
On the Use of GP-GPUs for Accelerating
Compute-intensive EDA Applications

Valeria Bertacco,
Debapriya Chatterjee

EECS Department
University of Michigan, USA
{valeria|dchatt}@umich.edu

Nicola Bombieri,
Franco Fummi, Sara Vinco

Dip. Informatica
Università di Verona, Italy
{name.surname}@univr.it

A. M. Kaushik,
Hiren D. Patel
ECE Department

University of Waterloo, CA
{amkaushi|hdpatel}@uwaterloo.ca

Abstract—General purpose graphics processing units (GP-
GPUs) have recently been explored as a new computing paradigm
for accelerating compute-intensive EDA applications. Such mas-
sively parallel architectures have been applied in accelerating
the simulation of digital designs during several phases of their
development – corresponding to different abstraction levels,
specifically: (i) gate-level netlist descriptions, (ii) register-transfer
level and (iii) transaction-level descriptions. This embedded tuto-
rial presents a comprehensive analysis of the best results obtained
by adopting GP-GPUs in all these EDA applications.

I. INTRODUCTION

Simulation plays an important role in the validation of dig-
ital hardware systems. It is heavily used to evaluate functional
correctness, and to perform early design and performance
tradeoffs. This entails a vast number of simulation runs to
evaluate many design’s trade-offs and validate as many ex-
ecution scenarios as possible throughout the development of
the design. As a result, simulation is one of the most time,
effort and resource-consuming activities of the entire design
cycle. Correspondingly, the performance of simulation affects
the time-to-market of many digital designs today.

On the other hand, the continued increase in design’s
functionality has resulted in simulation models that are larger
and more complex than ever. This trend further burdens the
performance of simulation, leading to much longer completion
times for many simulation runs, affecting all stages of the
development: from early-stage high-level model simulations,
to the vast efforts dedicated to RTL and gate-level validation.
Ultimately, this issue has been preventing design team from
meeting today’s stringent time-to-market constraints [1]. As a
result, there is considerable interest in developing techniques
that expedite the simulation of large and complex digital
hardware system models.

Gate-level simulation takes place at late development
stages, once the design has undergone the first few synthesis
iterations [2], [3], [4]. Its objective is that to evaluate the
functional and electrical correctness of the netlist description
of the system. Often, the reference model use to validate results
of a gate-level simulation is either a high-level design model
(such as a C or SystemC model) or an RTL specification. The

This work has been partially supported by EU project FP7-ICT-2011-7-
288166 (TOUCHMORE) and by NSF grant #1217764

major issue in gate-level simulation, is that it tackles a fairly
detail description of the design, thus, usually, the correspond-
ing model is extremely large. Consequently, the completion of
these simulation, when even feasible, require many hours or
days. Early effort to leverage concurrent processing resources
to address this problem include dividing the processing of in-
dividual events across multiple machines with fine granularity.
This fine granularity would generate a high communication
overhead and, depending on the solution, the issue of deadlock
avoidance could require specialized event handling [5]. Parallel
logic simulation algorithms were also proposed for distributed
systems [6], [7] and multiprocessors [8] with some success.

A widely used simulation environment for early design
space exploration of digital hardware systems is SystemC [9].
SystemC is an open-source library of C++ classes that allows
modelling at the register-transfer level (RTL) and transaction-
level (TL) abstractions. SystemC is commonly deployed for
early design trade-off evaluation and validation of high-level
models. Even though SystemC simulation operates at a higher
abstraction level than traditional RTL, SystemC simulation is
known to suffer from long simulation times [1]. This aspect
has motivated the research community to develop techniques
to accelerate SystemC simulations. These techniques include
model transformations [10], distributed simulation [11], pro-
cess splitting [12], and static scheduling of processes [13].
Furthermore, the SystemC reference simulation kernel imple-
ments a conventional discrete-event semantics in its single-
threaded implementation. This architecture prevents the kernel
from being easily portable to traditional high-performance
multiprocessing platforms (such as SMP). Overcoming this
challenge has been the topic of much research [14], [15], [16],
[17], [18].

Recently, another form of concurrent architecture has be-
come widely available: general purpose graphics processing
units (GP-GPUs). GP-GPUs are massively parallel architec-
tures that support data-level and thread-level parallelism. While
they were originally designed for graphics and scientific com-
puting, researchers have recently been exploring the use of
GP-GPUs to accelerate digital design simulation at several
levels, particularly those discuss above, namely gate-level
descriptions [19], [20], [21], [22] and SystemC descriptions,
both when used for RTL and transction-level models [23], [24],
[25], [26], [27].

On the logic simulation front, the key challenge lies in
the high amount of unstructured interconnections among the978-3-9815370-0-0/DATE13/ c⃝2013 EDAA

basic design components. On one hand, GP-GPUs provide
structured and uniform communication patterns among their
basic computation units (threads) in order to deliver the high
performance they are designed for. On the other hand, a gate-
level netlist presents an unpredictable web of connections
among many millions of logic gates. Early efforts to solve this
problem include the work by Perinkulam, et al. [28]. However,
their solution could not complete solve the problem discussed
above, presenting overall a performance cost when compared
to a sequential gate-level simulator.

On the SystemC simulation front, executing SystemC
models on GP-GPUs is non-trivial because of the underlying
architecture of GP-GPUs. For example, GP-GPUs do not
provide standard thread suspension and resumption capabilities
that are utilized in conventional multi-threaded programs. This
raises the challenge of efficiently parallelizing the simulation
of SystemC models on GP-GPUs.

In this paper, we present an overview of recent research ef-
forts that use GP-GPUs to accelerate design simulation. These
efforts focus on logic simulation [19], [20], [21], SystemC
RTL simulation [23], [24], mixed-abstraction RTL and TL
simulation [26], [27], and on evaluating different GP-GPU
programming frameworks [29].

II. BACKGROUND

This section presents the basic concepts of the paper,
including HDL simulation semantics (Section II-A) and an
overview of the GP-GPU programming model (Section II-B).

A. HDL simulation scheduling

HDLs use an event-based architecture, where a central-
ized scheduler controls the execution of processes based on
events (e.g., synchronizations, time notifications or signal value
changes).

