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Abstract—Server consolidation plays a key role to mitigate the
continuous power increase of datacenters. The recent advent of
scale-out applications (e.g., web search, MapReduce, etc.) neces-
sitate the revisit of existing server consolidation solutions due
to distinctively different characteristics compared to traditional
high-performance computing (HPC), i.e., user interactive, latency
critical, and operations on large data sets split across a number
of servers. This paper presents a power saving solution for
datacenters that especially targets the distinctive characteristics
of the scale-out applications. More specifically, we take into
account correlation information of core utilization among virtual
machines (VMs) in server consolidation to lower actual peak
server utilization. Then, we utilize this reduction to achieve fur-
ther power savings by aggressively-yet-safely lowering the server
operating voltage and frequency level. We have validated the
effectiveness of the proposed solution using 1) multiple clusters
of real-life scale-out application workloads based web search
and 2) utilization traces obtained from real datacenter setups.
According to our experiments, the proposed solution provides
up to 13.7% power savings with up to 15.6% improvement of
Quality-of-Service (QoS) compared to existing correlation-aware
VM allocation schemes for datacenters.

I. INTRODUCTION

The soaring demand for computing has produced as collat-
eral undesirable effect a surge in power consumption of servers
and datacenters [1]. Server consolidation [3], which minimizes
the number of active servers by packing workloads, or virtual
machines (VMs) in a virtualized environment, into the minimal
number of active servers, is one of the widely used techniques
to reduce the power consumption of datacenters.

However, in order to satisfy the performance demand of
applications running on servers, server consolidation is usually
conducted assuming the worst-case (or peak) utilization [2],
[3]. Thus, in order to achieve power consumption without any
significant Quality-of-Service (QoS) degradation, many works
have presented aggressive consolidation schemes, which pack
VMs based on off-peak (e.g., 90th/95th/99th percentile) of
server utilization [4], [5]. Recently, correlation of resources
utilization patterns among VMs are also exploited, such that,
un-correlated VMs are co-located into a server to enable over-
provision of VMs under negligible QoS degradation [6]–[9].
Nonetheless, these existing solutions are mostly designed for
high-performance computing (HPC) applications and do not
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work well for emerging cloud (or scale-out [10]) applications
(e.g., web search, MapReduce, etc.) due to the lack of consid-
erations of the characteristics of the scale-out applications.

In particular, the characteristics of scale-out applications
are quite different from traditional HPC workloads in both
macroscopic and microscopic scales. At the macroscopic scale,
the application, first, is user-interactive; thereby, the amount
of required computing capacity is highly variable and fast-
changing [5] due to the dependence with external factors, e.g.,
number of clients/queries, etc. Second, the responsiveness (or
latency) should come at the first criteria to be satisfied as the
level of user satisfaction leads to the success of the business
[11]. Finally, the amounts of required CPU and memory
resources are usually far beyond the level that a single server
can sustain. Hence, massively parallel nodes are cooperatively
working by forming a cluster architecture [12]. For instance,
in a web search application, a big set of search indexes
is divided into multiple smaller datasets, and then allocated
into multiple VMs (or servers), each of which is called an
index searching node (ISN). Once a query is arrived, each
ISN independently searches matched data with the allocated
dataset and a master (i.e., front-end) node gathers the search
results from the multiple ISNs, then sends the results to
clients. At the microscopic-scale, the characteristics of scale-
out applications are well studied in [10]. Among various
characteristics, the memory footprint is far beyond the amount
an on-chip cache can sustain; thereby, increasing the on-chip
cache size only produces negligible performance improvement.
Because of these aforementioned discrepancies with HPC
workloads, existing datacenter power management solutions,
which neglect or only partially consider the characteristics of
scale-out applications, do not exploit all the opportunities to
achieve global power savings.

In this paper, we propose a dynamic power management
solution for servers hosting these new scale-out applications,
especially accounting for the correlation information among
VMs, while satisfying peak resource requirements. Compared
to existing correlation-aware solutions, the contributions of this
work are as follows:
• We analyze workload characteristics of scale-out appli-

cations and present new opportunities for power manage-
ment in virtualized server environments.

