution to Quality selection circuit
9: NewCktqc = form qc ckt TS=SS in Cktqc

10: Simplify (NewCktqc)
11: QCE = compute error (Cktorig, NewCktqc)
12: end while
13: end for
14: return Cktqc

15: End
Using Algorithms 1, 2 and 3, the SASIMI paradigm can

automatically synthesize approximate and quality configurable
circuits for any given circuit and quality constraint.

IV. EXPERIMENTAL METHODOLOGY

We evaluated SASIMI on a wide range of benchmarks
including (i) arithmetic circuits viz. adders - Kogge stone (KSA),
Ripple carry (RCA), Carry lookahead (CLA), multipliers - Wal-
lace tree (WTM), array (MUL) and Multiply and Accumulate
(MAC), (ii) complex datapath modules viz. Sum of Absolute
difference (SAD), Euclidean Distance unit(EUDIST), FFT But-
terfly (BUT), and (iii) circuits from the ISCAS85 benchmark
suite. The benchmarks were synthesized using Synopsys Design
Compiler Ultra [21] and mapped to the IBM 45nm technology
library. The metrics used for identifying substitution candidates
were computed using custom tools that analyzed the synthesized
netlist. The signal probability calculation engine in Synopsys
Power Compiler was used to obtain difference probabilities
among signal pairs. For the experiments, all input vectors were
considered equi-probable and the synthesized approximate and
quality configurable circuits were evaluated for area and power
at iso-delay. In the case of quality configurable circuits, the
additional hardware overheads in substitution, clock extension
and quality selection circuits are included during area and power
estimation, and an energy comparison is performed taking into
account the additional clock cycles incurred.

The circuits were synthesized for two different target quality
metrics viz. Error Rate and Average Error Magnitude. The error
rate, given in Equation 2, is defined as the percentage of inputs
vectors for which the approximate circuit output differs from
the original circuit.

ErrorRate =
Total Inputs 3 Oorig 6= Oapprox

Total number of Inputs
(2)

It is estimated by ORing the difference (Oorig xor Oapprox) at
all output bits and then computing its static signal probability.

The average error magnitude, shown in Equation 3, is the
absolute difference in magnitude between the original and
approximate circuits, averaged over all inputs.

AverageError =

∑
∀inputs |Oorig −Oapprox|

Total number of Inputs
(3)

The average error magnitude is evaluated by summing the
difference signal probabilities of all output bits weighted by
their numerical significance.

V. RESULTS

This section presents the results of various experiments
that compare circuits generated by SASIMI to well-optimized,
accurate baselines.

A. Area and power comparison for approximate circuits
We begin by comparing the area and power consumed by

the approximate circuits relative to the original circuit at iso-
delay, for a range of error rate and average error magnitude
constraints. In the case of error rate, as shown in Figure 4 for
ISCAS85 benchmarks, we see significant benefits that amount
to 15%-25% in area and 10%-28% in power are achieved for
tight error rates (less than 0.5%). As the error constraints are
relaxed (less than 2%), area and power improvements between
30%-60% are obtained.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

A
re
a
-­‐-­‐
>

Error rate (%) -­‐-­‐>

c880
c1908
c2670
c3540
c5315
c7552

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

P
o
w
e
r
-­‐-­‐
>

Error rate (%) -­‐-­‐>

c880
c1908
c2670
c3540
c5315
c7552

Fig. 4: Area and Power benefits for Error Rate metric

Similar trends are observed for the average error magnitude
metric. As depicted in Figure 5, for average errors of less than
0.5% of the maximum value, improvements in the range of
15%-65% in area and 20%-68% in power are obtained. These
results demonstrate the applicability and effectiveness of the
SASIMI design approach and synthesis methodology.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6

A
re
a
-­‐-­‐
>

Average error (%) -­‐-­‐>

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6

P
o
w
e
r
-­‐-­‐
>

Average error (%) -­‐-­‐>

RCA

KSA

CLA

WTM

MUL

MAC

SAD

BUT

EUDIST

Fig. 5: Area and Power benefits for Average Error metric
To demonstrate the effectiveness of functional approxima-

tions across the entire design space, the approximate circuits
were synthesized for a range of delay values. Figure 6 shows
the area and power vs. delay plots for a 32-bit Kogge stone adder
with error rate metric. The approximate circuit outperforms the