Figure 1 depicts the main steps of a typical HDL simulator
kernel. The flow is iterated until no event is left to be pro-
cessed, indicating the end of the simulation. A simulation cycle
completes at the end of each iteration through the complete
flow. Within each cycle, there is first an evaluation phase,
during which all runnable processes are executed. Signals are
updated at the end of the execution of each process. If a signal
value change occurs, all processes sensitive to that signal are
added to the runnable queue (this is called signal and event
update phase). Finally, during the time update phase, the time
of the next simulation cycle is determined by setting it to the
earliest of (i) the time at which the simulation ends, (ii) the
next time at which an event occurs, or (iii) the next time at
which a process is scheduled to resume. If simulation time is
not increased, the next simulation cycle will be a delta cycle.
When no new event is fired, simulation ends.

It is important to note that the order of process execution
within a delta cycle does not affect the output of simulation
since the simulator presents the same system status to all
those processes. Thus, processes that are activated within
the same delta cycle may be executed in parallel, either by
using multiple threads or by designing a distributed scheduler.
However, HDL schedulers are strictly sequential, thus not
taking advantage of parallel architectures and frameworks.

Runnable

processes?

Update runnable

processes

Update all signals

Events

generated?

Update simulation

time

End

Update runnable

processes

TIME

UPDATE SIMULATION

CYCLE

DELTA

CYCLE

EVALUATION

SIGNAL AND

EVENT UPDATE

Y

N

Y

N

Y

N

Execute all runnable

processes

Events

generated?

Fig. 1. Outline of the standard HDL scheduling semantics

B. General purpose GPU programming

GP-GPUs are increasingly being used as application accel-
erators as they offer low-cost, and high powered computing
resources. CUDA has been introduced by NVIDIA in 2006 as
the first framework for supporting the development of general
purpose applications for GP-GPUs, and, since then, it has
been the reference framework for GP-GPU programming [30].
CUDA is restricted to NVIDIA devices, thus in 2008 the
Kronos group founded OpenCL [31], a standard alternative
to CUDA that targets a wider range of architectures, ranging
from CPUs to GP-GPUs.

Despite architectural differences between OpenCL and
CUDA technologies, the fundamental idea of using GPUs for
general purpose programming is the same: to utilize the multi-
processors on the GPUs for accelerating program execution. As
a result, OpenCL and CUDA have common platform models,
memory models, execution models and programming models.

The following of this section introduces GP-GPU program-
ming and the main characteristics of GP-GPU architectures.
Any time that keywords are different for CUDA and OpenCL,
the CUDA version is used in the text and the OpenCL keyword
is reported in brackets for completeness.

Grid

Global MemoryHost

� Block (0, 0)

Shared Memory

Th(0, 0)

Registers

Th(1, 0)

Registers

Th(k-1, l) Th(k, l)

Common instruction

fetch

Block (1, 0)

Shared Memory

Th(0, 0)

Registers

Th(1, 0)

Registers

Th(k-1, l) Th(k, l)

Common instruction

fetch

Block (i, j)

Shared Memory

Th(0, 0)

Registers

Th(1, 0)

Registers

Th(k-1, l) Th(k, l)

Common instruction

fetch

Fig. 2. The GP-GPU architecture

In GP-GPU computing, the GP-GPU is a co-processor
capable of executing many threads (or work-items) in parallel,
following the single instruction multiple data (SIMD) model

of execution. A data parallel computation process, known as
a kernel, can be offloaded to the GP-GPU for execution. The
collection of threads represented by a kernel is divided into a
grid of thread-blocks (or work-groups).

The GP-GPU architecture (Figure 2) consists of a number
of multiprocessors within a single GP-GPU chip. Multipro-
cessors are responsible for the execution of the thread-blocks
mapped to each of them. Each multiprocessor comprises
multiple stream processors with common instruction fetching
and support for a large number of concurrent threads. Thus,
each multiprocessor executes several groups of threads at a
time (known as a warp) in a time-multiplexed fashion, with
frequent context-switches from one warp to another. Because
of the shared fetch unit, execution path divergence between
threads in a same warp is detrimental to performance as only
one branch path can be executed at a time. Thus, if threads in
a same multiprocessors must execute different code paths, the
least penalizing solution is to map them to different warps.

Each multiprocessor has access to low latency scratchpad
memory, divided between local registers (or private memory)
and shared memory (or local memory). All multiprocessors
also have access to a region of global memory, which has
higher access latency.

The main difference between OpenCL and CUDA is that
OpenCL targets a wider range of architectures, while CUDA
is restricted to NVIDIA GP-GPUs. This implies that OpenCL
is more flexible and it can not take into account specific
properties of the underlying architecture, such as the avail-
ability of read-only memory. As a result, OpenCL requires
environmental setup before launching kernel execution. When
offloading code to the device, the host must define a context.
Each context is made of a set of devices where execution
occurs and by the kernel that must be executed. Furthermore,
a context contains a reference to the program source code and
to the memory objects that are visible from both the host and
the devices. Compilation of OpenCL code is ended at runtime,
once that the target device has been selected.

III. GP-GPU BASED SIMULATION

The following sections present three approaches that have
been recently proposed for accelerating compute-intensive
EDA applications at different abstraction levels. Section IV
focuses on gate-level logic simulation of HDL designs. Section
V presents the most recent results in accelerating such designs
described in RTL subset of SystemC, while Section VI shows
transaction level simulation on GP-GPUs. Section VII com-
pares the performance of the proposed SystemC simulation
techniques on CUDA vs. OpenCL platforms, with the goal of
investigating advantages and drawbacks that the two thread
management libraries offer to concurrent SystemC simulation.

For sake of clarity, all sections have the same structure:
overview of the key contributions to the state of the art, detailed
overview of the approach presented, and discussion of it’s
effectiveness. A common example is used to illustrate the
application of the techniques to a case study. The example
is represented in Figure 3. The nodes and edges represent
different primitives and actions, depending on the abstraction
level and the solution under discussion. The goal is to support

0 1 2 3

4 5 6 7

8 9 10 11

Fig. 3. Compute flow diagram to illustrate the application of all proposed
methodologies. Each nodes may represent a logic gate, or a SystemC process
depending on the abstraction level. Correspondingly, edges may represent
wires or value dependencies through variables strictly depending on the
adopted methodology.

the reader with a simple, common example that is developed
and analyzed throughout the paper.