• We present a novel power management solution jointly
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utilizing server consolidation and voltage and frequency
(hereafter, v/f) scaling considering the characteristics of
scale-out applications, especially correlation among VMs.

• We validate the applicability of the proposed solution
with the real deployment of multiple distributed web
search applications taken from CloudSuite [10].

• We validate the effectiveness of the proposed solution to
larger scale problems using the utilization traces obtained
from acutal datacenters, which provides up to 13.7%
power savings and 15.6% QoS improvement compared
to existing correlation-aware schemes [6].

This paper is organized as follows. Section II reviews
the related work on datacenter power management. Section
III analyzes the characteristics of scale-out applications and
revisits the power management approaches considering the
characteristics. Section IV proposes a novel VM allocation
and v/f scaling solutions. Section V presents our experimental
results, followed by conclusions in Section VI.

II. RELATED WORK

Various server consolidation solutions are proposed based
on per-VM workload characteristics, i.e., the peak utilization
of VMs [2], [3] and off-peak (e.g., 90th/95th/99th percentile)
values observing that the peak utilization happens rarely
and it is much higher (more than 2x) than 95th and 99th
percentile values [4], [5]. To achieve further power savings
while maintaining QoS level, joint relationships among VMs,
like correlations, have been exploited in recent works [6]–[9].
In [6], Verma et al. presented a clustering-based correlation-
aware VM placement solution. The solution first clusters VMs,
such that, the envelops of VMs’ CPU utilization (defined
as a binary sequence where the value becomes ‘1’ when
CPU utilization is higher than the off-peak value, otherwise,
‘0’) included in different clusters do not overlap. Then, it
allocates VMs to servers in order to co-locate VMs in dif-
ferent clusters by provisioning VMs based on their off-peak
utilization demands (e.g., 90th percentile), while reserving a
shared peak buffer to handle resource demand higher than the
off-peak value for all co-located VMs. However, this approach
is applicable only when the envelops of VMs are stationary and
distinctively different one from another, thereby, producing
multiple clusters. Hence, it does not work well with scale-
out applications with non-stationary and fast-changing VM
behaviors. Then, in [7], Meng et al. proposed a joint-VM
sizing technique that pairs two un-correlated VMs into a super-
VM and provision super-VMs by predicting the the aggregated
workloads. However, once super-VMs are formed, this solution
does not consider the correlations of VMs within a same super-
VM anymore. Thus, it may lose the chance of further power
savings by leveraging time-varying correlations in scale-out
applications. In [9], Halder et al. extends the scheme such
that aggregated workload of multiple VMs can be utilized for
VM placement. However, this solution can be applicable only
when future servers’ utilization is perfectly known.

In summary, all existing solutions do not properly capture
the characteristics of scale-out applications. Thus, we need

to develop a power management solution for datacenters by
accounting for this specific characteristics to achieve suitable
power savings while satisfying performance requirements.

III. NEW OPPORTUNITIES FOR POWER MANAGEMENT

Power management solutions for datacenters hosting scale-
out applications should be different from the case of hosting
HPC applications due to the distinctive characteristics of scale-
out applications. In this section, we present three principles of
dynamic power management solutions for datacenters hosting
the scale-out applications based on our observations. All data
presented in this section is measured using an AMD Opteron
6174 architecture within a DELL PowerEdge R815 server.
A. Conservative resource provision with v/f scaling

