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Abstract—An increasing amount of information technology
services and data are now hosted in the cloud, primarily due
to the cost and scalability benefits for both the end-users and
the operators of the warehouse-scale datacenters (DCs) that
host cloud services. Hence, it is vital to continuously improve
the capabilities and efficiency of these large-scale systems. Over
the past ten years, capability has improved by increasing the
number of servers in a DC and the bandwidth of the network
that connects them. Cost and energy efficiency have improved
by eliminating the high overheads of the power delivery and
cooling infrastructure. To achieve further improvements, we must
now examine how well we are utilizing the servers themselves,
which are the primary determinant for DC performance, cost,
and energy efficiency. This is particularly important since the
semiconductor chips used in servers are now energy limited and
their efficiency does not scale as fast as in the past. This paper
motivates the need for resource efficient computing in large-
scale datacenters and reviews the major challenges and research
opportunities.

I. INTRODUCTION

Computing has become an essential tool and a catalyst
for innovation in all aspects of human endeavor, including
healthcare, education, science, commerce, government, and
entertainment. An increasing amount of computing is now
performed in the cloud [1]. Warehouse-scale datacenters (DCs)
host popular online services such as search, social network-
ing, webmail, video streaming, enterprise management tools,
online maps, automatic translation, big-data analytics, open
online courses, and general-purpose cloud computing and
storage platforms. We have come to expect that these services
provide us with instantaneous, personalized, and contextual
access to petabytes of data.

The primary advantages of cloud computing are the scal-
ability and cost benefits for both the end-users and the DC
operators. In the past ten years, operators have scaled the
capabilities of cloud services by building larger datacenters
that can host tens to hundreds of thousands of multi-core
servers [2]. The servers are connected by networks with high-
speed links (e.g., 10Gbps Ethernet) and advanced topologies
that support high bandwidth between any two servers [3], [4].
At the same time, operators have increased cost effectiveness
by using commodity, lower-cost servers and by reducing the
cost and energy overheads of the power delivery and cooling

infrastructure [2]. While a few years ago the power usage
effectiveness (PUE) of datacenters was as high as 3.0, the
PUE of modern facilities is as low as 1.1.

Unfortunately, we have reached the end of the road for these
scaling techniques. Datacenters are already consuming tens of
MWatts, stressing the capabilities of power generation facili-
ties and making it difficult to continuously increase the number
of servers per datacenter [2], [5]. At the same time, the end of
voltage scaling for the semiconductor chips used in servers
means that we cannot rely on chips to offer exponentially
increasing performance at constant energy consumption [6]–
[8]. Both server chips and DC facilities are energy limited.
Building additional datacenters is also expensive as each new
facility costs hundreds of millions of dollars [2]. Finally, PUE
improvements have reached the point of diminishing returns
as well, since the overhead of power delivery and cooling can
be reduced to 10% over the power consumption of the servers.

To achieve further improvements in DC capability and
cost effectiveness, we must now focus on the following two
questions [9], [10]. First, are we using efficiently the servers
available in these large-scale datacenters? Second, are we
building the right servers to begin with? Figure 1 shows the
breakdown of the total cost of ownership (TCO) of a DC
facility with PUE = 1.25 [5], [11]. The capital expenses
for procuring the servers represent 61% of TCO, while the
energy consumed by servers is responsible for another 16%.
Figure 1 also shows the distribution of CPU utilization in
DC servers [1]. Utilization is quite low, typically ranging at
10% to 20%. Hence, an obvious path towards improving both
capability and cost efficiency is to increase the utilization of
DC servers. High server utilization is also beneficial for energy
efficiency. Since most servers are not energy proportional,
consuming 40% to 60% of their peak power when idling, they
operate most efficiently at high utilization [1], [9], [12]–[14].

Nevertheless, there are several challenges towards achieving
resource efficiency through higher server utilization. First, DC
operators must plan for diurnal usage patterns, unexpected
spikes in user demands, and new workloads. Second, it is
impossible to configure servers so that per machine resources
(cores, memory, storage, I/O) perfectly match the requirements
of all cloud services hosted in a particular facility [10]. Third,
and most important, increasing server utilization by scheduling978-3-9815370-0-0/DATE13/ c©2013 EDAA
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Fig. 1. (a) Breakdown of the total cost of ownership (TCO) of a 10MW datacenter assuming 3-year server amortization and 15-year site amortization [5],
[11]. (b) The distribution of CPU utilization of 5,000 Google servers over a period of 6 months [1].

multiple services on each server leads to performance loss due
to interference. Even if they use different processor cores, co-
scheduled applications can interfere on other shared resources,
such as caches, memory channels, storage and networking
devices [15]–[17].