IV. LOGIC SIMULATION

Logic simulation is the primary workhorse for functional
validation of digital designs. Unfortunately, the performance
of logic simulation is far from adequate for modern complex
digital designs. Simulation of gate-level netlist descriptions
is especially slow, since the netlist often comprises tens of
millions of structural logic elements, such as logic gates and
flip-flops. Structural gate-level simulation is an inherently par-
allel problem as several gates can be simulated simultaneously
while abiding internal computation flow ordering. However,
the commercial simulators available today operate primarily
on single threaded processors, thus they do not exploit this for
concurrent computation potential. In contrast, GP-GPUs are an
ideal candidate for such massive parallelism.

A. Key contribution

We investigate how the parallelism available in the problem
structure can be mapped to that of the execution hardware of
GP-GPUs. While the parallelism of netlists matches well with
the parallel computational power available in GPUs, there are
a number of problems that must be addressed to enable GPU-
based logic simulation. First, a netlist must be partitioned into
portions that can be mapped and simulated concurrently and
efficiently on a GPU. The partitioning must be aware of the
GP-GPU architecture and its memory model to exploit a GP-
GPU’s memory locality in an optimal manner. Our GPU-based
simulation approaches leverage novel solutions to the problems
of netlist partitioning and mapping, enabling large designs
to be simulated on GPU hardware. Moreover, the GP-GPU
execution model is most efficient when operating on regular
data structures; to this end, we use novel algorithmic solutions
to overcome the challenges posed by a netlist’s structural
irregularities as well.

Logic simulators come in two flavors: oblivious and event-
driven. In an oblivious simulator all gates in the design are
computed at every cycle. While the program’s control flow
for this approach has minimal overhead, computing the output
values of every gate at every cycle can be time-consuming
and, most importantly, unnecessary for all those gates whose
inputs have not changed from the previous cycle. Event-driven
simulation, on the other hand, takes advantage of precisely

this fact: the output of a gate will not change unless its
inputs have changed. Keeping GP-GPU nuances in mind, our
solution is capable of leveraging this hardware platform for
both oblivious and event-driven simulation to deliver high
performance results. Indeed, both flavors of our simulators are
capable of achieving over an order-of-magnitude speed-up over
traditional simulation solutions – even when compared against
commercial state-of-the-art solutions.

B. Approach

A logic simulator takes the netlist as input, then converts it
to internal data structures: loops through the sequential storage
elements in the design are cut open (see Figure 4(a)), creating
two sets of values for all latches and flip-flops (present state
and next state), which are maintained within the data structures
of the simulator software. At this point the combinational
portion of the logic is a directed acyclic graph (in absence of
combinational loops) whose vertices are logic gates and edges
are the wires connecting the input and output of the logic
gates (see Figure 4(b)). On the input end of this graph are
primary inputs and present state values, while the output side
produces primary outputs and next state values. This graph
is then levelized (i.e., the vertices are topologically sorted)
according to the dependencies implied by the gate’s input-
ouput connections. The simulation process can now begin:
the simulator generates input values and then computes the
outputs of the internal logic gates, one level at a time, until all
output values are produced. In subsequent simulation cycles,
the next state values are looped-back and used as the next
cycle’s present state values.

Primary outputs FFFF

Primary inputs

0 1 2
3

4 5
6 7

8 9 10 11

0 1 2 3

4 5 6 7

8 9 10 11

Primary inputs Present state

Next statePrimary outputs

(a) (b)

Fig. 4. Netlist to data structure mapping for gate-level simulation.

We developed both flavors of simulators (oblivious and
event-driven) targeting the GP-GPU platform. The high level
flow for both of these variants are shown in Figure 5. Both so-
lutions attempt to expose the concurrency inherent in the netlist
to the parallelism available in the hardware, and both operate
as a compiled-code simulator, where first the combinational
portion of the netlist is extracted, then levelized, and finally
partitioned to produce the necessary internal data structures,
which are then offloaded to the GP-GPU for the simulation
process. We noted that in the CUDA architecture, there are
two levels of parallelism, i) Thread-block level parallelism:
separate thread blocks execute in separate multiprocessors
which can only communicate throgh slow device memory
and hence should minimize interactions, and ii) Thread-level
parallelism: where several threads belonging to the same thread
block execute in parallel while communicating through a small
amount of low latency shared memory and are capable of
fast barrier-type synchronization. Our primary objective is to

morph the problem of gate-level simulation to leverage these
two levels of parallelism.

balance
cluster

extract

logic cones

Offload and

simulate

...

...

segment into

macro-gates

balance

Offload and

simulatecombinational

logic

Flow for oblivious simulator

Flow for event-driven simulator

Fig. 5. Simulation flow for oblivious gate-level simulation (top) and for
event-driven simulation (bottom).

1) Oblivious simulation: Parallelism is inherent in the
structure of a levelized netlist, since all gates present in a
single level of a levelized netlist can be simulated in paral-
lel. However, such straightforward approach would require a
large amount of communication among all threads after the
completion of each level, a requirement that is not viable
beyond individual thread blocks, because of the high latency
of inter-block communication. In contrast, if we consider
the fan-in logic cones of output signals in separation, we
can simulate each of them independently, provided that we
duplicate the shared logic components – hopefully just a small
fraction of gates. This partitioning is a good fit for thread-
block parallelism, since these cones can be independently
simulated by different multiprocessors without requiring any
communication between them. However, to avoid excessive
duplication, it is beneficial to cluster logic cones that share a
large amount of logic: to this end we developed an algorithm
that collects several logic cones and combines them into a
single cluster.

After partitioning the netlist into clusters of logic cones,
we can delegate different clusters to different thread-blocks
for simulation. The logic gates within each cluster can then
be levelized, leading to several gates per level: an excellent
fit for exploiting thread level parallelism, as parallel threads
belonging to the same thread block can simulate the gates
present in a same level concurrently, then synchronize through
fast barrier synchronization primitives and move on to the next
level of gates. It is beneficial to present a regular data structure
to each thread block for the simulation process; however,
clusters naturally tend to have more gates at the lower levels
and fewer gates on the higher levels. As a result, within each
thread block, more threads are needed at first, with a number
of them becoming idle while moving towards the higher levels.
To circumvent this issue we developed a balancing step (see
Section IV-B3) to be performed after clustering, its goal is to
generate a more regular structure to balance the use of threads
within the block.