Scale-out applications are user-interactive. Therefore, re-
sponsiveness, in terms of latency, is the first priority to be
met [11]. Moreover, every application (or VM) is assumed to
be equally important in clouds. Thus, we should conservatively
provision VMs based on the peak (or Nth percentile according
to QoS requirement) resource demand of each VM. The
required QoS level can be achieved by assigning the right
number of cores because the performance is highly scalable
to the number of allocated cores due to the high parallelism
of such applications. Moreover, the resource demand is time-
varying and is mostly lower than the value used for the core
allocation. However, as described in [5], dynamic power gating
(turning on/off cores) cannot be applicable to such applications
due to the significant performance degradation caused by
the long transition latency between power modes and fast
changes of resource demands. Thus, dynamic v/f scaling is
the only solution to achieve power savings while satisfying the
performance requirement. Motivated by these observation, the
proposed solution allocates the number of cores for each VM
according to its peak (or off-peak depending on QoS level)
resource demand to guarantee equal QoS levels to all VMs
while scaling v/f level to achieve power savings.
B. Sharing cores among co-located VMs

The amount of required CPU utilization varies as the
amount of user requests to servers changes over time. Fig.
1 shows the CPU utilization traces for two VMs, each of
which is an index serving node (ISN), in a single web search
cluster to process queries requested from the varying number
of clients. As shown in the figure, the CPU utilizations of both
VMs are highly synchronized with the variation of the number
of clients. Furthermore, loads between VMs in a cluster are
not perfectly balanced because the CPU utilization depends on
the amount of matched results corresponding to a user request.
Thus, we can improve the resource utilization by sharing cores
among multiple VMs, such that they can flexibly use cores
depending on their time-varying resource demands.

Furthermore, as analyzed in [10], the overhead of sharing
cores is negligible due to the large memory footprint of
scale-out applications, i.e., far beyond the capacity of on-chip
caches. Table I shows the measured performance metrics used
of a web search application when it is co-located with various
applications (from PARSEC benchmark suite). We compared
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Fig. 1. Variations of CPU utilization of two index searching nodes (ISNs)
with respect the number of clients

TABLE I
PERFORMANCE METRICS OF A WEB SEARCH APPLICATION CO-LOCATED

WITH A VM RUNNING PARSEC BENCHMARK: NUMBERS IN PARENTHESIS
SHOW THE CASE WHEN A WEB SEARCH APPLICATION IS RUNNING ALONE

IPC L2 MPKI L2 miss rate (%)
w/ Backshcoles 0.76 (0.75) 2.38 (2.40) 11.28 (11.57)
w/ Swaptions 0.75 (0.77) 2.32 (2.43) 11.02 (9.63)
w/ Facesim 0.70 (0.70) 2.41 (2.36) 11.41 (11.31)
w/ Canneal 0.76 (0.78) 2.46 (2.43) 11.76 (11.67)

instruction per clock cycles (IPC), L2 miss-per-kilo-instruction
(MPKI), and L2 miss ratio (%). The values are obtained using
Xenoprof patched for the AMD15h Bulldozer architecture
[14]. The numbers in parenthesis show the case before co-
location. As can be seen, there are only negligible variations
over all the metrics, which correspond to a negligible perfor-
mance degradation due to cores sharing. Motivated by these
observations, the proposed solution allocates VMs to servers
such that all co-located VMs share cores assuming that the
performance degradation is negligible.

C. Correlation-aware VM placement
Due to the distributed operations of multiple VMs in a

cluster, we can observe a high correlation within a cluster of
scale-out applications, called intra-cluster correlation, rather
than the correlation among different clusters (or services)
targeted in other correlation-aware scheme [6]–[9]. In Fig. 1,
we can observe the intra-cluster correlation between two VMs
in a cluster, both of which are strongly synchronized with
the variation of the number of clients. Thus, the proposed
solution takes into account the pervasive correlation in scale-
out applications, i.e., within a cluster as well as among
clusters, such that correlated VMs are not co-located.