Interference is particularly detrimental for latency-critical,
user-facing services with strict quality-of-service (QoS) guar-
antees. For instance, updating a social network’s news feed
involves queries for the user’s connections and recent postings;
ranking, filtering, and formatting updates; retrieving media
files; and selecting and formatting relevant advertisements
and recommendations. Since tens of servers are involved in
each user query, low average latency is not sufficient. The
requirement is for low tail latency (e.g., low 95th or 99th
percentile), so that latency variability does not impact a signif-
icant percentage of user requests. Assigning further workloads
to each server in order to raise utilization typically leads
to higher latency and higher variability since requests may
be queued for milliseconds if other tasks occupy processing
cores. But even if cores are available, the latency-critical
requests may underperform due to interference and contention
on shared resources such as caches, memory, storage, and
networking. Hence, it is common for latency-critical services
to be deployed on dedicated servers, which are underutilized
for the majority of time.

II. RESOURCE EFFICIENT COMPUTING

We set as our goal to increase the capability and cost
effectiveness of large-scale datacenters by improving their
resource efficiency. Specifically, we want to reconcile the
apparent conflict between the need to maintain high quality-
of-service (QoS) for latency-critical, high-priority services
and the desire to increase hardware utilization by scheduling
multiple workloads per server. Towards this goal, we need
advances in both isolation mechanisms that reduce interfer-
ence between co-scheduled services and scheduling policies

that manage resource usage and isolation mechanisms to in-
crease resource utilization without sacrificing QoS guarantees.
The combination of strong isolation mechanisms and proper
scheduling policies can allow us to increase utilization for
a wide range of operational scenarios. For instance, during
periods of low or medium user traffic, we can schedule
background analytics tasks on servers provisioned for latency-
critical services without an impact on their QoS. Similarly,
we can run low-latency storage services on any server to
export unused memory or SSD capacity to workloads running
on other servers that are resource constrained. Finally, we
can aggressively pack workloads on cloud computing servers
without performance and efficiency losses due to interference.

A significant improvement in resource efficiency requires
a coordinated, cross-layer research approach that spans hard-
ware architecture, operating systems, and cluster management.
Architecture research can provide the basic mechanisms for
efficient sharing and isolation of hardware resources includ-
ing cores, caches, memory channels, networking and storage
devices. Moreover, it can lead to new server, rack, or clus-
ter organizations that lend themselves to higher degrees of
resources sharing between concurrent workloads. Operating
systems research can provide algorithms that manage the
granularity of resource sharing between workloads and control
hardware isolation mechanisms. Cluster management research
is necessary because most cloud services use multiple tiers
to process any user request. Moreover, the cluster scheduler
determines how services are distributed across the available
servers. It is vital to understand the interactions and coordi-
nate isolation mechanisms and scheduling policies across the
system layers reviewed in the following subsections.

A. Datacenter Workload Analysis

While there are numerous studies of cloud workloads,
relatively few have focused on interference and resource usage
issues [15], [18], [19]. Early studies have shown that the



performance of Google workloads varies by up to 40% due
to cache and memory interference [18]. We have measured
even larger performance drops due to interference on latency-
critical, memory-based storage services. Nevertheless, we need
a stronger understanding of the issues to drive hardware and
software research on resource efficiency. Specifically, we need
to understand the impact of varying levels of interference on
hardware and software resources with respect to performance
and QoS guarantees. We must also quantify the relation-
ship between performance and resource allocation within and
across servers. Finally, we must analyze whether application-
level techniques for load balancing and fault tolerance can also
mitigate interference and performance variability.

B. Hardware Isolation Mechanisms

At the architecture level, we need isolation and priority
mechanisms for hardware resources, such as multithreaded
cores, private and shared caches, memory channels, network
interfaces, and high-speed storage devices. Unlike existing
mechanisms for hardware QoS that focus primarily on fairness,
these new mechanisms must support fine-grain resource allo-
cation between multiple latency-critical and throughput tasks
of various priority levels and must have reaction times at the
microsecond level in order to be useful for latency-critical
services. They must provide strict guarantees on resource
allocation, since best effort schemes introduce the risk of
significant interference in unexpected workloads scenarios.
Finally, the control interface for hardware mechanisms must
be compatible with the scheduling, priority, and allocation
abstractions used by the server OS and the cluster manager.

Recent research has produced promising results towards
these goals. Scalable partitioning techniques can enable an
arbitrary number of workloads to share caches with strict
guarantees on partition sizes and performance [20]. QoS
mechanisms can define classes of service and priority for the
use of cache and memory bandwidth [21]. Emerging network
adapters can support hundreds of send and receive queues that
the OS can associate with different workloads or connections.
Under software control, the adapter can enforce priorities
and rate limits on each queue. We need to extend these
concepts across all hardware resources, study implementation
alternatives and their respective cost, and define a uniform set
of APIs that allow software control of isolation and priority
mechanisms.