2) Event-driven simulation: Traditional event-driven simu-
lators rely on a centralized event queue to schedule gates for
simulation. In the context of the CUDA architecture, such a
centralized queue would present a bottleneck as it would incur

high latency delays – most probably higher than the computa-
tion of the gates themselves. However, a dynamic scheduling
approach can still be viable if it operates at a much coarser
granularity than individual gates and, as a result, invoked much
more infrequently. As a result, we assign bundles of gates
from the circuit’s netlist to individual thread blocks. Each
of these bundles are simulated by their corresponding thread
block in an oblivious fashion, similar to the clusters of the
oblivious approach discussed in the previous subsection and
thus this solution exploits thread-level paralellism. At coarser
granularities, we use an event-driven approach: we monitor
the input values of the bundle, and schedule it for simulation
only if one or more of its inputs have changed. We refer to
these bundles of gates as ‘macro-gates’. A high level schematic
of this approach is presented in Figure 6, showing a pool of
macro-gates for a netlist and a simulation cycle requiring to
schedule only three of them for computation. To implement
this design we must develop a segmentation algorithm to
create macro-gates of appropriate size, striking a trade-off
between performance and memory locality requirements. Note
that macrogates are subjected to the balancing step as well (see
Section IV-B3).

Primary inputs/ register output

Primary outputs/ register input

Event-driven

simulation at

macro-gate

granularity Oblivious simulation

within individual

macro-gates

...

threads

Fig. 6. The hybrid event-driven simulator is event-driven at the granularity of
macro-gates, while the macro-gates themselves are simulated in an oblivious
fashion. The macro-gates in a darker shade are the only ones scheduled for
simulation during a possible simulation cycle.

primary inputs and register outputs

macro-gate

g
a
p
 (
le
v
e
ls
)

lid (gates)

la
y
e
r
1

la
y
e
r
2

la
y
e
r
3

primary outputs and register inputs

overlap

Fig. 7. Macro-gate segmentation. The levelized netlist is partitioned into
layers, each encompassing a fixed number of levels (gap). Macro-gates are
then carved out by extracting the transitive fanin from a set of nets (lid) at
the output of a layer, back to the layer’s input. If an overlap occurs, the gates
involved are replicated over all associated macro-gates.

Macro-gate segmentation is governed by three important
factors: (i) since the objective of forming macro-gates is to

perform event-driven simulation at a coarse granularity (com-
pared to individual gates), the time required to simulate a given
macro-gate should be substantially larger than the overhead to
decide which macro-gates to activate. (ii) The multiprocessors
in the GP-GPU can only communicate through high latency
device memory, and thus, for best performance, there should
be no communication among them. This can be ensured if the
tasks executing on distinct multiprocessors are independent
of each other. To this end, macro-gates that are simulated
concurrently must be independent of each other (that is, they
cannot share any logic gate). To achieve this goal, we duplicate
small portions of logic that occasionally create overlap among
macro-gates, eliminating the need of communication. (iii)
Finally, we want to avoid cyclic dependencies between macro-
gates, so that we can simulate each macro-gate at most once
per cycle. To this end we levelize the netlist at the granularity
of macro-gates as well. Segmentation begins by partitioning
the netlist into layers: each layer encompasses a fixed number
of the netlist’s levels, as shown in Figure 7. Macro-gates are
then defined by selecting a set of nets at the top boundary of
a layer, and including their cone of influence back to the input
nets of the layer. The number of nets used to generate each
macro-gate is a parameter called lid, its value is selected so that
the number of logic gates in each macro-gate is approximately
the same. The number of levels within each layer is called gap
and corresponds to the height of the macro-gate.

3) Balancing step: The cluster/macro-gate balancing algo-
rithm exploits the slack available in a segment of a levelized
netlist and reshapes it to have approximately the same number
of logic gates in each level. The algorithm processes all
the gates in a bottom-up fashion, filling every slot in the
cluster/macro-gate with logic gates, with the goal of assigning
each gate to the lowest level possible, while maintaining the
restriction on maximum width. Note that this might also lead
to an increase in the height of a particular cluster/macro-gate,
and thus an increase in its simulation latency. Hence, there
is an inherent trade-off between execution latency and thread
utilization.

0 1 2 3

4 5 6 7

8 9 10 11

0 1

4

8

1

5

9

1 2

5 6

10

3

7

11

0 1

4

8

1 2

5 6

9 10

3

7

11

cone 0 cone 1 cone 2 cone 3

cluster 0 cluster 1 cluster 2

Mapped to

thread block 0

Mapped to

thread block 1

Mapped to

thread block 2
Logic cone

extraction Clustering

Fig. 8. Oblivious simulation example. First the levelized netlist is partitioned
into logic cones, which are then clustered. Each cluster is delegated to an
exclusive thread block for simulation.

C. Example

In this section we illustrate our methodologies on the
example of Figure 4, where, for our solution, each node
corresponds to a logic gate and each edge to a wire. Figure
8 illustrates the transformations applied to the netlist in our
oblivious simulation solution. First the netlist is levelized
and partitioned into distinct cones of logic. Then, cones are
clustered so that each cluster is mapped to a single thread
block. To minimize logic gate duplication, we devised an ad-
hoc clustering algorithm: the largest cone is mapped to a new
cluster, then we add cones to it, one by one, starting from the
cone that shares the most logic with the cones already in the
cluster. The process ends when we exhaust the resources for
the cluster (shared memory allocated per thread block) or all
cones are mapped. The next step entails balancing each cluster
individually and mapping them to distinct thread blocks for
simulation, as discussed in Section IV-C1.

Our event-driven simulator uses a different set of trans-
formations. The netlist is first segmented into macro-gates
as described in Section IV-B2. The outcome of this step is
shown in Figure 9, with the parameters of lid and gap set to
2. We monitor the nets crossing macro-gate boundaries during
simulation, since we must schedule a macro-gate for simulation
only if a value change occurs on any of its monitored input
nets. Scheduled macro-gates are then simulated in an oblivious
fashion by distinct thread blocks.

0 1 2 3

4 5 6 7

8 9 10 11

0 1

4 5

8 9 10 11

1 2 3

6 7

lid = 2

gap =
2

Macro-gate segmentation

Fig. 9. Event-driven simulation example. The levelized netlist is partitioned
into macro-gates, and then simulated in event-driven fashion at macro-gate
granularity. The gray edges correspond to the nets to be monitored during
simulation.