IV. CORRELATION-AWARE POWER MANAGEMENT

In this section, we present the proposed datacenter power
management solution based on the claims in the previous
section. First, we define a cost function to efficiently quantify
the level of correlation used in the proposed VM placement
(Section IV-A). Second, we propose the correlation-aware
VM allocation scheme (Section IV-B) while sharing cores
among co-located VMs. Finally, we provide a way to scale
the v/f level to achieve power savings without any QoS
degradation (Section IV-C). Note that we assume that servers
are homogeneous, and where each of them consists of Ncore

cores with multiple frequency levels.
A. Efficient correlation measure for VM allocation

The correlation of used CPU utilization between two VMs
is mostly quantified with Pearson product-moment correlation

coefficient, or Pearson’s correlation [8], which is calculated
as the ratio of covariance of the two random variables to the
product of their standard deviations. However, the overhead
to calculate the metric for a certain time interval is high for
a short time period because the computation is concentrated
at the end of the time period, as it utilizes the average values
of CPU utilization samples, which are collected during each
time period. In addition, Pearson’s correlation is also partly
inefficient because the value reflects correlation throughout the
corresponding time interval, even though we only require the
correlation at (off-)peak utilizations in VM placement.

To overcome the drawback and inefficiency in this metric,
we propose a new cost function to quantify correlation be-
tween two VMs (in terms of CPU utilization), as follows:

Costvmi,j =
ûcpu(VMi) + ûcpu(VMj)

ûcpu(VMi + VMj)
(1)

where Costvmi,j represents the newly defined correlation mea-
sure between VMi and VMj . ûcpu(VMi) is a reference
utilization of VMi, which is either the peak or the Nth
percentile value depending on QoS requirement. The numer-
ator represents the worst-case peak CPU utilization when the
peaks of two VMs coincide, while the denominator is an
aggregated actual peak utilization when VMi and VMj are co-
located into a same server. Thus, the higher Costvmi,j , the lower
correlation between VMi and VMj . Moreover, we can update
the values at each sampling period of utilization. Thus, we can
save memory space to store all samples as well as evenly
distributing computational effort to measure the correlation
across a certain time horizon.

Using our new Costvmi,j function, we can model correlations
among all VMs by constructing a 2-D matrix, namely, M vm

cost

where the (i,j)-th element corresponds to Costvmi,j .
B. Correlation-aware VM allocation

We allocate VMs such that the correlation among the allo-
cated VMs in Serveri, i.e., Valloc

i = {VMi,1, · · · , V Mi,nvm
i
}

where nvmi is the number of VMs allocated to Serveri, is
minimized, while the sum of ûcpu(VMi,j) in the server does
not exceed the total CPU capability of the server, i.e., Capi,
as well as the number of the active servers is minimized. The
correlation of Serveri is defined as shown in Eqn. (2):

Cost
server

i =

nvm
i∑

j=1

wvm
i,j ·

(
Nvm∑

k=1&k 6=j

Costvmj,k
nvmi − 1

)
(2)

where wvm
i,j represents a weight of VMi,j , defined as the ratio

of û(VMi,j) to the sum of û(VMi,j)’s of all co-located VMs
in Serveri.

The problem of finding optimal sets of VMs is a well-known
bin-packing problem [15]. To reduce the solution complexity,
we propose a solution based on a First-Fit-Decreasing heuris-
tic as shown in Fig. 2. Our proposed algorithm is periodically
invoked at every tperiod. The algorithm is largely divided into
two phases: 1) UPDATE (lines 1∼8) and 2) ALLOCATE (lines
9∼18). In the UPDATE phase, we initialize parameters and
update CPU utilization statistics. Then, we allocate VMs to
servers in the ALLOCATE phase.
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Fig. 2. The proposed correlation-aware VM placement consisting of UPDATE
and ALLOCATE phases

In the UPDATE phase, we first initialize a set of unallocated
VMs (Vunalloc), sets of allocated VMs (Valloc

i ), remaining
capacity (Remi) for all servers, and a correlation threshold
(THcost) in lines 1∼4. Second, we predict the workload based
on history, as we previously prepared in [15] (line 5). Third,
we sort VMs in Vunalloc in descending order of predicted
ûcpu(VMi) to reduce the fragmentation of the bin-packing
problem (line 6). Fourth, we update M vm

corr by updating the
Costvmi,j for all VM pairs (line 7). Finally, we determine the
number of estimated active servers, i.e., Ñserver, as presented
in Eqn. (3) (in line 8):

Ñserver =

∑Nvm

i=1
˜̂ucpu(VMi)

Ncore
(3)

where ˜̂ucpu represents an estimate of ûcpu. Then, Ñserver is
equal to the minimum number of servers to accommodate all
VMs in Vunalloc. We provision VMs to reduce the number of
active servers while satisfying performance requirements.