C. OS Support for Latency-critical Services

At the OS level, we need to enhance the scheduling al-
gorithms for the sharing scenarios that latency-critical ser-
vices might encounter. Decades of OS development have
led to scheduling algorithms that fully utilize processing
cores through multitasking of throughput-bound workloads,
while providing human users with fluid-appearing interactions.
Unfortunately, these algorithms are tuned for human visual
sensitivity, which is in the order of several milliseconds. Multi-
tier, latency-critical services require that individual servers
respond within hundreds or even tens of microseconds.

Hence, we need to examine the amenability of conven-
tional and real-time scheduling algorithms for such workloads,
properly expand and tune their parameters, or develop alter-
native algorithms that address any shortcomings. Our early
experiments suggest that neither the fair scheduling nor the
real-time scheduling algorithms in modern operating systems
can efficiently handle all sharing scenarios in the presence
of latency-critical workloads. Their primary shortcoming is
the lack of decoupling between latency and throughput guar-
antees. Moreover, the OS scheduler must manage not just
processing cores but the allocation of all hardware resources
in a coordinated manner. Finally, to make informed scheduling
decisions at the cluster level or at the various application tiers,
we need new interfaces that allow the OS in each server
to communicate resource allocation, interference, and QoS
information.

D. Cluster-level Management

Managing services in a large datacenter has several chal-
lenges. First, resource requirements within and across services
are very dynamic. The load of user-facing applications, such
as search, or webmail can vary widely within a day. Cloud
computing frameworks, such as EC2, must also deal with
previously unknown workloads submitted at high rates, mak-
ing it difficult to make a priori decisions for resource use. In
environments where services express resource reservations, it
is common for developers to exaggerate reservations by integer
factors in order to side-step interference issues. Hence, the
cluster manager rarely knows the true needs of a service at ad-
mission point. Second, services have different structures, prior-
ities and require different latency and performance constraints.
Third, each service exhibits different degrees of sensitivity to
interference on shared resources by co-scheduled workloads
and can similarly inflict different amounts of interference to
them. Fourth, since datacenters are provisioned over 15-year
periods with servers gradually installed and replaced [2], there
is significant heterogeneity in server configuration, further
complicating resource efficient cluster management.

Given these challenges, there are three questions that the
cluster manager must address. First, “how many resources”
should the application be allocated, i.e., what are the real
resource requirements the workload needs to preserve its QoS
constraints? Second, “where” should an application be sched-
uled, meaning, which of the tens of thousands of shared servers
are the most appropriate for the workload’s demands given the
current system state and available resources? Third, “when”
should the application be scheduled if its QoS constraints
allow scheduling delays or execution with fewer than ideal
resources?

In recent work, we showed that we can address the sec-
ond question (“where”) in the presence of unknown work-
load needs, varying interference sensitivity, and heteroge-
neous server configurations [22]. We developed the Paragon
framework that, first, performs application classification to
understand the workloads’ interference characteristics and
how well they behave on the different server configurations.
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Fig. 2. Performance comparison when scheduling workloads on 1,000 shared servers with 14 hardware configurations [22]. Performance is normalized to
executing each workload in isolation on the best possible server (best case QoS). The (LL) scheduler packs workloads to the least-loaded server at each
point taking into account their core and memory requirements. Paragon uses its classification engine to extract interference and heterogeneity information.
All classification and scheduling overheads are included. The three scenarios shown differ in workload number and arrival rates. Experiments were conducted
using exclusive, reserved, EC2 servers.

Unlike previous work that uses time-consuming, offline per-
application profiling to analyze interference and heterogeneity
requirements, the classification engine in Paragon operates
like a recommendation engine for online shopping. Given a
minute’s worth of profiling data from a couple of servers,
Paragon uses collaborative filtering methods, such as Singular
Value Decomposition (SVD) and PQ-reconstruction, to com-
pare the current workload to previously scheduled workloads
and derive detailed and accurate information about its in-
terference and heterogeneity characteristics. Figure 2 shows
the improvements in resource efficiency when using Paragon
to schedule thousands of workloads on 1,000 EC2 servers
(SC4 sharing scenario). Compared to scheduling workloads
accounting only for the core and memory requirements (LL
lines), Paragon improves workload performance by 25% to
4x by assigning them to servers in a manner that matches
workloads to server configurations and minimizes interference
between co-scheduled applications. The gains from Paragon
are bigger when the cluster is under heavy load (higher
workload arrival rates). Faster execution times with Paragon
imply that application QoS requirements are met. Moreover,
they imply that resources are used and released faster. A subset
of the cluster is sufficient for the given workloads and the
remaining resources can be used for additional workloads of
any type (improved capability at constant TCO).