1) Oblivious simulation for clusters/macro-gates: A bal-
anced macro-gate/cluster is analogous to a regular matrix-like
structure, where the logic gates at each level correspond to
rows of a matrix. The k-th thread in a thread block is respon-
sible for the simulation of all the logic gates in the k-th column.
The synchronization barriers at the completion of each level
enforces read-after-write ordering in logic gate computations.
The execution of a cluster is shown as an example in Figure 10.
To leverage the benefits of the fast shared memory available
within each multiprocessor, we store there the most frequently
accessed internal wire values during simulation, in contrast,
netlist topolgy and gate-type information is stored in the higher
access latency device memory. Since adjacent threads in a
thread-block access adjacent logic gates in each level, the fetch
operations that retrieve topology information for each gate can
be coalesced, resulting in better performance.

D. Discussion

Our oblivious simulation solution is presented in detail in
[20], which delivers 14.4x speedup on average over a state-

1 2

5 6

9 10

Thread 0 Thread 1

_syncthreads()

_syncthreads()

_syncthreads()

Evaluate

gate 1

Evaluate

gate 5

Evaluate

gate 9

Evaluate

gate 2

Evaluate

gate 6

Evaluate

gate 10

Fig. 10. Oblivious simulation of each cluster/macro-gate by an individual
thread-block. In this example the thread-block contains two threads that are
simulating cluster 1 of Figure 8.

of-the-art event-driven commercial simulator. We note that
the oblivious approach suffers from an important limitation,
particularly for large designs: each cone of logic can only be
as large as the amount of storage available in shared memory.
In contrast, the event-driven solution is much more flexible, in
that it is always possible to design macro-gates of sizes that
can fit within the resources available in one thread block. As
a result, our event-driven simulator can tackle netlist designs
of any size. Our event-driven approach originally appeared in
[19], [21]. It is capable of delivering a 13x speedup on average
over the same commercial simulator.

Testbenches are an essential component of a logic sim-
ulator. Since the simulator is cycle-based, the task of the
testbench is to read the outputs computed at the end of
each cycle and provide suitable inputs for the next cycle. In
our solution, testbenches are implemented as separate GP-
GPU kernels: during simulation, the kernels for simulation
proper and those for the testbench alternate execution on
the GP-GPU device. The testbench has best performance if
all associated data is stored in the memory on the device,
eliminating communication with the host. At the completion of
each simulation cycle, the outputs produced by the netlist are
read from device memory, suitable inputs are computed and
written back to be consumed during the following simulation
cycle.

V. RTL SIMULATION

A. Key Contribution

Mapping of RTL designs to GP-GPU architectures is a non
trivial task, since it requires scheduling support and the ability
to preserve correct simulation outputs, even when the processes
are executed in parallel.

SCGPSim is one of the first works targeting SystemC
RTL simulation on GP-GPUs [23]. SCGPSim applies dynamic
scheduling to the GP-GPU framework, by executing individual
threads in parallel only when the testbench structure allows
it and by synchronizing after each simulation step. This
approach showed to be suitable for SystemC designs that
exhibit a high degree of data parallelism. Any dependencies
between processes increases the number of synchronizations
necessary to mimic the original SystemC simulation kernel
execution, which results in lost opportunity for performance
improvements. Furthermore, SCGPSim maps processes to a

thread block, and each thread block gets scheduled onto a
single multi-processor. Thus, any branch divergence between
the threads sequentializes the execution of all threads.

SAGA was proposed to overcome the limitations of SCG-
PSim [24]. SAGA proposes a static scheduling approach
that avoids frequent synchronization steps by partitioning the
starting SystemC processes into independent sets that execute
on different multiprocessors.

B. Approach

SAGA builds a static scheduling of RTL processes by an-
alyzing the read-write dependencies between the processes to
generate a dependency graph. The graph is then topologically
sorted and partitioned into independent dataflows, i.e., portions
of the process graph that can be executed independently (mid-
dle of Figure 11). Such dataflows are then mapped to distinct
multiprocessors for concurrent execution. When necessary,
some portions of the process graph may be replicated to attain
independence among dataflows (as happened to processes P1
and P5 in Figure 11).

The dataflows built in the previous step are process de-
pendency trees, that must be executed level-by-level to respect
the internal dependency constraints. Thus, for each dataflow
obtained in the previous step, a total serial order of processes
must be built, with the goal of satisfying the level-to-level
dependencies. Processes in each dataflow are serialized, start-
ing from the lower levels up to the root processes of the
dependency graph (processes at the same level can be executed
in any sequential order). Such sequential order eliminates the
need of frequent synchronization after each level. An example
timeline is shown at the bottom of Figure 11.

GP-GPU execution is managed by a cycle that iteratively
invokes two kernel functions. A simulation kernel manages
dataflow execution, and it is generated by listing all the
dataflows and predicating each by a thread-block ID condition,
so that only a specific thread-block is responsible for executing
a certain dataflow. The simulation kernel alternates execution
with a value-update kernel, responsible for transferring next-
state values into the corresponding present-state values and
performing testbench actions.

Since device memory accesses are particularly slow, only
variables written by synchronous processes are allocated in
global memory, while all other variables can be declared as
local variables mapped to registers.

C. Example

The graph in Figure 3 is reported on top of Figure 11,
to highlight that nodes represent processes and edges their
read-write dependencies. The graph is partitioned into four
separate dataflows (middle of Figure 11). Dataflow 3 is com-
pletely independent from the others. On the other hand, the
dependency trees of P8, P9 and P10 have some intersections,
i.e. processes P1 and P5 are included in all of them. As
such, without replication, the methodology may only identify
one dataflow, including the dependency trees of P8, P9
and P10. This would reduce the level of parallelism. Thus,
processes P1 and P5 are replicated, thus identifying three
separate dataflows: dataflow 0, 1 and 2 (replicated processes

0

1

4

8

1

5

9

1

5

2

6

10

3

7

11

0 1

4 5

8 9

1 1 2 3

5 6 7

10 11

DATAFLOW 0 DATAFLOW 1 DATAFLOW 2 DATAFLOW 3

MULTI-

PROCESSOR 1

MULTI-

PROCESSOR 0

MULTI-

PROCESSOR 3

MULTI-

PROCESSOR 2

RESULTING MAPPING TO

GP-GPU PROCESSORS

SAGA STATIC SCHEDULING

APPLICATION

0 1 2 3

4 5 6 7

8 9 10 11

PROCESS

READ-WRITE

DEPENDENCE

Fig. 11. Application of SAGA to the dependency graph in Figure 3. Processes
are partitioned into independent dataflows, mapped to distinct multiprocessors.

are dashed in the figure). Finally, bottom of Figure 11 shows
how processes belonging to each dataflow are sequentialized
and mapped to distinct multi-processors to achieve parallel
execution. The resulting simulation kernel code is outlined in
Figure 12.