The ALLOCATE phase is iterated until all VMs are allocated
to Ñserver servers (line 9). First, we select a server having
the largest remaining CPU capability, i.e., Remi (line 10).
Second, we find a VM to be allocated into Serveri (line 11),
which has the highest Cost

server

i with VMs in Valloc
i , while

satisfying two conditions: 1) Cost
server

i should be larger than
THcost; and 2) ûcpu(VMi) should be less than or equal to
Remi. In case we find a VM, we update Valloc

i , Remi, and
Vunalloc accordingly (lines 12∼15). The procedure to find
VMs to be allocated in Serveri is iterated until there is VM
left (lines 12∼16). If we have unallocated VMs at the end of
the iteration, we repeat the procedure (from lines 10∼16) with
a degenerated THcost by a factor of α (line 17) along with a
list of servers sorted in descending order of Remi (line 18).
C. Decision of v/f level

Once all VMs are allocated into servers, we determine an
optimal v/f level for each server. However, we cannot exactly
estimate how much we can lower v/f level when multiple
VMs are allocated in a server because Costvmi,j only captures

Y=X

Fig. 3. Relationship between weighted average correlation in Eqn. (2) and
possible v/f scaling factor: the lower bound of the possible v/f scaling factor
has linear relationship with Cost

server
i

the correlation between two VMs. Therefore, we empirically
calculate the lower bound of v/f slowdown through Cost

server

i

in Eqn. (2), as shown in Fig. 3. X- and Y-axes, respectively,
represent a weighted average cost function calculated with
Eqn. (2) and the ratio of the sum of ûcpu(VMi)’s of co-
located VMs to the aggregated peak value of the server, which
represents possible v/f slowdown. Based on the relationship,
we can determine the frequency level of Serveri, i.e., fi, as
presented in Eqn. (4):

fi =

(
1

Cost
server

i

)
·

(∑nvm
i

j=1 ûcpu(VMi,j)

Nserver
core

)
· fmax (4)

where fmax is the maximum frequency level. fi is set by
lowering the worst-case peak required frequency level (i.e.,
the second parenthesis assuming the situation when peaks of
VMs coincide) with a factor of 1/Cost

server

i .

V. EXPERIMENTAL RESULTS

We validated the proposed datacener power management
approach in two setups. First, we applied the proposed solution
to two web search clusters running on DELL PowerEdge R815
servers to validate the applicability of the proposed correlation-
aware scheme for scale-out applications. Second, we further
investigated the effectiveness to larger scale problems with the
utilization traces obtained from a real datacenter setup.

A. Setup-1: Distributed web search applications

We built two web search clusters, i.e., Cluster1, and
Cluster2, using the CloudSuite benchmarks [10]. Each cluster
consists of three VMs: one is front-end (Tomcat-7.0.23) and
two are ISNs (Nutch-1.2). Note that the CPU utilization
of the front-end is quite low compared to ISNs. Thus, we
simply varied the allocation of VMs hosting ISNs. We an-
notate four ISNs as VM1,1, VM1,2, VM2,1, and VM2,2

where {VM1,1, V M1,2} and {VM2,1, V M2,2} are included in
Cluster1 and Cluster2, respectively. We used Xen-4.1 hyper-
visor for server virtualization and each VM has Ubuntu11.10
as its operating system (OS). We emulated clients’ behavior
using Faban-0.7 and varied the number of clients from 0∼300
with the form of sine and cosine waves for Cluster1 and
Cluster2, respectively. We used two servers each of which
consists of 8 cores having two frequency levels, i.e., 1.9GHz
and 2.1GHz. We compared three different VM allocations, as
illustrated in the upper part of Fig. 4. 1) Segregated where
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Fig. 4. VM placements and CPU utilization traces of (a) Isolated, (b) Shared-UnCorr, and (c) Shared-Corr

each VM is independently running on 4 cores each, 2) Shared-
UnCorr where 8 cores are shared with two VMs in a same
cluster (i.e., correlation unawareness), and 3) Shared-Corr
where 8 cores are shared with two VMs in different clusters
(i.e., including correlation awareness).