0.5

1

1.5

2

2.5

0 1 2 3 4

A
re
a
(
X
1
0
3

µm
2)

 -
->

Error rate (%) -­‐-­‐>

0.15

0.17

0.2

0.22

0.25

Delay (ns)

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4

P
o
w
er
 (
m
W
)
-­‐-­‐
>

Error rate (%) -­‐-­‐>

0.15

0.17

0.2

0.22

0.25

Delay (ns)

0.5

1

1.5

2

2.5

0.15 0.2 0.25 0.3

A
re
a
(X
 1
0
3
 µ

m
2)

 -
->

Delay (ns) -­‐-­‐>

0

0.4

0.6

1.6

3.7

0.2

0.4

0.6

0.8

1

1.2

1.4

0.15 0.2 0.25 0.3

P
o
w
e
r
(m

W
)
-­‐-­‐
>

Delay (ns) -­‐-­‐>

0
0.4
0.6
1.6
3.7

Error Rate (%) Error Rate (%)

Fig. 6: Area and power of KSA with delay sweep
TABLE I: Quality configurable circuits synthesized for Average
error with two quality modes
Circuit Delay Area Power P2cycle Energyacc Energyapp Avg.Error

(ns) (%) (%) (%) (%) (%)
RCA 0.65 16.2 21.6 0.24 2.69 36.7 0.03
CLA 0.17 29.5 26.72 0.067 21.8 34.9 0.01
MAC 0.55 13.7 16.8 0.014 15.6 18.3 0.01

EUDIST 0.47 24.1 22.24 0.0075 21.6 24 0.12
MUL 0.35 32.9 36.5 0.05 33.3 40.05 1.2
SAD 0.5 11.6 12.1 0.002 12.0 14.44 0.01

original circuit at all delay values, which testifies to the wide
scope of the optimizations performed by SASIMI.

B. Quality configurable circuits
Next, we present the results obtained for quality configurable

designs with two quality modes synthesized by SASIMI. Table I
tabulates the area, power and energy improvements obtained
relative to the original circuit for the average error magnitude
metric. Column 3 shows the percentage reduction in area.
Despite the area overheads of the additional circuits, the overall
area savings range from 13%-32% compared to the original
circuit. These benefits come from the logic downsizing that
was possible by the substitutions. Column 4 provides the
corresponding improvement in power. The probability of two
cycle operations in the accurate mode is listed in Column 5.
The total energy savings in the accurate and approximate modes
are listed in Columns 6 and 7. In the accurate mode, the circuit
recovers from all errors, and the energy benefits are due to
the savings from logic downsizing outweighing the overheads
of the added control circuitry and two cycle operation. In the
approximate mode, the additional energy savings stem from two
sources - the circuit has fewer or no two cycle operations as it
does not recover from all errors, and the clock extension circuit
could be power gated in the lowest quality mode. Due to these
reasons, net energy savings between 14%-40% are obtained.
Finally, column 8 gives the average error magnitude in the
approximate mode of the circuit.

Table II reports similar results for circuits synthesized using
the error rate metric. Energy benefits in the range of 22%-
32% are obtained in the approximate mode for error rates
less than 1%. Note that the rate of two cycle operations is a

TABLE II: Quality configurable circuits synthesized for Error
Rate with two quality modes
Circuit Delay Area Power P2cycle Energyacc Energyapp Error rate

(ns) (%) (%) (%) (%) (%)
KSA 0.2 16.3 14.79 0.009 14.02 22.27 0.7
c880 0.22 13.1 18.03 0.064 12.78 31.9 4.8

c1908 0.25 13.8 22.9 0.0102 22.11 31.31 0.95
c2670 0.22 5.09 15.68 0.0051 15.25 24.51 0.2
c3540 0.36 21.94 19.72 0.008 19.08 23.56 0.65
c7552 0.32 12.79 19.18 0.064 14.01 22.54 4.8

little larger than the actual error rate at the outputs, because
not all errors at the substitution points are sensitized at the
outputs. In other words, the clock extension mechanism and
the error indicator output bit are conservative. In summary, our
experiments suggest that SASIMI is a promising approach for
the synthesis of approximate and quality configurable circuits.