1: kernel void simulate(global datastruct* data) {
2: // threads of a same block are instances of the same parallel item
3: if block id == 0 then
4: execute dataflow 0(data);
5: else if block id == 1 then
6: execute dataflow 1(data);
7: else if block id == 2 then
8: execute dataflow 2(data);
9: else

10: execute dataflow 3(data);
11: end if
12: }

Fig. 12. Kernel code generated for GP-GPU execution of the example in
Figure 11

D. Discussion

SAGA advances the efforts on using GP-GPUs for simulat-
ing SystemC RTL models (achieving a maximum speed up of
16 times) and it may be easily extended to support models
written in any RTL HDL. SAGA keeps branch divergence
to the minimum by mapping independent process data-flows
distinct thread blocks and by replicating paths of the data-flow
that are shared amongst different data-flows, in order to elimi-
nate synchronization between the different thread blocks. This

replication of processes allows then to enhance parallelism or
to extract parallelism from a model that otherwise may not
exhibit parallelism. The disadvantage is that replication may
increase the code size, which may then impact the simulation
performance.

VI. TRANSACTION-LEVEL SIMULATION

A. Key Contribution

Sinha et al. [26] presented an approach with three main
contributions. The first contribution is that their approach
distributed processes of the same SystemC model across both
the GP-GPU and the multicore CPUs for faster simulation.
Second, they allowed parallel simulation of both processes
deployed onto the CPUs and the GP-GPUs by extending
SystemC’s reference implementation to support synchronous
parallelism. Third, Sinha et al [26] observed that SystemC
models are often mixed-abstraction models where subsets
of the processes may be at RTL whereas others may be
at transaction-level (TL). Hence, they provided a method to
allow the transferring of events between processes on the
GP-GPU and CPU through a wrapper-based method. Notice
that prior efforts on using GP-GPUs to accelerate SystemC
simulations focused solely on either gate-level or RT-level
SystemC models [20], [19], [21], [24], [27]. In addition, these
efforts deployed the entire SystemC model onto the GP-GPU
by translating the model, and scheduling their execution such
that it honours SystemC’s discrete-event semantics.

B. Approach

Sinha et al [26] accepted SystemC models specified at
the RTL and TL abstract levels. These models underwent
partitioning where the user identified processes suitable for
GP-GPU execution, and those that are suited for CPU exe-
cution. The authors characterized processes suitable for GP-
GPU execution as those that were compute-heavy and those
that could exploit data-level parallelism. Processes that were
suitable for CPU execution were those that had limited data-
level parallelism, and those that performed control-dominated
operations. The next step involved mapping the GPU-suitable
processes into thread blocks. Depending on the amount of data-
level parallelism, the processes were grouped into the same
thread blocks or different thread blocks. Processes exhibiting
high degree of data-level parallelism were grouped into the
same thread block. The user performed this grouping with
the goal of reducing the thread divergence suffered by threads
within a thread block.

After the mapping and grouping, every GPU-suitable pro-
cess was converted to its corresponding GP-GPU kernel.
However, recall that GP-GPU kernels execute from start to
completion. This is different than the manner in which Sys-
temC processes execute. In particular, SystemC processes can
suspend during execution using wait(), and resume from that
point of suspension when there is a notify() on the suspending
event. This was noted by Nanjundappa et al. [23], and they pro-
posed an automata-based approach for translating the processes
into GP-GPU kernels. However, in their work every suspension
point amounted to a clock cycle delay because all models were
at the RTL. In the work by Sinha et al [26], models can be at
the TL, and a subset of the processes could be executing on

0 1

4

8

5

9

2

6

10

3

7

11

CPUSuitableProcesses

GPUSuitableProcesses

Fig. 13. Example mapping of SystemC processes to GP-GPU and CPU

the CPU. As a result, a mechanism to suspend on events, and
resume from notifications of events, and inform all processes
was developed. The proposed method used a SystemC wrapper
process for each GP-GPU kernel that facilitated the commu-
nication between the GP-GPU kernel for that process, and
for executing the appropriate suspension/resumption calls. This
was essential because the main SystemC scheduler resided on
the CPU. The key insight in translating SystemC processes to
GP-GPU kernels was that every suspension point denoted by
a wait() exited the GP-GPU kernel back to its calling SystemC
wrapper process. The wrapper process retrieved information
about the suspension call such as its type and duration, and
invoked it from within the SystemC wrapper process; thereby,
inserting the event in the SystemC scheduler. Notice that
this required storing the state of the GP-GPU kernel such
as any intermediate computation, a state identifier, and the
information about the suspension/resumption calls in a data
structure such that the SystemC wrapper process could invoke
the correct calls. Furthermore, resuming from a suspension
point amounted to starting the GP-GPU kernel at the state
after the suspension point. This was accomplished by providing
the intermediate state to the GP-GPU kernel, and the state
identifier, which identified the point in the GP-GPU kernel to
resume execution. The additional data structure to enable this
interaction used the GP-GPU global memory, and it stored the
state identifier, the suspension/resumption call information, and
intermediate results.

Sinha et al [26] also extended SystemC’s kernel to support
synchronous parallelism as previously presented by Schu-
macher et al. [15]. The synchronous parallel simulation kernel
exploits the fact that multiple SystemC processes may become
ready-to-run, which the reference implementation executes
sequentially. Instead, the synchronous parallel SystemC kernel
executes these in parallel.