Then, Fig. 5 shows comparisons in terms of the 90th
percentile response time. As this figure indicates, the 90th
percentile response time in Shared-UnCorr is lower than
Segrated by 43.6% (from 0.275 to 0.155 sec) while Shared-
Corr provides another 7.7% lower response time (from 0.155
to 0.143 sec) than Shared-UnCorr under 2.1GHz. The results
can be explained by observing the CPU utilization traces in
Fig. 4. The X- and Y-axes represent the elapsed time (in sec)
and the normalized CPU utilization with respect to the number
of servers, respectively. The samples are collected at every 1
sec using a Perl script monitoring tool Xenstat.pl. The reason
of the high response time in Segregated case is the inefficient
utilization of the allocated cores. As shown in Fig. 4(a), VM1,1

and VM2,2 are under-utilized while VM1,2 and VM2,1 are
over-utilized, i.e., approaching their maximum CPU utilization
levels, and needs more than 4 cores. Note that the response
time of the distributed web search cluster is constrained by
the latest VM because a front-end sends results to clients only
after collecting the search results from all ISNs. Thus, due
to the deficiency of the CPU capability of the over-utilized
VMs, queries must wait in a queue for a longer time before
being processed. Thus, the response time of Segregated case
becomes longer.

On the contrary, Shared-UnCorr enables to efficiently use
all the 8 cores in each server by flexibly scheduling VMs
to the cores according to their time-varying demands. This
result supports our claim in Section III-B where we anticipated
that the gain attaining from sharing cores among VMs is
much higher than the performance degradation caused by the
interference among co-located VMs. However, the maximum
CPU utilization reaches up to 0.88 because two VMs within
the same cluster are highly correlated. Hence, the peaks of
the CPU utilizations coincide. Such high CPU utilization
can result in longer response times [13]. We can reduce the
peak utilization by allocating VM considering correlations
among VMs in Shared-Corr (Fig. 4(c)). In Shared-Corre, the
maximum CPU utilization becomes even and lowered down
to 0.6. The improved response time in Shared-Corr can be
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Fig. 5. 90th percentile response time of Cluster1 and Cluster2 for three
different VM allocations

used to save power consumption by lowering the frequency
level. As shown in Fig. 5, Shared-Corr running with 1.9GHz
provides almost similar response time (0.155 vs. 0.160 sec) to
Shared running with 2.1GHz, which results in approximately
12% powe savings.

B. Setup-2: Utilization traces obtained from datacenter setups
To further investigate the effectiveness of the proposed solu-

tion, we performed another set of simulations using utilization
traces obtained from an actual datacenter. As most of VMs are
severely under-utilized, we selected the top 40 VMs in terms of
CPU utilization. We sampled the CPU utilization every 5 min.
for a day while synthesizing fine-grained samples per 5 sec.
with a lognormal random number generator [16], whose mean
is the same as the collected value for the corresponding 5-
minute sample rate. Using this utilization traces, we evaluated
the effectiveness of the proposed solution with a virtual
testbed consisting of 20 servers. We targeted an Intel Xeon
E5410 server configuration which consists of 8 cores and two
frequency levels (2.0GHz and 2.3GHz), and used the power
model proposed in [13]. We performed VM placement every
1 hour, i.e., tperiod=1 hour, with predictions of upcoming
workloads using a last-value predictor.

Then, we compared the following three approaches of power
management for datacenters:
• Best-Fit-Decreasing (BFD): a conventional best-fit-

decreasing heuristic approach.
• Peak Clustering-based Placement (PCP) [6]: a

correlation-aware VM allocation which clusters VMs
using its Envelope-based correlation classification.