VI. CONCLUSION

The inherent resilience prevalent in many applications pro-
vides designers with new avenues for optimizing design by
forsaking exact equivalence between hardware implementations
and their specifications. We propose Substitute-and-Simplify, a
unified approach to the synthesis of approximate and quality
configurable circuits. The key idea is to identify substitu-
tions in the circuit that foster logic deletion and downsizing
(simplification) while introducing minimal error. Given a user
specified quality requirement, the substitution and simplification
steps are iteratively performed while the error constraints are
satisfied. We further extended the approach to synthesize quality
configurable circuits, where at runtime, processing of selected
input vectors is given an additional cycle to correct errors due
to approximations. Across a range of benchmark circuits, our
approach results in significant area, power and energy benefits.
Acknowledgment: This work was supported in part by the
National Science Foundation under grant no. 1018621.

REFERENCES

[1] M. A. Breuer. Multi-media applications and imprecise computation. In
Proc. Euromicro Conf. on Digital System Design, pages 2–7, Sept. 2005.

[2] S. T. Chakradhar and A. Raghunathan. Best-effort computing: Re-thinking
parallel software and hardware. In Proc. DAC, pages 865 –870, June 2010.

[3] V. K. Chippa et. al. Dynamic effort scaling: managing the quality-
efficiency tradeoff. In Proc. DAC, pages 603–608, 2011.

[4] D. Shin and S. K. Gupta. A re-design technique for datapath modules in
error tolerant applications. In Proc. ATS, pages 431 –437, Nov. 2008.

[5] V. Gupta et. al. IMPACT: Imprecise adders for low-power approximate
computing. In Proc. ISLPED 2011, pages 409 –414, Aug. 2011.

[6] A. B. Kahng and S. Kang. Accuracy-configurable adder for approximate
arithmetic designs. In Proc. DAC, pages 820–825, 2012.

[7] M. Olivieri et. al. Analysis and implementation of a novel leading zero
anticipation algorithm for floating-point arithmetic units. Circuits and
Systems II: Express Briefs, IEEE Trans. on, 54(8):685 –689, aug. 2007.

[8] P. Kulkarni et. al. Trading accuracy for power with an underdesigned
multiplier architecture. In Proc. VLSI Design, pages 346 –351, Jan. 2011.

[9] D. Shin and S. K. Gupta. A new circuit simplification method for error
tolerant applications. In Proc. DATE, Mar. 2011.

[10] A. Lingamneni K. Palem et. al. Energy parsimonious circuit design
through probabilistic pruning. In Proc. DATE, Mar. 2011.

[11] S. Venkataramani et. al. Salsa: systematic logic synthesis of approximate
circuits. In Proc. DAC, pages 796–801, 2012.

[12] D. Shin and S. K. Gupta. Approximate logic synthesis for error tolerant
applications. In Proc. DATE, pages 957–960, Mar. 2010.

[13] L. Benini, E. Macii, and M. Poncino. Telescopic units: increasing the
average throughput of pipelined designs by adaptive latency control. In
Proc. DAC, pages 22–27, 1997.

[14] D. Baneres, J. Cortadella, and M. Kishinevsky. Variable-latency design
by function speculation. In Proc. DATE, pages 1704 –1709, april 2009.

[15] S. Ghosh, S. Bhunia, and K. Roy. Crista: A new paradigm for low-
power, variation-tolerant, and adaptive circuit synthesis using critical path
isolation. IEEE Trans. on CAD, 26:1947–1956, nov. 2007.

[16] S. L. Lu. Speeding up processing with approximation circuits. Computer,
37(3):67 – 73, mar 2004.

[17] P. K. Krause and I. Polian. Adaptive voltage over-scaling for resilient
applications. In Proc. DATE, pages 1 –6, March 2011.

[18] N. Zhu et. al. Design of low-power high-speed truncation-error-tolerant
adder and its application in digital signal processing. IEEE Trans. on VLSI
systems, 18(8):1225 –1229, aug. 2010.

[19] A. B. Kahng et. al. Slack redistribution for graceful degradation under
voltage overscaling. In Proc. ASP-DAC, pages 825 –831, Jan. 2010.

[20] L. Wan et. al. CCP: Common case promotion for improved timing error
resilience with energy efficiency. In Proc. ISLPED, pages 135–140, 2012.

[21] Design Compiler Ultra, Synopsys Inc.