C. Example

Consider the illustrative example in Figure 13. Figure 13
shows processes enclosed in boxes as those that are suitable for
CPU execution, and those in ellipses for GP-GPU execution.
Assuming that these processes have distinct GP-GPU kernels,
then there will be a unique SystemC wrapper process for each
of these kernels. Figure 14 explains the interaction between the
wrapper process and kernel for process 4, which is dependent
on the inputs from processes 0 and 1. Given that process 4

#define E1 0

#define E2 1

__global__ void GPUEntry4(waitStruct*

ws, notifyStruct* nfs,") {

switch(stateId) {

case 0:

gpu_imm_notify(nfs,E2);

gpu_event_wait(ws,E1);

stateId = 1;

break;

case 1:

gpu_imm_notify(nfs,E2);

gpu_event_wait(ws,E1);

stateId = 1;

break; };}

B5

B2

B3

B1

B4

Event Id Wait Type
Duration

of Wait
Unit of Wait

Notify

Type

Duration

of Notify

Time Unit

of Notify stateId

GPU Global Memory

ws

nfs

SC_MODULE(Node4) {

sc_in <int> in1;

sc_in <int> in2;

// ...

void WrapperEntry4();

SC_CTOR(Node4) {

sensitive << in1<< in2;

// ...

}

};

void Node4::WrapperEntry4() {

// ...

cudaMalloc(ws);

cudaMalloc(nfs);

while (True) {

cudaMemcpy(..., ws, nfs, ...);

GPUEntry4 <<<...>>>(...);

cudaMemcpy(..., ws, nfs, ...);

ProcessNotify(nfs);

ProcessWait(ws); } }

Host To

Device Copy

Device To

Host Copy

Fig. 14. Interaction between SystemC wrapper process and GP-GPU kernel

gets scheduled for execution when the inputs from 0 and 1
become available (inputs included in 4’s sensitivity list), then
the SystemC wrapper process has the same sensitivity of the
original process. The wrapper process begins execution by first
allocating space for the wait and notify data structures and
other data structures required for computation on the device.
This is done only once as the size of the data structures are
fixed. The wrapper then copies information to be stored in the
wait structure denoted by wsand notify structure nfs. This call
refreshes the wsand nfsdata structures as on each invocation
of the kernel, the kernel process modifies the contents of the
data structures.

The entry function gpuEntry4 is process 4’s GP-GPU kernel
implements an FSM representing the behaviour of the original
SystemC process. For this example, it contains code blocks
B1 to B5 with a GP-GPU version of wait() and notify()
interspersed between them. Notice that these GP-GPU versions
of wait() and notify() are provided by Sinha et al [26] as an
additional library. When the kernel is called for the first time,
it executes B1, and encounters a gpu imm notify(), which is
an immediate notification. The GP-GPU kernel saves the type
of notify in the data structure nfs, and proceeds to execute B2.
After executing B2 it encounters a call to gpu event wait(),
which is a wait() on an event identified using E1. The kernel
saves the event identifier of E1, and the type of wait in the
data structure ws, updates a variable called state-id to and
exits the kernel. The SystemC wrapper process copies the data
structures nfsand wsfrom the device global memory, analyzes
them, and issues corresponding notification and suspension
calls via the ProcessNotify()andd ProcessWait()function call.
Notice that this is a method to direct notifications and sus-
pensions from the GP-GPU kernel to the main scheduler that
resides on the CPU. When re-invoking the GP-GPU kernel,
the state-id is passed, which provides the program point for
the next state in the FSM. In our example, the kernel on re-
invocation begins to execute code blocks B3.

D. Discussion

Sinha et al [26] presented a first effort on co-simulating
mixed abstraction SystemC models across multi-core CPUs
and the GP-GPUs. This approach utilized a SystemC wrapper

process that served as an intermediary for communication
between processes deployed on the GP-GPUs and the re-
maining processes on the CPUs. A key component of their
approach used a synchronous parallel SystemC kernel. This
allowed them to support multi-GPU platforms since it is
possible to make parallel GP-GPU kernel invocations from
multiple SystemC wrapper processes. The authors recognized
that by requiring the simulation to make multiple invocations
to the GP-GPU kernels, the number of memory transfers
were significantly higher. Furthermore, memory transfers could
inhibit performance improvement.

VII. EXTENSION TO OPENCL

CUDA has been introduced by NVIDIA in 2006 as the first
framework for supporting the development of general purpose
applications for GP-GPUs, and, since then, it has been the
reference framework for GP-GPU programming. As such, all
the works cited in this paper adopt CUDA as target language
and architecture. CUDA is restricted to NVIDIA devices, thus
resulting highly optimized for performance. Unfortunately, it
results also in lacking portability across different vendors.
For this reason, in 2008 the Kronos group founded OpenCL,
a standard alternative to CUDA. OpenCL targets a wider
range of architectures, ranging from CPUs to GP-GPUs. Thus,
OpenCL is more portable but its implementation is not as
optimized as the CUDA competitor.

[29] lately proposed a comparison between CUDA and
OpenCL targeting the simulation of EDA descriptions. In
detail, the work compares the performance of the adoption
of SAGA to simulate SystemC designs by using either the
CUDA or the OpenCL framework. As outlined in Section
II-B, OpenCL and CUDA have common platform models,
memory models, execution models and programming models.
As a result, implementing a CUDA code for OpenCL requires
very few modifications, related to the different APIs and to
few thread organization points (i.e., the warp size is different
for the frameworks). As such, this step can be automated or
easily performed manually.

The main difference between the two frameworks is that
OpenCL targets a wider range of architectures, while CUDA
is restricted to NVIDIA GP-GPU. This implies that OpenCL
is more flexible and it can not take into account specific prop-
erties of the underlying architecture, such as the availability
of read-only memory. This consideration impacts execution
performance. First of all, OpenCL requires environmental
setup before launching kernel execution. This process includes
selecting the target device, determining its characteristics and
compiling the kernel at runtime. As a result, OpenCL has a
heavy initialization cost, unnecessary in CUDA, where the fea-
tures of the underlying architecture are statically determined.
Furthermore, memory management and compilers are less
optimized, since no assumption on the underlying architecture
can be made at compilation time.

As a result, [29] showed that the execution of the same
simulation code on OpenCL frameworks results in average 2.5
times slower than the corresponding CUDA implementation.
This performance may improve with the delivery of more
mature compilers for OpenCL and it is compensated by the
high level of portability of the generated code.

0

50000

100000

150000

200000

250000

ClockGen ResGen Sync RegCtrl 8b10b Ecc System

CUDA

OpenCL

Fig. 15. Comparison of simulation of the same designs on CUDA and
OpenCL frameworks, as presented in [29].