• Proposed: the proposed correlation-aware VM allocation.
Table II(a) compares the power consumption and perfor-

mance violations of the three approaches when we statically



TABLE II
COMPARISONS FOR (A) STATIC AND (B) DYNAMIC V/F SCALING

(a)
Normalized power Maximum violations (%)

BFD 1 18.2
PCP [6] 0.999 18.2
Proposed 0.863 2.6

(b)
Normalized power Maximum violations (%)

BFD 1 20.3
PCP 0.997 20.3

Proposed 0.958 3.1

(a) (b)
Fig. 6. Comparison of frequency distributions in (a) Server1 and (b)
Server3

set the v/f level at the time of VM placement, i.e., tperiod. The
power consumption results are normalized with respect to the
power consumed by BFD, and the maximum violation shows
the maximum per-period ratio of the number of over-utilized
time instances (i.e., when the aggregated utilization among co-
located VMs is beyond the CPU capacity of a corresponding
server) to tperiod, during the entire periods, i.e., 24 hours.
The proposed solution provides up to 13.7% power savings
compared to BFD and PCP, while drastically reducing the
number of the violations. It is noteworthy that PCP provides
almost similar results with BFD because, due to high and fast-
changing correlations among VMs in our utilization traces,
PCP classifies VMs into only ‘1’ cluster during the most
of the time periods (22 out of 24 time periods). When the
number of clusters is ‘1’, PCP behaves exactly same with
BFD. The power savings obtained by our proposed solution are
due to the aggressive-yet-safe v/f settings utilizing the lowered
actual peak resource demand, i.e., Eqn. (4). Fig. 6 compares
the distributions of used frequency levels of BFD and the
proposed solution in two servers (we omit the distribution of
PCP, as it is similar to BFD). As shown in the histograms,
the proposed solution uses the lower frequency levels more
frequently. Moreover, the proposed solution provides a drastic
reduction of the violations (i.e., 15.6%) compared to the
other approaches. Note that we allocated VMs based on
their peak utilizations, which were predicted from the their
history. Despite the provision based on the peak utilization, we
observed quality degradation over the three approaches due to
the mis-predictions of the peak utilization, especially during
abrupt workload changes. However, the proposed solution
can statistically reduce the probability of the violation by
co-locating uncorrelated VMs. Thus, the probability of joint
under-predictions among the co-located VMs is drastically
decreased.

To further investigate the effectiveness of the proposed
solution, we also simulated the case of servers using dynamic
v/f scaling. To prevent frequent oscillations of v/f level (which

affects server reliability [17]), we performed the v/f scaling
at every 12 samples (i.e., 1 min). As shown in Table II(b),
the power savings become smaller compared to the static v/f
scaling because the other approaches also adaptively scale
v/f level according to the time-varying utilization demand.
However, the amount of the violations is unacceptably high in
the other approaches. Thus, more servers need to be activated
to achieve the same QoS level obtained by the proposed
solution, which leads to higher power consumption.

VI. CONCLUSIONS
In this paper, we have presented a novel dynamic power

management solution for datacenters targeting the execution
of scale-out applications by jointly harnessing server consol-
idation and v/f scaling, in order to reduce the global power
consumption while satisfying QoS requirements. Therefore,
we have first analyzed the characteristics of scale-out ap-
plications and evaluated three fundamental approaches for
datacenter dynamic power management solutions: 1) conser-
vative resource provision based on (off-)peak utilization, 2)
sharing cores among co-located VMs, and 3) correlation-aware
VM placement. Then, we proposed a novel VM placement
solutions utilizing the new definition of correlation and an
aggressive-yet-safe v/f scaling solution. Finally, we validated
the applicability of our proposed correlation-aware scheme
with the application of multiple web search clusters in [10] and
the utilization traces obtained from real datacenter setups. Our
experimental results show that the proposed solution provides
up to 13.7% power savings and up to 15.6% improvement of
QoS level compared to conventional VM placement solutions.
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