Further research is necessary to address the other two
questions for cluster management. The classification-based
approach can be useful for resource allocation as well, pro-
viding valuable insights during application development and
application deployment. To properly manage shared resources
for all scenarios, some additional infrastructure is necessary.
We need APIs and mechanisms to communicate performance
and QoS information between the OS, the cluster manager, and
the different service tiers. For instance, if the hardware, the OS,
or the application itself observes behavior different from what
the classification predicted, we may either have a classification

error or a change in workload behavior (phase change or
change in user load). In any case, the cluster manager must
be notified to take further scheduling actions. Similarly, if a
language runtime system, such as the JVM, is about to perform
expensive garbage collection or if a certain tier observes its
queue getting larger, they should pass this information to
schedulers and load balancers to avoid performance variability.
Finally, for some workload scenarios, we may need to rate
limit the additional workload so that it utilizes spare resources
without exceeding certain bounds.

E. Resource Efficient Hardware

In addition to increasing server utilization, we can achieve
further improvements in resource efficiency by revisiting the
basic structure of DC servers and the components these servers
employ.

At the macro level, blade and microserver enclosures have
the potential for significant improvements over the commonly
used, two-socket servers [23], [24]. Using high-bandwidth,
low-latency interconnect fabrics, these enclosures enable tens
of processor chips to share resources such as memory, storage
devices, and network adapters. Resource sharing leads to
reduced component counts, better component utilization, better
amortization of expensive components (e.g., DRAM or Flash
memory), and new opportunities for load balancing and power
management. The optimal balance and resource management
policies for such enclosures is still an open question.

At the micro level, there is an active debate on the use of
wimpy cores in DC chips. While simple cores offer more per-
formance per unit of area and power compared to the high-end
cores in current servers, they lag in single-thread performance
and often cause QoS and performance variability problems for
latency-critical workloads [25], [26]. Nevertheless, there are
many opportunities for resource efficiency gains, regardless of
the choice of cores. Custom accelerators for common tasks
can provide large performance increases at small power and
area overheads. Some server chips and I/O controllers already



Fig. 3. Energy per accessed bit with varying channel utilization for DDR3,
low-voltage DDR3, and LPDDR2 technologies. We assume four ranks per
memory channel and 3:1 read to write operations ratio.

provide specialized accelerators for low-level tasks, such as
encryption and compression. As communication, storage, and
coordination protocols in DC frameworks are getting standard-
ized, we will likely see specialized accelerators for higher-level
functionality as well. The accelerators may be integrated in the
processor chips or in separate I/O controllers, shared within a
larger enclosure.

It is also critical to boost the efficiency of memory sys-
tems, which have been improving at a significantly slower
pace compared to processing systems. With online services
demanding fast access to ever increasing datasets, memory
accounts for 25% to 40% of datacenter energy consumption
and a large fraction of the total cost. The high-bandwidth
interfaces of the commonly-used DDR3 technology consume
significant energy even when memory is idle or lightly utilized.
In recent work, we observed that emerging DC workloads
exhibit capacity and bandwidth demands that do not match
the features of DDR3 technology [10]. Applications, such
as web search, MapReduce, and distributed memory caching
stress memory capacity and latency but not bandwidth. Hence,
we turned to memory technology originally designed for
mobile platforms, LPDDR2. Mobile-class memory forgoes the
expensive interface circuitry of DDR3, sacrificing some of the
peak bandwidth offered for a 2x – 5x energy improvement
over DDR3 technology across all utilization points, as shown
in Figure 3. We used stacked LPDDR2 devices to architect
high capacity memory systems for DC servers that reduce
memory power consumption by 3x – 5x and impose negligi-
ble performance penalties for latency-critical workloads [27].
More important, the LPDDR2-based memory systems lead
TCO improvements of up to 30% for large-scale DC facilities.

III. CONCLUSION

We can improve the capability and cost effectiveness of
online services by systematically increasing the resource uti-
lization in large-scale datacenters. Queuing theory tell us
that when resource utilization approaches 100%, the impact
on latency will be severe. However, given the current uti-
lization levels of 10%-20%, there is significant room for
improvement. A cross-layer approach that spans hardware

architecture, operating systems, and cluster management can
lead to resource efficiency gains of 2x – 5x across a wide range
of operational scenarios and contribute towards the goal of
improving the scalability and cost effectiveness of warehouse-
scale computing.
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