VIII. CONCLUSIONS

The paper proposed a comprehensive analysis of state of
the art approaches for the exploitation of GP-GPUs in the
context of computation intensive EDA applications. All the
approaches have been outlined with a common example and
by highlighting the contribution of GP-GPU architectures in
increasing effectiveness and performance. Both CUDA and
OpenCL have been investigated, to propose a balanced trade
off between performance and portability.

REFERENCES

[1] W. Ecker, V. Esen, L. Schonberg, T. Steininger, M. Velten, and M. Hull,
“Impact of description language, abstraction layer, and value represen-
tation on simulation performance,” in Proc. of ACM/IEEE DATE, 2007,
pp. 767–772.

[2] R. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler, “COSMOS: a
compiled simulator for MOS circuits,” in Proc. ACM/IEEE DAC, 1987,
pp. 9–16.

[3] Z. Barzilai, J. Carter, B. Rosen, and J. Rutledge, “HSS–a high-speed
simulator,” IEEE Trans. on CAD, vol. 6, no. 4, pp. 601–617, 1987.

[4] D. Lewis, “A hierarchical compiled code event-driven logic simulator,”
IEEE Trans. on CAD, vol. 10, no. 6, pp. 726–737, 1991.

[5] W. Baker, A. Mahmood, and B. Carlson, “Parallel event-driven logic
simulation algorithms: tutorial and comparative evaluation,” IEEE Jour-
nal on Circuits, Devices and Systems, vol. 143, no. 4, pp. 177–185,
1996.

[6] Y. Matsumoto and K. Taki, “Parallel logic simulation on a distributed
memory machine,” in Proc. IEEE EDAC, 1992, pp. 76–80.

[7] N. Manjikian and W. Loucks, “High performance parallel logic simu-
lations on a network of workstations,” in Proc. of ACM PADS, 1993,
pp. 76–84.

[8] H. K. Kim and S. M. Chung, “Parallel logic simulation using time
warp on shared-memory multiprocessors,” in Proc. IEEE International
Symposium on Parallel Processing, 1994, pp. 942–948.

[9] SystemC 2.3.0, Accellera Systems Initiative, 2012,
http://www.systemc.org.

[10] S. A. Sharad and S. K. Shukla, Optimizing system models for simulation
efficiency. Norwell, MA, USA: Kluwer Academic Publishers, 2004,
pp. 317–330.

[11] D. R. Cox, “RITSim: distributed SystemC simulation,” Ph.D.
dissertation, Rochester Institute of Technology, 2005. [Online].
Available: http://hdl.handle.net/1850/1014

[12] Y. N. Naguib and R. S. Guindi, “Speeding up SystemC simulation
through process splitting,” in Proc. of ACM/IEEE DATE, 2007, pp. 111–
116.

[13] R. Buchmann and A. Greiner, “A fully static scheduling approach for
fast cycle accurate systemc simulation of mpsocs,” in Proc. of IEEE
Microelectronics, 2007, pp. 101–104.

[14] P. Combes, E. Caron, F. Desprez, B. Chopard, and J. Zory, “Relaxing
synchronization in a parallel systemc kernel,” in Proc. of IEEE ISPA,
2008, pp. 180–187.

[15] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann, “parSC: syn-
chronous parallel SystemC simulation on multi-core host architectures,”
in Proc. of ACM/IEEE CODES+ISSS, 2010, pp. 241–246.

[16] P. Ezudheen, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi,
“Parallelizing SystemC kernel for fast hardware simulation on SMP
machines,” in Proc. of ACM/IEEE PADS, 2009, pp. 80–87.

[17] A. Mello, I. Maia, A. Greiner, and F. Pecheux, “Parallel simulation of
SystemC TLM 2.0 compliant MPSoC on SMP workstations,” in Proc.
of ACM/IEEE DATE, 2010, pp. 606–609.

[18] S. Jones, “Optimistic parallelisation of SystemC,” Universite Joseph
Fourier: MoSiG DEMIPS, Tech. Rep., 2011.

[19] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level
simulation with GP-GPUs,” in Proc. ACM/IEEE DAC, 2009, pp. 557–
562.

[20] ——, “GCS: High-performance gate-level simulation with GP-GPUs,”
in Proc. ACM/IEEE DATE, 2009, pp. 1332–1337.

[21] ——, “High Performance Gate-Level Simulation with GP-GPUs,” in
GPU Computing Gems. Morgan Kaufmann, 2011, ch. 23.

[22] A. Sen, B. Aksanli, M. Bozkurt, and M. Mert, “Parallel cycle based
logic simulation using graphics processing units,” in Proc. of IEEE
ISPDC, 2010, pp. 71–78.

[23] M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla, “SCGPSim:
A fast SystemC simulator on GPUs,” Proc. of ACM/IEEE ASP-DAC,
pp. 149–154, 2010.

[24] S. Vinco, D. Chatterjee, V. Bertacco, and F. Fummi, “SAGA: SystemC
acceleration on GPU architectures,” Proc. of ACM/IEEE DAC, pp. 115–
120, 2012.

[25] N. Bombieri, F. Fummi, and V. Guarnieri, “FAST-GP: An RTL func-
tional verification framework based on fault simulation on GP-GPUs,”
Proc. of ACM/IEEE DATE, pp. 562–565, 2012.

[26] R. Sinha, A. Prakash, and H. D. Patel, “Parallel simulation of mixed-
abstraction SystemC models on GPUs and multicore CPUs,” Proc. of
ACM/IEEE ASP-DAC, pp. 455–460, 2012.

[27] M. Nanjundappa, A. Kaushik, H. D. Patel, and S. K. Shukla, “Acceler-
ating SystemC simulations on GPUs,” Proc. of IEEE HLDVT, pp. 1–8,
2012.

[28] A. Perinkulam and S. Kundu, “Logic simulation using graphics proces-
sors,” in Proc. International Test Synthesis Workshop, March 2007.

[29] N. Bombieri, S. Vinco, D. Chatterjee, and V. Bertacco, “SystemC
Simulation on GP-GPUs: CUDA vs. OpenCL,” Proc. of ACM/IEEE
CODES+ISSS, pp. 343–352, 2012.

[30] NVIDIA CUDA Compute Unified Device Architecture - Programming
Guide, NVIDIA, 2008, http://developer.download.nvidia.com.

[31] OpenCL - The open standard for parallel programming of heteroge-
neous systems, Khronos Group, http://www.khronos.org/opencl.

